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NADEL’S SUBSCHEMES OF FANO MANIFOLDS X

WITH A PICARD GROUP Pic(X) ISOMORPHIC TO Z

M. Yotov
∗

Communicated by V. Kanev

Abstract. In this paper we find a global sufficient condition for suitable
subschemes of Fano manifolds to be Nadel’s subschemes. We apply this
condition to one-dimensional subschemes of a projective space.

1. Introduction and basic notations. In this paper we consider Fano
manifolds, i.e. compact complex manifolds X with positive First Chern class:
c1(X) > 1. A subsceme Y of such manifold is called Nadel’s if for any Nakano
semi-positive holomorphic vector bundleE onX all the higher cohomology groups

Hq(X, E⊗IY )

vanish. (The definition of Nakano semi-positivity is given bellow). Here E denotes
the sheaf of germs of holomorphic sections of E, and IY denotes the ideal sheaf
on X which defines the subsceme Y . As was shown by A. M. Nadel [5] and by
the author [9] the existence of Nadel’s subschemes is related to the presence of
Kähler-Einstein metrics on X:
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If there are no Nadel’s subscemes on X,
then X is Kähler-Einstein.

Unfortunately, every reduced point on X is a Nadel’s subscheme of X.
But often it is very useful to know that on a Fano manifold there are no any
Nadel’s subschemes of a certain type. For example, if the twisted cubic C3 in P3

is not a Nadel’s subscheme of P3, then the blow-up of P3 in C3 is Kähler-Einstein.
Our main purpose in this paper is to investigate what global conditions

on a subscheme Y of X are sufficient for Y to be a Nadel’s subscheme of X. We
find such conditions in case of reduced Y with smooth irreducible components
which intersect each-other transversally, and with Pic(X) isomorphic to Z (Theo-
rem 3.1 and Corollary 3.6). For proving this result we construct a fine resolution
F . for the sheaf E⊗IY , whose complex of global sections is acyclic in positive
dimensions. The construction of F . uses classic methods of Andreotti-Vesentini
and Hörmander about the existence of solutions of a ∂ -problem on a complex
manifold. We conclude with some examples to which the results of this paper are
applicable: Grassman manifolds and their smooth divisors. As a consequence we
give a sufficient-and-necessary condition for a reduced curve of degree 3 in Pn to
be a Nadel’s subscheme. For example, C3 is Nadel’s in P3.

The approach to the problem in this paper, in its final variant, was in-
fluenced by Demailly’s papers [1] and [2]. The author would like to acknowledge
K. Ranestad for very helpful discussions during the conference “Geometry and
Mathematical Physics” in Zlatograd, 1995.

The author is thankful to R.-P. Holzapfel whose remarks on the prelimi-
nary version of the text improved the final variant of it.

The following basic notations we shall persistently use in the paper.
Let X be a compact complex manifold and (E,h) be an Hermitian holo-

morphic vector bundle over X.

Definition 1.1. With Ω(h) we denote the following section of the vector
bundle (E⊗TX)∗⊗(E ⊗ TX)∗, which in local coordinates has the form

Ω(h) = −∂∂h+ ∂h.h−1 ∧ ∂h

Remark 1.1. If ∇ is the Hermitian connection in E, and Θ = ∇2 its
curvature, then in local coordinates

Ω(h) =t Θ.h.
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It’s well known that Ω(h) is a Hermitian form on E ⊗ TX.

Definition 1.2. A holomorphic vector bundle E over X is called Nakano
(semi-)positive if there exists an Hermitian metric h on E, the corresponding
Hermitian form Ω(h) of which is (semi-)positive definite on E ⊗ TX.

In particular, X is a Fano manifold iff its anticanonical line bundle K∗
X is

Nakano positive.

Remark 1.2. (i) Suppose L is a holomorphic line bundle over X, and

l its Hermitian metric. Then locally

√
−1

2π
.
Ω(l)

l
represents the First Chern class

of L : c1(L). Consequently, L is Nakano positive iff c1(L) > 0. By the famous
Kodaira theorem the latter is satisfied iff L is an ample line bundle.

(ii) For the connections between various notions of positivity of a vector
bundle and the Nakano (semi-)positivity we refer to the book of Shiffman and
Sommese [7].

Definition 1.3. 1) Suppose ϕ ∈ L1
loc(X), and (E,h) is an Hermitian

vector bundle over X. The almost everywhere defined bilinear form

h̃ = h. exp(−ϕ)

is called a singular metric on E. By definition

Ω(h̃) = exp(−ϕ).(Ω(h) + ∂∂ϕ.h.

The coefficients of Ω(h̃) are (1, 1)-currents.
2) For ϕ ∈ L1

loc(X) we define I(ϕ) to be the sheaf of germs of holomorphic
functions f on X for which

|f |2. exp(−ϕ)

is locally integrable (with respect to any smooth volume form on X).

As usual, OX denotes the structure sheaf of X as a complex manifold,
and AX – the structure sheaf of X as a smooth manifold. If Y is a subscheme of
(the complex manifold) X, then IY denotes the ideal sheaf which defines Y . We
have

(Y,OY ) = (Spec(OX/IY ),OX/IY ).

For any holomorphic vector bundle E over X, E denotes the sheaf of germs of
holomorphic sections of E.
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2. Singular metrics defining submanifolds of a complex manifold.

LetX be a compact complex manifold, L1, L2, . . . , Ls be holomorphic line bundles
over X, and Y – a subscheme of X.

Definition 2.1. (i) We shall say that Y is scheme-theoretically de-
termined by L1, . . . , Ls, if there exist sections σi ∈ H0(X,Li), i = 1, . . . , s, that
satisfy the following property

For any x ∈ X there exists an open neighbourhood U of x such that

σi|U = fU
i .ei, (i = 1, . . . , s), fU

i ∈ OX(U)

and
IY (U) = (fU

1 , . . . , f
U
s ).OX(U).

(ii) Y is called a globally complete intersection, if there exist L1, . . . , Ls

that determine Y scheme-theoretically, and s = codim XY .

Remark 2.1. If X is a projective manifold, then every subscheme of X
is scheme-theoretically determined by some line bundles L1, . . . , Ls.

Let’s consider the following situation. Suppose Y is a smooth submanifold
of X scheme-theoretically determined by L1, . . . , Ls and

L1 = L⊗ni i = 1, . . . , s

for a very ample line bundle L over X. We shall construct a function ϕ ∈ L1
loc(X),

for which
IY = I(ϕ).

Remark 2.2. In fact, for the construction of ϕ below L suffices to be
ample, not very ample. Hence this construction is valid for any projective X with
Pic(X) ∼= Z.

The construction of ϕ.
L is very ample, so there exists an embedding

ΦL : X −→ P(H0(X,L)∗) =: PN ,

such that L ∼= Φ∗
LOPN (1).

Let (x0, . . . , xN ) be homogeneous coordinates of PN , and Uj = {xj 6= 0},
j = 1, . . . , N , be the standard affine open subsets of PN . Denote by Vj the
preimage of Uj under ΦL. Then Lj is trivial over Vj for all possible i and j. By
our assumption Y is scheme-theoretically determined by L1, . . . , Ls. Hence there
exist sections σi ∈ H0(X,Li), (i = 1, . . . , s), for which

σi|Uj
= f j

i .e
⊗ni

j
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and
IY (Vj) = (f j

1 . . . . , f
j
s ).OX (Vj),

where ej is a local frame for Li|Vj
.

Let l be the standard metric on OPN (1) lifted to L via the map ΦL, and
lj – its local representation over Vj (j = 1, . . . , N). We set

ϕj := r. log

(

s
∑

i=1

|f j
i |2
lni

j

)

j = 1, . . . , N,

where r = codim XY .
Obviously,

ϕj |Vj∩Vi
= ϕi|Vj∩Vi

,

and ϕi is an almost pluri-subharmonic function, i.e. it can be represented locally
as a sum of a smooth and a pluri-subharmonic function. Consequently, ϕ = {ϕj}j

as a function belongs to L1
loc(X).

Theorem 2.3. For the function just defined we have

IY = I(ϕ).

First we shall prove the following general result about almost pluri-sub-
harmonic functions.

Proposition 2.4. For every almost pluri-subharmonic function ϕ the
sheaf I(ϕ) is a coherent ideal sheaf in OX .

P r o o f. (We follow Demailly, [1]) The assertion is local, so we may assume
that X is a Stein manifold.

Let S denote the set of all holomorphic functions f on X for which

|f |2. exp(−ϕ)

is locally integrable (with respect to some smooth and bounded measure). Since
S is an ideal in OX , which is a Noetherian sheaf, then S defines a coherent ideal
sheaf S on X by a standard way. We have

S ⊆ I(ϕ).

We shall prove that Sx = I(ϕ)x for each x ∈ X from which the Proposition 2.4
will follow immediately.
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Let mx be the maximal ideal in the local ring OX,x. By the Krull Inter-
section Theorem we have

⋂

k≥0

(Sx + mk
x.I(ϕ)x) = Sx,

hence it suffices to prove that for each k ∈ N

I(ϕ)x ⊆ Sx + mk
x .I(ϕ)x.

Let fx ∈ I(ϕ)x be the representative of a holomorphic function f ∈
I(ϕ)(V ), i.e. |f |2. exp(−ϕ) is integrable over V . Without loss of generality we
may assume that over V

ϕ = ψ + ψ′,

where ψ is pluri-subharmonic, and ψ′ is smooth over V . Set

ϕ̃(z) = ψ(z) + 2.(n + k). log(|z − x|) + |z|2,

where z ∈ V , n = dimX. Let W ⊂ V be an open neighbourhood of x, and let
ρ be a cut off function in V for which

ρ(z) = 1 for z ∈W, ρ(z) = 0 for z 6∈ W.

Since the ∂-closed form α = ∂(ρ.f) is integrable over V , and since

∂∂(ϕ̃) ≥
n
∑

i=1

dzi ∧ dzi,

we can apply the Hörmander Existence Theorem (see Nadel [5], Proposition 1.1):
There exists a smooth function g over V such that ∂g = α, and

∫

V
|g|2. exp(−ϕ̃)dV ≤

∫

V
|α|2 exp(−ϕ̃)dV.

Here dV =

(√
−1

2

)n

.

(

∑

dzi ∧ zi
)n

n!
.

Obviously,

u := ρ.f − g ∈ S(V ), g ∈ OX(W )

and

fx = ux + gx ∈ Sx + I(ϕ)x
⋂

mk+1
x .
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Hence I(ϕ)x ⊂ Sx + I(ϕ)x
⋂

mk
x for every k ∈ N. �

Corollary 2.5 Let (E,h) be an Hermitian vector bundle over X, and ϕ
be an almost pluri-subharmonic function on E. Denote by S the sheaf of germs
of holomorphic sections of E, which are locally h̃ = h. exp(−ϕ)-integrable. Then
S is a coherent sheaf and

S = E ⊗ I(ϕ).

⊳ The assertion is local and, since X is locally compact, easily reduces to
the case of a trivial E with the standard Hermitian metric. Corollary 2.5 then
follows from Proposition 2.4. ⊲

P r o o f o f T h e o r em 2.3. It follows from Proposition 2.4 that I(ϕ)
defines a subscheme of X. Obviously,

Supp(OX/I(ϕ))
⋂

Vj = {f j
1 = 0, . . . , f j

s = 0} = Y
⋂

Vj .

Since Y is reduced we have
I(ϕ) ⊂ IY .

It remains to prove that

Lemma 2.6. For every x ∈ X (IY )x ⊂ I(ϕ)x.

⊳ If x /∈ Y , then (IY )x = I(ϕ)x = OX,x.

Let x ∈ Y
⋂

Vj . Since Y is smooth at x, within the set {f j
1 , . . . , f

j
s} there

exist r(= codim XY ) functions which are a part of a parameter system of OX,x.

Suppose these functions are f j
1 , . . . , f

j
r . Moreover, we have

{(f j
r+1)x, . . . , (f

j
s )x} ⊂ ((f j

1 )x, . . . , (f
j
r )x).OX,x.

Hence we must prove that (f j
i )x ∈ I(ϕ)x for i = 1, . . . , r, or, in other words, that

f j
1 , . . . , f

j
r are integrable at x with respect to the weight function ϕ.

After an appropriate change of the local coordinates at x, the last asser-
tion is equivalent to the fact that the functions

|zi|2
(

r
∑

j=1

|zj|2

gj
+G

)r i = 1, . . . , r

are integrable at z = 0, where gi (i = 1, . . . , r) is a smooth and positive at x
function, and G =

∑ |Gj |2 for Gj ∈ (z1, . . . , zr).AX,x. ⊲
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This completes the proof of Theorem 2.3. �

From now on we shall work with projective X for which Pic(X) ∼= Z.
Suppose that Y is a subscheme of X and

Y = Y1

⋃

. . .
⋃

Ym

is its decomposition into irreducible components. We shall say that Y is suitable
for our considerations if the following holds:

i) each Yi (i = 1, . . . ,m) is smooth,
ii) if x ∈ X and Yi1, . . . , Yik are all the components of Y passing through

x, then

Yi1

⋂

. . .
⋂

Yij and Yij+1
j = 1, . . . , k − 1,

intersect each other transversally.
By Theorem 2.3 we can construct almost pluri-subharmonic functions

{ϕ}m
i=1 with the property

I(ϕi) = IYi
i = 1, . . . ,m.

Denote by ϕ the sum ϕ1 + . . . + ϕm. Obviously, this function is almost pluri-
subharmonic.

Theorem 2.7. If Y is a suitable subscheme of X, and ϕ is the almost
pluri-subharmonic function defined above, then

I(ϕ) = IY .

P r o o f. We shall prove this theorem for m = 2. After that the general
case will be clear.

By Theorem 2.3 we have that I(ϕ) defines Y \Y1
⋂

Y2 on X\Y1
⋂

Y2. Sup-
pose that x ∈ Y1

⋂

Y2 and at x the functions ϕ1 and ϕ2 are represented by

ϕ1 = r1. log

(

n1
∑

i=1

|fi|2
lνi

)

and ϕ2 = r2. log





n2
∑

j=1

|gj |2
lµj



 ,

where ri = codim XYi, i = 1, 2. (See the construction of ϕ before Theorem 2.3).
We must prove that

fi.gj is ϕ− integrable for all i = 1, . . . , n1, j = 1, . . . , n2.
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Similar to the proof of Lemma 2.6. we can choose

f1, . . . , fr1
, g1, . . . , gr2

to be a part of a parameter system of OX,x with

(IY1
)x = ((f1)x, . . . , (fr1

)x).OX,x and (IY2
)x = ((g1)x, . . . , (gr2

)x).OX,x.

By the same arguments as in the proof of Theorem 2.3 we must prove that

(fi.gj)x ∈ I(ϕ)x for all possible i, j

This last, by an appropriate change of the coordinates at x, is equivalent to the
fact that for k = 1, . . . , r1, l = 1, . . . , r2 the function

|z′k|2.|z′′l |2
(

r1
∑

i=1

|z′
i
|2

g′
i

+G′

)r1

.

(

r2
∑

j=1

|z′′
j
|2

g′′
j

+G′′

)r2

is integrable at z = 0 with respect to the standard volume form in Cn, where

g′i > 0, i = 1, . . . , r1, G′ =
∑

|G′
i|2 G′

i ∈ (z′1, . . . , z
′
r1

).AX,x,

g′′j > 0, j = 1, . . . , r2, G′′ =
∑

|G′′
j |2, G′′

j ∈ (z′′1 , . . . , z
′′
r2

).AX,x.

This completes the proof of Theorem 2.7. �

3. Vanishing theorems and Nadel’s subschemes. Suppose we are
given the following data:

• X is a complex manifold with Pic(X) ∼= Z,
• Y →֒ X is a suitable subscheme,
• ϕ is the almost pluri-subharmonic function corresponding to Y by means

of Theorem 2.7,
• g is a Kähler metric on X with k - the induced metric on the anticano-

nical line bundle K∗
X ,

• (E,h) is an Hermitian vector bundle over X.

Theorem 3.1. Let h̃ be the singular metric on E, defined by

h̃ = h. exp(−ϕ).

Suppose that there exists a positive number ǫ and a Kähler form ω on X, for
which

k. exp(ϕ).Ω(h̃) + Ω(k).h ≥ ǫ.ω.h,
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(as an inequality between Hermitian forms with currents as coefficients). Then
for each positive q

Hq(X, E ⊗ IY ) = 0.

P r o o f. The idea of the proof is in constructing of a fine resolution F .

for E ⊗ I(ϕ), the corresponding complex {Γ(F .)} of which is acyclic in positive
dimensions. Theorem 3.1 follows then from the fact that I(ϕ) = IY (Theorem
2.7).

Let Fq ⊂ A0,q(E) denote the sheaf of germs of those smooth (0, q)-forms
α with coefficients in E, for which both α and ∂α are locally integrable with
respect to the metric induced by h̃ and g. Then {Fq, dq = ∂}q≥0 is a differential
complex with kerd0 = E ⊗ I(ϕ) (by Corollary 2.5).

Lemma 3.2. The complex {F q = Γ(X,Fq), dq = ∂}q≥0 is acyclic in
positive dimensions, i.e.

Kerdq = Imdq−1

for q ≥ 1.

⊳ In the notations of the proof of Theorem 2.7 let

ϕi = ri. log





n1
∑

j=1

|fij |2
lνij



 .

We have (a global) regularization of ϕi:

ϕi,n = ri. log





1

n
+

n1
∑

j=1

|fij |2
lνij



 .

Hence the following pluri-subharmonic functions

ϕn = ϕ1,n + · · · + ϕm,n

form a regularization of a ϕ, and ϕn ցn ϕ.
Denote by hn the Hermitian metric h. exp(−ϕn). It follows that there

exists an integer n0 and a positive number ǫ′, less then ǫ such that

k. exp(ϕn).Ω(hn) + Ω(k).h ≥ ǫ′.ω.h.

for each n ≥ n0.
Denote by ‖.‖

h̃
(‖.‖hn

) the norm in A0,q(E) induced by the metrics h̃
and g (respectively hn and g).
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Suppose now that α ∈ F q and dqα = 0 for some q ≥ 1. By definition the
number

C = ‖α‖2
h̃

is finite. Since ‖α‖2
hn

≤ ‖α‖2
h̃

for each n, then the sequence {‖α‖2
hn
}n is bounded

from above by C. On the other hand, by using the classic methods of Andreotti-
Vesentini and Hörmander, for each n ≥ n0 there exists a smooth (0, q)-form βn

such that

∂̃βn = α and ‖βn‖2
hn

≤ 1

ǫ′.q
‖α‖2

hn
.

Hence {βn}n≥n0
is uniformly bounded on the compact subsets of X. We can

choose a subsequence {βnk
}k≥1 which has a limit in the weak topology of L0,q−1(E):

βnk
→k β.

Since ∂ is a continuous and regular operator we have

α = ∂β = dq−1β

and β is smooth. Finally

C

ǫ′.q
≥ ‖βnk

‖2
hnk

−→k ‖β‖2
h̃
,

and we get that
β ∈ F q−1 and dq−1β = α,

which proves our lemma. ⊲

Lemma 3.3. The complex of sheaves {Fq, dq}q≥0 is a resolution for
E ⊗ I(ϕ).

⊳ The proof is identical with that of Lemma 3.2 but for Stain open subsets
of X instead of X.⊲

Obviously {Fq, dq}q≥0 is a fine resolution for E ⊗ I(ϕ) and so

Hq(X, E ⊗ I(ϕ)) ∼= Hq(F ., d.).

Lemma 3.2 gives us that Hq(X, E ⊗ I(ϕ)) = 0 for q ≥ 1 ⊲

Remark 3.4. The assertion in Theorem 3.1 is a special case of the
following more general result

Theorem 3.5. Let X be a compact complex manifold with a Kähler
metric g; let k be the induced metric on K∗

X . Suppose (E,h) is an Hermitian
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vector bundle over X, and ϕ is an almost pluri-subharmonic function on X with
Y the corresponding to ϕ subscheme of X.If

k. exp(ϕ).Ω(h̃) + Ω(k).h ≥ ǫ.ω.h

where h̃ = h. exp(−ϕ), ǫ > 0, and ω is a Kähler form on X, then for all q > 0

Hq(X, E ⊗ IY ) = 0.

In this paper we don’t need this general result.

Now we want to apply Theorem 3.1 to Fano manifolds.

Definition. A subscheme Y of a Fano manifold X is called Nadel’s
subscheme of X if for every Nakano semi-positive vector bundle E

Hq(X, E ⊗ IY ) = 0

for each positive q.

We refer to Nadel [5] and Yotov [9] for the properties of Nadel’s sub-
schemes.

Let Y = Y1 ∪ . . . ∪ Ym be the decomposition of a suitable subscheme
of a Fano manifold X into irreducible components. Let Pic(X) = Z.L , where
L is ample. Then each Yi is scheme-theoretically determined by Lij ∈ Pic(X),
(j = 1, . . . ,mi), for which

Lij = L⊗nij where nij are positive integers.

Denote by ni the maximum of ni1, . . . , nimi
.

Corollary 3.6. Let ri = codim XYi, i = 1, . . . ,m, and K∗
X = L⊗s. If

m
∑

i=1

ri.ni + 1 ≤ s,

then Y is a Nadel’s subscheme of X.

P r o o f. Since L is ample, then there exists a metric l on L with Ω(l) > 0.
Without loss of generality we may assume that l is induced by a Kähler metric
on X.

Let (E,h) be an Hermitian vector bundle over X for which Ω(h) ≥ 0,
and let h̃ = h. exp(−ϕ), where ϕ is the almost pluri-subharmonic function corre-
sponding to Y via Theorem 2.7. We have

ls. exp(ϕ).Ω(h̃) + Ω(ls).h ≥ Ω(h) +

(

s−
m
∑

i=1

rini

)

Ω(l).h ≥ Ω(l).h.
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Now we can apply Theorem 3.1 to deduce that

Hq(X, E ⊗ IY ) = 0 for q ≥ 1.

This proves the Corollary 3.6. �

4. Some examples. Let X be the Grassman manifold G(k, n) of k-
planes in Pn. It’s well known that Pic(X) = Z.L, where L is the pull-back of
OPN (1) via the Plücker map

Pl : X −→ PN , N =

(

n+ 1

k + 1

)

− 1.

Here K∗
X

∼= L⊗(n+1). The Theorem 3.1 is applicable to X. The special case of
k = 0 is very interesting.

1. Let Y be an equidimensional suitable subscheme of Pn of codimension
1. In this case Theorem 3.1 doesn’t give anything new:

If degY ≤ n, then Y is a Nadel’s subscheme of Pn .

In fact, degY ≤ n is sufficient-and-necessary condition for a divisor on Pn

to be a Nadel’s subscheme.

2. Another interesting case is when Y is a (suitable) complete intersection
of codimension 2. Now Y is determined by O(d1) and O(d2), and degY = d1.d2.
If Y is nondegenerate, which is the only interesting case ( as we shall see later
on), we get

If degY ≤ n , then Y is a Nadel’s subscheme of Pn .

3. The third case we want to apply Theorem 3.1 to is of one-dimensional
subscheme Y , and n ≥ 3. Here Y is suitable iff Y is smooth, i.e. Y is a disjoint
union of its smooth components.

These are some well known facts about Nadel’s subschemes we shall use
in what follows (see Nadel [5]):

Fact 1. Every Nadel’s subscheme is connected as a topological space.

Fact 2. If Y is 1-dimensional Nadel’s subscheme, then Yred consists of
smooth rational curves which intersect each-other at most once. Moreover, there
must not be any circles of lines in Yred.

It follows from Fact 2 that if Y is smooth, then it is isomorphic to P1.
Suppose that Y is smooth and degY = d.
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3.1. Let d ≥ n+ 1. It is easy to see that Y is not Nadel’s. Indeed, let E
be the line bundle [H], where H is a hyperplane in Pn. Since E is ample, it is
Nakano positive. The short exact sequence of sheaves

0 −→ IY ⊗OPn(1) −→ OPn(1) −→ OPn(1) ⊗OY −→ 0

gives that

h0(Pn,OPn(1)) = n+ 1, h0(Y,OPn(1) ⊗OY ) = d+ 1 ≥ n+ 2.

Hence,
h1(Pn,IY ⊗OPn(1)) 6= 0,

and Y is not a Nadel’s subscheme of Pn.

3.2. Let d ≤ n− 1. In this case Y is degenerate (i.e., Y lies in a proper li-
near subspace of Pn. Let Pm be a subspace of minimal dimension in Pn containing
Y . Hence, d ≥ m. The short exact sequence of sheaves

0 −→ IPm(1) −→ OPn(1) −→ OPm(1) −→ 0,

combined with the Bott formula about the cohomology groups of a projective
space, gives us that

hi(Pn,IPm(1)) ≤ hi(Pn,OPn(1)) = 0, i = 1, 2.

On the other hand, from the exact sequence of sheaves

0 −→ IPm(1) −→ IY (1) −→ IY ⊗OPm(1) −→ 0

we get that
h1(Pn,IY (1)) = h1(Pm,IY (1) ⊗OPm).

Hence, if d ≥ m+ 1, then Y is not a Nadel’s subscheme of Pn.

3.3. The only essential case is when Y = Cn is a rational normal curve of
degree n in Pn.

Claim 1. There exists one-dimensional smooth deformation of a non-
degenerate Y = Cn−1

⋃

l ⊂ Pn with rational normal curves Cn outside the central
fibre.

Indeed, the corresponding deformation is given in Pn×C1 by the equations

rk

(

z0 . . . zn−2 t.zn−1

z1 . . . zn−1 zn

)

≤ 1.
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Here Cn−1 is a rational normal curve in {zn = 0}, and l is the line {z0 = z1 =
· · · = zn−2 = 0}. Let Yt denote the fiber of this deformation over t. Hence, Y is
isomorphic to Y0.

Claim 2. For each Nakano semi-positive E h1(Pn,IY0
⊗ E) = 0.

Let Hn be the hyperplane {zn = 0}. Obviously, Hn ∪ l is a suitable
subscheme of Pn to which we can apply Corollary 3.6. We get

Hq(Pn,IHn∪l ⊗ E) = 0, for q > 0.

On the other hand, we have an exact sequence of sheaves

0 −→ IHn∪l −→ IY0
−→ ICn−1

⊗OHn −→ 0.

Tensoring this sequence by E, the corresponding long exact sequence

. . . −→ H1(Pn,IHn∪l ⊗ E) −→ H1(Pn,IY0
⊗ E) −→ H1(Hn,ICn−1

⊗ E)

−→ H2(Pn,IHn∪l ⊗ E) −→ . . .

gives us that
H1(Pn,IY0

⊗ E) ∼= H1(Hn,ICn−1
⊗ E).

It is a well known fact that Nakano semi-positivity of a vector bundle remains
valid when restricting on submanifolds. So, we can proceed by induction. The
fact that C2 is a Nadel’s subscheme of P2 completes the proof of our claim.

Since the deformation of Y0 in Claim 1. is flat and proper we can apply
the theorem of semicontinuity of cohomology groups

h1(Pn,IYt ⊗ E) ≤ h1(Pn,IY0
⊗ E).

But Yt (t 6= 0) is isomorphic to Cn, and we conclude that

Proposition 4.1. The rational normal curve Cn is a Nadel’s subscheme
of Pn.

By using the method of the proof of Claim 2. one easily can prove the
following

Proposition 4.2. Suppose that Y is a reduced curve in Pn of degree 3
(n ≥ 3). If Y is a Nadel’s subscheme of Pn, then
either
1) Y is a rational normal curve in some three-dimensional projective subsspace
or
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2) Y is a noncomplanar connected union of a conic with a line q ∪ l
or
3) Y is a noncomplanar connected union of three lines l1 ∪ l2 ∪ l3.
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Birkhäuser PM 57.

[8] Yum-Tong Siu. Complex analyticity of harmonic maps, vanishing and Lef-
shetz theorems. J. Differential Geom. 17 (1982), 55-138.

[9] M. Tz. Yotov. Nadel’s sheaves and properties of some vector bundles on
Fano manifolds. Izv. Acad. Nauk. Seria Mathemat. 58, 5 (1994) 53-67.

University of Sofia

Faculty of Mathematics and Informatics

Department of Geometry

5, James Bourchier blvd.

1164 Sofia, Bulgaria

e-mail: yotov@fmi.uni-sofia.bg Received November 20, 1996


