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ISOMORPHISM OF COMMUTATIVE MODULAR GROUP

ALGEBRAS
∗

P.V. Danchev

Communicated by L. L. Avramov

Abstract. Let K be a field of characteristic p > 0 and let G be a direct
sum of cyclic groups, such that its torsion part is a p-group. If there exists
a K-isomorphism KH ∼= KG for some group H , then it is shown that
H ∼= G.

Let G be a direct sum of cyclic groups, a divisible group or a simply
presented torsion abelian group. Then KH ∼= KG as K-algebras for all
fields K and some group H if and only if H ∼= G.

1. Introduction. Let G be an abelian group, tG be its torsion subgroup
and Gp be a p-primary component of G. Throughout this article R and K will
denote commutative rings with identities and U(R) will be the multiplicative
group of a ring R.

Let us denote by U(RG) and Up(RG) the unit group and its p-primary
component (i. e. its Sylow p-subgroup), respectively and by V (RG) and Vp(RG) =
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S(RG) the group of normalized units (i. e. the units of augmentation 1) and its
p-primary component (i. e. its normed Sylow p-subgroup) in a group algebra RG,
respectively.

In this paper the groups V (RG;H) (see 2.2) and S(KG), and their
decompositions into a restricted (bounded) direct product (i.e. a direct sum) of
cyclic p-groups are being examined. Some criteria are obtained for V (RG;H)
and S(KG) when they are direct sums of cyclic p-groups, and G is an arbitrary
abelian group, H is a pure p-subgroup of G and R is an arbitrary ring, K is
a ring without nilpotent elements, and charR = charK = p-prime number. The
proofs are based on Kulikov’s theorem (see [11, p. 144 and p. 550] or [7, p. 106,
Theorem 17.1]).

Besides, the isomorphism problem for commutative modular group alge-
bras is being discussed. Namely, we prove that the group algebra KG over a
field K determines G up to isomorphism for the cases when:

(∗) G is a direct sum of cyclic groups, the torsion subgroup of which is a
p-group, and charK = p > 0.

(∗∗) G is a direct sum of cyclic groups, or a divisible group or a simply
presented torsion group, and K is every field (every field of prime characteristic).

Thus, we conclude that KG determines the isomorphism class of the group
G in cases (∗) and (∗∗), i.e. a full system of invariants of the K-algebra KG is
the group G.

2. Unit groups in commutative modular group algebras.

2.1. Preliminary lemmas.

Lemma 1. Let R be a commutative ring with identity and prime
characteristic p.

(1) Let r ∈ R. Then r ∈ U(R) if and only if rp ∈ U(Rp).

(2) Up(R) = U(Rp).

P r o o f. (1) Let r ∈ U(R), i.e. does exist α ∈ R with rα = 1. Hence
rp.αp = 1, i.e. rp ∈ U(Rp). Now let rp ∈ U(Rp), i.e. does exist β ∈ Rp with
rp.β = 1, i.e. r.rp−1.β = 1. Finally r ∈ U(R).

(2) Let x ∈ Up(R), i.e. x = γp, γ ∈ U(R). From (1), γp ∈ U(Rp),
i.e. x ∈ U(Rp) and Up(R) ⊆ U(Rp). Now let y ∈ U(Rp). Therefore does exist
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δ ∈ R and y = δp. But δp ∈ U(Rp) and by (1), δ ∈ U(R), i.e. y ∈ Up(R).
Finally U(Rp) ⊆ Up(R) and the lemma is true. �

Lemma 2. Let R be a commutative ring with identity of prime char-
acteristic p and let G be an abelian group. For every ordinal number σ we
have:

(RG)p
σ

= Rpσ

Gpσ

.(3)

Upσ

(RG) = U(Rpσ

Gpσ

).(4)

V pσ

(RG) = V (Rpσ

Gpσ

).(5)

Upσ

p (RG) = Up(R
pσ

Gpσ

).(6)

Spσ

(RG) = S(Rpσ

Gpσ

).(7)

P r o o f. Let σ = 1. Further the proof goes on a standard way by means
of a transfinite induction.

(3) is evidently. (4) Since (RG)p = RpGp by (3), then U(RpGp) =
U ((RG)p) = Up(RG) from Lemma 1, because RG is a commutative ring with
identity and charRG = p. (5) Certainly from (4), V (RpGp) = U(RpGp) ∩
V (RG) = Up(RG) ∩ V (RG) = V p(RG), since V (RG) is pure in U(RG) as
its direct factor. (6) follows immediately from (4). (7) follows immediately from
(5). The lemma is proved. �

Lemma 3. Let G be an abelian group and K be a commutative ring
with identity of prime characteristic p without nilpotent elements. Then

(8) S(KG) = 1 if and only if Gp = 1 .

P r o o f. If S(KG) = 1, then Gp=1, since Gp ⊆ S(KG). Let Gp = 1,
c =

∑

1≤i≤n

µigi ∈ S(KG) (µi ∈ K, gi ∈ G),
∑

1≤i≤n

µi = 1 and cpm

= 1 for any m ∈

N. Therefore
∑

1≤i≤n

µpm

i gpm

i = 1. But gpm

j−1 6= gpm

j (j=2, ...,

n+1, gn+1=g1). Indeed, let gpm

j−1 = gpm

j , i.e. (gj−1.g
−1
j )p

m

= 1, i.e. gj−1.g
−1
j ∈

Gp = 1 and gj−1 = gj — a contradiction. Hence gpm

1 = 1, i.e. g1 ∈ Gp = 1 and

g1 = 1; µpm

1 = 1, i.e. (µ1 − 1)p
m

= 0 and µ1 = 1; µpm

2 = · · · = µpm

n = 0, i.e.
µ2 = · · · = µn = 0. Finally c = 1, i.e. S(KG) = 1. So, the lemma is proved. �

2.2. Direct sums of cyclic groups of the Sylow p-subgroups of
modular group algebra. Let H be a subgroup of an abelian group G, i.e. H ≤
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G. Following May [14, 15], we define the subgroup K(H)
def
= kernel(V (RG) →

V (R(G/H))) where the homomorphism V (RG) → V (R(G/H)) is induced by
the natural map (epimorphism) G → G/H. Thus, evidently K(H) = V (RG) ∩
(1+RG.I(H)), where I(H) denotes the augmentation ideal of RH, and RG.I(H)
def
= I(RG;H) [17] denotes the relative augmentation ideal of RG, i.e. I(RG;H) =
〈h−1 |h ∈ H〉⊳ RG. If x ∈ I(RG;H), then x =

∑

h∈H

xah.(h−1), xah ∈ RG, a ∈

G, i.e. xah =
∑

a∈G

αaha, αah ∈ R and x =
∑

h∈H

∑

a∈G

αaha(h− 1) =
∑

h∈H

∑

a∈G

αahah−
∑

h∈H

∑

a∈G

αaha =
∑

g∈G

αgg and
∑

g∈aH

αg = 0, a ∈ G, i.e. x =
∑

g∈G

αgg, αg ∈ R and
∑

g∈aH

αg = 0 for every a ∈ G [17]. If H = G, then I(RG;G) = I(RG) = I(G) is

the augmentation ideal of RG. If H = 1, then I(RG;H) = 0. Besides obviously
V (RH) ≤ K(H).

Let x ∈ V (RG;H)
def
= 1 + I(RG;H), i.e. x = 1 + x, where x =

∑

g∈G

rgg ∈

I(RG;H), rg ∈ R,
∑

g∈aH

rg = 0 for each a ∈ G, i.e. x = 1 +
∑

g∈G

rgg, rg ∈

R,
∑

g∈aH

rg = 0 for each a ∈ G, i.e.

(∗ ∗ ∗) x=
∑

g∈G

rgg, rg ∈ R and
∑

g∈aH

rg=

{

1, a ∈ H
0, a 6∈ H

for each a ∈ G.

Let H be an abelian p-group and charR = p be a prime number.

Thus K(H) = 1 + I(RG;H)
def
= V (RG;H) ≤ V (RG) is a p-group and conse-

quently V (RG;H) = S(RG;H) ≤ S(RG). Besides if G = H then V (RG) =
V (RG;G) = 1 + I(G) = K(G) is a p-group (see also [14]).

The group V (RG;H) is being examined in the researches [14, 15], [18]
and [17], but in the last two articles G is an abelian p-group, G 6= H.

The next lemma is proved in [17], for the case when G is an abelian
p-group.

Lemma 4. Let L be a subring of a commutative ring R with identity,
let charR = p be prime, and let A and B be subgroups of an abelian group G
such that A ∩ B is p-torsion. Then

(9) V (RG;A) ∩ V (LB) = V (LB;B ∩ A) .

P r o o f. Elementary we have that V (LB;B ∩ A) ⊆ V (LB), V (LB;B ∩
A) ⊆ V (RG;A) and hence V (LB;B ∩ A) ⊆ V (RG;A) ∩ V (LB).
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Let now x ∈ V (RG;A) ∩ V (LB), i.e.

x =
∑

b∈B

xb.b, xb ∈ L and
∑

b∈B

xb = 1,

and
∑

b∈bA

xb =

{

1, b ∈ A

0, b 6∈ A
for each b ∈ B. Besides, bA ∩ B = b(A ∩ B),

since b ∈ B. Hence
∑

b∈b(A∩B)

xb =

{

1, b ∈ A ∩ B
0, b 6∈ A ∩ B

for each b ∈ B, i.e.

x ∈ V (LB;B ∩ A) and V (RG;A) ∩ V (LB) ⊆ V (LB;B ∩ A). So, the lemma is
true. �

If A ≤ G and B ≤ G and L ≤ R, then V (RG;A)∩ V (LB) ⊆ V (LB;B ∩
A).

Let R be a commutative ring with identity and prime characteristic p.
Nako Nachev in [17] shows that if B is a basic subgroup of the p-group G, then
V (RG;B) is a direct sum of cyclic groups.

Theorem 1. Let R be a commutative ring with identity of prime
characteristic p and let H be a pure p-subgroup of the abelian group G. The
group V (RG;H) is a direct sum of cyclic p-groups if and only if the group H
is a direct sum of cyclic p-groups.

P r o o f. If V (RG;H) is a direct sum of cyclic p-groups, then the same
is H, because H ⊆ V (RG;H). Now let H be a direct sum of cyclic groups.

Thus from the criterion of Kulikov (cf. [11] and [7]), H =
∞
∪

n=1
Mn, M1 ⊆ · · · ⊆

Mn ⊆ · · · and Mn ∩ Hpn
= 1. But therefore V (RG;H) = V (RG;

∞
∪

n=1
Mn) =

∞
∪

n=1
V (RG;Mn). Indeed, V (RG;Mn) ⊆ V (RG;

∞
∪

n=1
Mn) for each n ∈ N and

consequently,
∞
∪

n=1
V (RG;Mn) ⊆ V (RG;

∞
∪

n=1
Mn). Besides, let x =

∑

g∈G

rgg ∈

V (RG;
∞
∪

n=1
Mn). Hence

∑

g∈a(
∞
∪

n=1

Mn)

rg =











1, a ∈
∞
∪

n=1
Mn

0, a 6∈
∞
∪

n=1
Mn

, i.e.
∑

g∈
∞
∪

n=1

(aMn)

rg =











1, a ∈
∞
∪

n=1
Mn

0, a 6∈
∞
∪

n=1
Mn

, since a(
∞
∪

n=1
Mn) =

∞
∪

n=1
(aMn), for every a ∈ G. Finally,

∑

g∈aMk

rg =

{

1, a ∈ Mk

0, a 6∈ Mk
for any k ∈ N, because a 6∈

∞
∪

n=1
Mn if and only if

a 6∈ Mn for every n ∈ N. Therefore x ∈ V (RG;Mk) for this k ∈ N, i.e. x ∈
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∞
∪

n=1
V (RG;Mn) and V (RG;

∞
∪

n=1
Mn) ⊆

∞
∪

n=1
V (RG;Mn). Finally V (RG;

∞
∪

n=1
Mn)

=
∞
∪

n=1
V (RG;Mn). Moreover the heights in the group V (RG;H) of the ele-

ments of V (RG;Mn) are completely bounded for every n ∈ N. This statement
is valid, since Lemma 2 and Lemma 4 imply that, V (RG;Mn) ∩ V pn

(RG;H) ⊆
V (RG;Mn)∩V pn

(RG) = V (RG;Mn)∩V (Rpn
Gpn

) = V (Rpn
Gpn

;Mn∩Gpn
) = 1,

because Mn ∩ Gpn
= (Mn ∩ H) ∩ Gpn

= Mn ∩ (H ∩ Gpn
) = Mn ∩ Hpn

= 1.
Finally V (RG;Mn) ∩ V pn

(RG;H) = 1 for each n ∈ N and therefore
from Kulikov’s criterion, V (RG;H) is a direct sum of cyclic p-groups. This proves
the theorem. �

Remark. The author has showed [4] more generally that V (RG;H)/H
is a direct sum of cyclics, provided H is. Thus H is a direct factor of V (RG;H)
with a direct sum of cyclics complement. The same assertion was suggested by
the referee. The author wish to express his indebtedness to him for the helpful
comments and conclusions.

Corollary 1 (Mollov [16]). Let R be a commutative ring with identity
and with prime characteristic p and let G be an abelian p-group. The group
V (RG) is a direct sum of cyclic groups if and only if the group G is a direct
sum of cyclic groups.

P r o o f. We can easily see that, the statement holds from Theorem 1 by
H = G. So, the corollary is true. �

Problem 1. Let H be p-torsion and H ≤ G, where G is an abelian
group, and let R be a commutative ring with identity of prime characteristic p.
Then whether V (RG;H) is a direct sum of cyclic p-groups if and only if H is
a direct sum of cyclic p-groups? However this is probably not true (when H is
not pure in G) in general.

Corollary 2. Let G be an abelian group and K be a commutative ring
with identity and prime characteristic p without nilpotent elements. The group
S(KG) is a direct sum of cyclic groups if and only if the group Gp is a direct
sum of cyclic groups.

P r o o f. It is well-known that, S(KG) = 1 + I(KG;Gp) = S(KG;Gp).
Indeed S(KG;Gp) ⊆ S(KG). If now x ∈ S(KG), then x =

∑

g∈G

fgg, fg ∈

K,
∑

g∈G

fg = 1. Let xpi
= 1 for any i ∈ N, i.e. 1 =

∑

g∈G

fpi

g gpi
=

∑

g∈Gp

fpi

g gpi
+

∑

g∈G � Gp

fpi

g gpi
=

∑

g∈Gp

gpi
=1

fpi

g gpi
+

∑

g∈Gp

gpi
6=1

fpi

g gpi
+

∑

g∈G � Gp

fpi

g gpi
. Consequently
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∑

g∈G � Gp

fpi

g = (
∑

g∈G � Gp

fg)
pi

= 0, i.e.
∑

g∈G � Gp

fg = 0, i.e.
∑

g∈gGp

fg = 0 and

∑

g∈Gp

fpi

g = (
∑

g∈Gp

fg)
pi

= 1, i.e.
∑

g∈Gp

fg = 1. Finally
∑

g∈aGp

fg =

{

1, a ∈ Gp

0, a 6∈ Gp

for every a ∈ G. Thus x ∈ S(KG;Gp) and it follows that S(KG) ⊆ S(KG;Gp),
i.e. S(KG) = S(KG;Gp). Then the statement holds immediately from Theorem
1, where H = Gp since Gp is pure in G. Thus the proof of the corollary is
completed. �

It can be seen trivial that if H is a p-group, H ≤ G, G is an abelian
group and R is a commutative ring with identity and with prime characteristic
p, then V (RG;H) is a bounded group if and only if H is a bounded group.
Besides it is well to note that [5, 6] (cf. also [17]) if B is basic in p-torsion G,
then V (RG;B) is basic in V (RG) provided R is perfect. This follows directly by
virtue of Theorem 1 and other elementary conclusions.

2.3. Simply presentedness of the Sylow p-subgroup of modular
group algebra.

Theorem 2. Let G be a torsion abelian group and K be a perfect com-
mutative ring with identity of prime characteristic p without nilpotent elements
(perfect field of characteristic p). Then the group S(KG) is simply presented if
and only if Gp is simply presented.

P r o o f. It is well-known that, G =
∏

p
Gp = Gp×

∏

q 6=p

Gq = Gp×M , where

q is a prime number and M =
∏

q 6=p

Gq is a p-divisible group, i.e. Mp = M ,

because Gp
q = Gq for every prime q 6= p.

By [5, Proposition 8] S(KG) ∼= S(KGp) × S((KGp)M) and if S(KG) is
simply presented, then S(KGp) is simply presented as its direct factor. Hence
from [14], we conclude that Gp is a simply presented group.

Now let Gp be simply presented. Again by [5], S(KG)∼=S(KM) ×
S((KM)Gp). But Mp = 1 and Lemma 3 implies that, S(KM) = 1. There-
fore S(KG) ∼= S((KM)Gp), where KM is a perfect commutative ring with 1,
without nilpotent elements and charKM = p. By virtue of the same technique
(in a slight modified variant) described in [14], S((KM)Gp) is simply presented,
i.e. S(KG) is simply presented. So, the theorem is proved. �

3. Isomorphism of commutative (modular) group algebras. Now
we shall present some assertions for the isomorphism problem of commutative
modular group algebras of abelian p-groups and p-mixed abelian groups:
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(10) (Berman, 1967 [1]). Let K be a field, charK = p > 0 and G be a countable
abelian p-group. If H is a group such that KH ∼= KG as K-algebras, then
H ∼= G.

(11) (Berman–Mollov, 1969 [2]). Let K be a field, charK = p > 0 and G be a
direct sum of cyclic p-groups. If H is a group, then KH ∼= KG as K-algebras if
and only if H ∼= G.

P r o o f. The isomorphism KG ∼= KH implies V (KG) ∼= V (KH) and
by Corollary 1, H is a direct sum of cyclic p-groups. But KG ∼= KH and
therefore the Ulm–Kaplansky invariants of G and H are equal (see [2]). These
invariants serve to classify the direct sums of cyclic p-groups and hence, G ∼= H.
The proof is finished. �

(12) (May, 1988 [14]). Let K be a field, charK = p > 0 and G be a p-local
Warfield abelian group. If H is a group such that KH ∼= KG as K-algebras,
then H ∼= G.

(13) (May, 1988 [14]). Let K be a field, charK = p > 0 and G be a simply
presented abelian p-group. If H is a group, then KH ∼= KG as K-algebras if
and only if H ∼= G.

Definition 1 (Ullery, 1989 [19]). The abelian p-group G is called λ-
elementary if λ is a limit ordinal number and there exists a totally projective
abelian p-group A such that G is σ-balanced (isotype and σ-nice) in A for all
σ < λ and the factor-group A/G has a totally projective reduced part.

(14) (Ullery, 1989 [19]). Let K be a field, charK = p > 0 and G be an λ-
elementary abelian p-group. If H is a group, then the K-isomorphism KH ∼=
KG implies H ∼= G.

Definition 2 (Ullery, 1990 [20]). Let K1 be a special class of abelian
groups consisting all µ-elementary abelian groups of Hill, where µ is a limit
ordinal and, all totally projective abelian groups.

(15) (Ullery, 1990 [20]). Let K be a field, charK = p > 0 and G be an abelian
p-group of the class K1. If H is a group, then the K-isomorphism KH ∼= KG
implies H ∼= G.

(16) (Karpilovsky, 1982 [9]). Let K be a field, charK = p > 0 and G be a
mixed abelian group such that tG is an algebraically compact p-group. Then
the K-isomorphism KH ∼= KG for some group H implies that H ∼= G.

(17) (Ullery, 1992 [21]). Let K be a field, charK = p > 0 and G be a mixed
abelian group where tG is a countable p-group and the torsion free rank of G is
1. Then the K-isomorphism KH ∼= KG for some group H implies that H ∼= G.

Now we formulate the main results.
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3.1. Isomorphism of commutative (modular) group algebras of
direct sums of cyclic groups.

Theorem 3 (isomorphism). Let K be a field, charK = p > 0, G
be a splitting abelian group and tG be a direct sum of cyclic p-groups. Then
KH ∼= KG as K-algebras for some group H if and only if H ∼= G.

P r o o f. First, we obtain that tH is a p-group. By [14], V (KG)/K(tG) ∼=
G/tG is a torsion–free group (see 2.2), hence tV (KG) ⊆ K(tG). But K(tG) is
a p-group (cf. again 2.2) and therefore tV (KG) = K(tG) is a p-group. We may
assume that KG = KH (or KG = KG′, H ∼= G′ ≤ V (KG)). Consequently
V (KG) = V (KH) and tV (KG) = tV (KH). Then tV (KH) is a p-group and
thus tH is a p-group, since tH ⊆ tV (KH). Finally tG = Gp and tH = Hp.
Besides KH = KG implies that, the Ulm-Kaplansky invariants of Gp and
Hp are equal (see [12] or [9], [10]). But, U(KH) = U(KG) and S(KH) =
Up(KH) = Up(KG) = S(KG) (S(KH) = tV (KH) and S(KG) = tV (KG)).
By Corollary 2, S(KG) = S(KH) is a direct sum of cyclic groups, i.e. Hp

is one also. Hence tH ∼= tG, since the invariants of Ulm-Kaplansky serve to
classify the direct sums of cyclic groups. Moreover, tH is a direct sum of cyclic
groups and by [15], H is a splitting group, i.e. H splits, because KH = KG
splits, since G splits. Finally G ∼= tG × G/tG and H ∼= tH × H/tH. The
K-isomorphism KH ∼= KG implies H/tH ∼= G/tG (see [12]). Therefore the
isomorphism tH ∼= tG is equivalent to H ∼= G. This completes the proof of the
theorem. �

The next theorem follows immediately from Theorem 3, since if G is a
direct sum of cyclic groups, then G is a splitting group (cf. [11, p. 171]). But
now we will obtain a new proof.

Theorem 4 (isomorphism). Let K be a field, charK = p > 0, G
be a direct sum of cyclic groups and tG be a p-group. Then KH ∼= KG as
K-algebras for some group H if and only if H ∼= G.

P r o o f. First, analogically to Theorem 3, tH = Hp is p-torsion. Sec-
ondly, tG is a direct sum of cyclic groups, since tG ⊆ G and then tH ∼= tG by
the fact that [15], V (KG) = G × T , where T is a direct sum of cyclic p-groups,
and hence V (KG) = V (KH) is a direct sum of cyclic groups, i.e. H is a direct
sum of cyclic groups. Consequently, H ∼= tH × H/tH and G ∼= tG × G/tG. It
was shown in [12] that, from KH ∼= KG follows that H/tH ∼= G/tG. Hence,
G ∼= H. This completes the proof of the theorem. �

We can see trivially that Theorem 4 implies (11). If tG is not a p-group,
then probably H 6∼= G. It is interesting to know, what the full system of invariants
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in this case are?

Theorem 5 (isomorphism). Let G be a direct sum of cyclic groups
and H is a group. Then KH ∼= KG as K-algebras over all fields K if and only
if H ∼= G.

P r o o f. Clearly, G ∼= tG × G/tG. Also, it is known that (see [12, p.
148]) an isomorphism of KH and KG implies that G and H are isomorphic
modulo their torsion subgroups, i.e. G/tG ∼= H/tH. Since G/tG is a direct
sum of cyclic groups (a free group), then the same is H/tH and from [7, p. 91,
Theorem 14.4 or p. 143, Theorem 28.2]; [11], H ∼= tH × H/tH. Suppose that
Kp is a field with charKp = p 6= 0. Because Gp is a direct sum of cyclic groups
and Vp(KpG) = Vp(KpH), therefore Hp ⊆ Vp(KpH) is a direct sum of cyclic
groups by Corollary 2, for every prime p. Moreover, Gp and Hp have the same
Ulm-Kaplansky invariants for each prime p. Thus, tG =

∏

p
Gp

∼=
∏

p
Hp = tH,

i.e. tG ∼= tH, since Gp
∼= Hp for all primes p. Finally, G ∼= H. So, everything

is proved. �

3.2. Isomorphism of commutative (modular) group algebras of
simply presented torsion groups.

Definition 3. The torsion abelian group G is said to be simply pre-
sented if all its p-primary components are simply presented (for all prime integers
p) — (see [8]).

Theorem 6 (isomorphism). Let G be a simply presented torsion
abelian group and H is a group. Then KH ∼= KG as K-algebras over all fields
K if and only if H ∼= G.

P r o o f. Let p be an arbitrary prime and let Kp be a field with charKp =
p > 0. Hence S(KpH) ∼= S(KpG) and since Gp is simply presented, by The-
orem 2 Hp is simply presented because we may precisely assume that Kp is
perfect. Therefore Hp

∼= Gp for this p, because Gp and Hp have isomorphic
divisible parts ([12] or [9, 10]) and the reduced simply presented p-groups are
invariants of the functions of Ulm-Kaplansky (see [8]), and they are invariants
of a commutative modular group algebra. Besides G/tG ∼= H/tH (cf. [12]) and
H is a torsion abelian group, i.e. H = tH since G is torsion, as G = tG and
1 ∼= H/tH. Furthermore, G =

∏

p
Gp

∼=
∏

p
Hp = H, i.e. finally, G ∼= H. This

completes the proof of the theorem. �

Proposition 1. Let K be a field, charK = p > 0, let G be a torsion
abelian group and let Gp be simply presented. Then KH ∼= KG as K-algebras
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for some group H implies Hp
∼= Gp.

The proof is analogous to this of Theorem 6.

3.3. Isomorphism of commutative (modular) group algebras of
divisible groups.

Theorem 7 (isomorphism). Let G be a divisible abelian group and
H is a group. Then KH ∼= KG as K-algebras over all fields K if and only if
H ∼= G.

P r o o f. Certainly, tG is divisible since tG is pure in G and hence
G ∼= tG × G/tG. Similarly for Gp, i.e. Gp is a divisible group for each
primes p. Suppose that again, Kp is a field and charKp = p 6= 0 assuming
that Kp is perfect. Hence by Lemma 2, V p(KpG) = V (Kp

pGp) = V (KpG),
i.e. V (KpG) = V (KpH) is p-divisible, for every prime number p. Thus H
is p-divisible as p-pure in V (KpH), for every p. Furthermore H and tH are
divisible (see [7]). Similarly for Hp. Consequently H ∼= tH × H/tH. Suppose

that, (KpG)(p)
def
= {x ∈ KpG |xp = 0} and (KpH)(p)

def
= {y ∈ KpH | yp = 0}.

Evidently (KpG)(p) ∼= (KpH)(p). We well-know that, (KpG)(p)=I(KpG;G[p])
and (KpH)(p)=I(KpH;H[p]) (see [9] or [10]). Hence |I(KpG;G[p])| =
|I(KpH;H[p])| and |G[p]| = |H[p]| (cf. [9] and [10]). But G[p] and H[p] are
bounded and thus G[p] ∼= H[p]. We see that, Gp[p] = G[p] and Hp[p] = H[p].
Furthermore, Gp

∼= Hp (see [7, p. 126, Exercise 1]). Thus tG =
∏

p
Gp

∼=
∏

p
Hp =

tH. But G/tG ∼= H/tH [12], and hence, G ∼= H. So, the theorem is proved. �

3.4. The isomorphism problem for commutative (modular) group
algebras. From (16) it follows that:
(18) Let K be a field, charK = p > 0 and let G be a group with tG a divisible
p-group. Then KH ∼= KG as K-algebras for some group H if and only if
H ∼= G.
(19) Let K be a field, charK = p > 0 and let G be a divisible group with tG
a p-group. Then KH ∼= KG as K-algebras for some group H if and only if
H ∼= G.

Evidently (18) and (19) hold, since tG is divisible as pure in G.
If tG is not a p-group, then probably H 6∼= G.
If G is algebraically compact (or cotorsion) and tG is p-torsion, then is

H ∼= G? If tG is not a p-group, then probably H 6∼= G.
(20) Let K be a field, charK = p 6= 0 and let G be a splitting abelian group
with tG a countable p-group. Then KH ∼= KG as K-algebras for some group
H if and only if H ∼= G.
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P r o o f. Assume that K is perfect. The algebra KH ∼= KG splits since
G ∼= tG × G/tG splits. From [21], H is a direct factor of V (KH), because
tH ∼= tG is a p-group (see again [21]). Hence (cf. [15]), H ∼= tH × H/tH. But
H/tH ∼= G/tG and finally, G ∼= H. The statement is proved. �

(21) Let K be a field, charK = p 6= 0 and let G be a splitting countable
abelian group with tG a p-group. Then KH ∼= KG as K-algebras for some
group H if and only if H ∼= G.

The proof is trivial by following immediately (20).

Of some interest and importance is the following

Problem 2 (isomorphism problem). Let K be a field of charK =
p > 0 and let G be a splitting abelian group such that tG is a p-group. Then
KH ∼= KG as K-algebras for some group H if and only if H ∼= G.

The proof of this problem splits to the following
Case 1) KH ∼= KG implies tH ∼= tG.
Case 2) V (KG) = G × M for every abelian group G with tG a p-group,

and hence by [15], G splits if and only if KG splits.
Case 3) We well-know that [12], KH ∼= KG implies G/tG ∼= H/tH.

If 1), 2) and 3) are valid, then KH ∼= KG if and only if H ∼= G.
Indeed, KH = KG splits since G ∼= tG × G/tG splits. From Case 2), H is
a direct factor of V (KH), because tH ∼= tG is a p-group. Hence (see [15]),
H ∼= tH × H/tH and, therefore, finally by Case 1) and Case 3), G ∼= H. So,
everything is completely proved.

R. Brauer tags the following major problem (see [3, p. 112]): Whether
the groups G1 and G2 are isomorphic (G1

∼= G2) if the group algebras KG1 and
KG2 are K-isomorphic (KG1

∼= KG2) for all choices of the field K? Again
the problem for abelian groups is reduced to the following procedure:

4) If G is a torsion-free abelian group, this is true by a result of Higman
(see also May [12]).

5) If G is a mixed abelian group, this is however not true by a result of
May (see May [13]).

There exist two nonisomorphic mixed countable abelian groups G and
H of torsion–free rank one (G does not split, but H splits) such that for all
choices of the field K, the group algebras KG and KH are isomorphic, i.e.
KG ∼= KH, but G 6∼= H. As a corollary suppose that G is a countable splitting
abelian group. Then when does KH ∼= KG as K-algebras for some group H
implies H ∼= G? Is this equivalent to the case when H is a splitting group?

If G is a countable group with torsion-free rank 1, when is H isomorphic
to G? Now let G be algebraically compact (or cotorsion). Then is H ∼= G?
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6) If G is a torsion abelian group, this is probably true.

Certainly punkt 6) holds, if KpH ∼= KpG implies Hp
∼= Gp (for every

prime p), when G and H are arbitrary groups, as G is abelian and for the field
Kp, charKp = p > 0.
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