


Serdica Math. J. 24 (1998), 5-20

ISOMORPHISM PROBLEMS FOR THE BAIRE FUNCTION

SPACES OF TOPOLOGICAL SPACES

Mitrofan M. Choban

Communicated by J. Jayne

Dedicated to the memory of Professor D. Doitchinov

Abstract. Let a compact Hausdorff space X contain a non-empty perfect
subset. If α < β and β is a countable ordinal, then the Banach space
Bα(X) of all bounded real-valued functions of Baire class α on X is a proper
subspace of the Banach space Bβ(X). In this paper it is shown that:

1. Bα(X) has a representation as C(bαX), where bαX is a compacti-
fication of the space PX – the underlying set of X in the Baire topology
generated by the Gδ-sets in X .

2. If 1 ≤ α < β ≤ Ω, where Ω is the first uncountable ordinal number,
then Bα(X) is uncomplemented as a closed subspace of Bβ(X).

These assertions for X = [0, 1] were proved by W. G. Bade [4] and in
the case when X contains an uncountable compact metrizable space – by
F.K.Dashiell [9]. Our argumentation is one non-metrizable modification of
both Bade’s and Dashiell’s methods.

1. Preliminary results and definitions. We consider only completely
regular spaces. We shall use the notation and terminology from [11, 4, 17, 21].
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In particular, βX is the Stone-Čech compactification of the space X, νX is the
Hewitt realcompactification of the space X, w(X) is the weight of the space X,
the cardinality of a set Y is denoted by |Y |, clXH or clH denotes the closure of a
set H in X, the symbol R will denote the topological field of real numbers, N =
{1, 2, . . .} is a discrete subspace of the positive integers of R, C(X) is the space
of all continuous bounded functions on the space X.

A space is realcompact if it is homeomorphic to a closed subspace of a
product of real lines R.

Let S be a set and B(S) be the space of all real-valued bounded functions
on S. The space B(S) is a Banach space with the supremum norm

‖f‖ = sup{|f(x)| : x ∈ S}.

If c ∈ R, then cS ∈ B(S) with cS(x) = c for every x ∈ S.
Let E ⊆ B(S). Then TE is the topology on S generated by E and it has

the subbase consisting of all sets of the form f−1(U), where f ∈ E and U is an
open subset of R. The space E separates the set S if for every pair of distinct
points x, y ∈ S there is f ∈ E such that f(x) 6= f(y). The space (S, TE) is
completely regular if and only if E separates the set S.

Let a subspace E of B(S) separates the set S. Then the mapping vE :
S → RE, where vE(x) = (f(x) : f ∈ E), is an embedding of (S, TE) in RE. The
closure βES of the subspace S = vE(S) in RE is a compactification of the space
(S, TE).

Let X be a dense subset of the spaces Y and Z. The symbol Y X>Z

means that there exists a continuous mapping g : Y → Z such that g(x) = x for
all x ∈ X.

Property 1.1. Let F ⊆ E ⊆ B(S) and F separate the set S. Then
βES S>βFS.

Property 1.2. Let E ⊆ B(S) separate the set S. Then βES is the
smallest compactification of the space (S, TE) such that there exists an extender
eE : E → C(βES) such that eE(f)|S = f for every f ∈ E.

Let {f, fn : n ∈ N} ⊆ B(S). We have u− lim fn = f if lim ‖f − fn‖ = 0
and p − lim fn = f if lim fn(x) = f(x) for each x ∈ S. If A ⊆ B(S), then
[A]u = {f ∈ B(S) : f = u − lim fn for some sequence {fn ∈ A : n ∈ N}} is the
u-closure of A and [A]p = {f : f = t−lim fn for some sequence {fn ∈ A : n ∈ N}}
is the p-closure of A in B(S).

Let E ⊆ B(S). Denote p0E = E and pαE = [∪{pβE : β < α}]p for all
α ≤ Ω. By construction pΩE = [pΩE]p = ∪{pαE : α < Ω}. The set E is closed
in B(S) if and only if E = [E]u.
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Property 1.3. The space E separates the set S if and only if pΩE

separates the set S.

For every f ∈ B(S) we denote Z(f) = f−1(0) and CZ(f) = S \ Z(f). If
E ⊆ B(S), then Z(E) = {Z(f) : f ∈ E} and CZ(E) = {CZ(f) : f ∈ E}.

Fix a space X. Let Bα(X) = pαC(X) for all α ≤ Ω. The functions in
Bα(X) are called the Baire functions of class α on the space X. We put

Zα(X) = Z(Bα(X)),

CZα(X) = CZ(Bα(X),

and Aα(X) = Zα(X) ∩ CZα(X).

The class Zα(X) (class CZα(X)) is a multiplicative (additive) class α of the
Baire sets of the space X. The sets in Aα(X) are called the sets of ambiguous or
two-sided Baire sets of class α.

Fix a space X. Let PX be the set X with the topology generated by
the Gδ-sets in X. The topology of the space PX is called the Baire topology
of the space X. If B1(X) ⊆ E ⊆ BΩ(X), then PX = (X,TE). If α ≤ Ω, then
Zα(X), CZ1+α(X), A1+α(X) are open bases of the space PX. Denote bαX =
βBα(X)X for every α ≤ Ω. The compact space bαX is called the maximal ideal
space of the α-th Baire class Bα(X).

Property 1.4. For every α ≤ Ω there exists a unique isomorphism
eα : Bα(X) → C(bαX) such that eα(f)|X = f for each f ∈ Bα(X).

Property 1.5. Let 0 ≤ α ≤ β ≤ Ω. Then there exists a unique continu-
ous mapping πβ

α : bβX → bαX such that πβ
α(x) = x for every x ∈ X and a unique

canonical linear isometric embedding eβα : C(bα(X)) → C(bβ(X)) indused by the

mapping πβ
α, i.e. f = e

β
α(eα(f)|X for all f ∈ Bα(X).

Property 1.6. If α > 0, then:
1. H → clbαXH defines a Boolean isomorphism of the field Aα(X) onto

the field of clopen (closed and open) sets in bαX.
2. dim bαX = 0, i.e. the compact bαX is totally disconnected.

2. Baire complemented Banach spaces. Let E be a Banach space.
The space E is canonical embedded in the second dual E∗∗ of E.

For every set H ⊆ E∗∗ denote by w∗

1(H) the set of all limits in E∗∗ of
w∗-convergent sequences in H.

Denote w∗

0E = E ⊆ E∗∗ and w∗

αE = w∗

1(∪{w
∗

βE : β < α}) for every
α ≤ Ω. By construction, w∗

ΩE = ∪{w∗

αE : α < Ω}. The space w∗

αE is called the
α-Baire space for E (see [9, 15]).
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The Banach space E is called α-Baire complemented if there exists a
continuous linear projection from w∗

αE onto E = w∗

0E. The space E is Baire
complemented if E is a complemented subspace of the space w∗

1E.
The following Properties were proved in [9, 15, 24].

Property 2.1. w∗

αE is a closed subspace of the space E∗∗ for every
α ≥ 0.

Property 2.2. If E,F are isomorphic Banach spaces, α ≥ 1 and E is
α-Baire complemented, then F is an α-Baire complemented space, too.

Property 2.3. If α ≥ 1, E is an α-Baire complemented Banach space
and F is a complemented Banach subspace of E, then F is α-Baire complemented.

Property 2.4. If X is a compact space, then Bα(X) = w∗

αC(X) for
every α ≥ 0.

Corollary 2.5. w∗

αC(X) = Bα(βX) for every space X and α ≥ 0.

Corollary 2.6. Let X be a space, 0 ≤ α ≤ Ω and Dα+1(X) = w∗

1Bα(X)
be the first Baire space of the Banach space Bα(X). Then Dα+1(X) = B1(bαX).

Proposition 2.7. Let X be a pseudocompact space. Then w∗

αC(X) =
BαX for every α ≤ Ω.

P r o o f. In virtue of P. R. Meyer’s theorem [15, Theorem 7], every f ∈
Bα(X) has a unique extension to an m(f) ∈ Bα(νX). There exists a unique
one-to-one isometric linear mapping m : BΩ(X) → BΩ(νX) with:

1. m(f)|X = f for every f ∈ BΩ(X).
2. m(f · g) = m(f) ·m(g).
3. ‖m(f)‖ ≤ ‖f‖, m is a homeomorphism in the topologies of u-conver-

gence and p-convergence. The space X is pseudocompact if and only if νX = βX.
The Corollary 2.5 completes the proof. �

Example 2.8. LetX be an infinite discrete space. ThenBα(X) = C(X)
for all α ≤ Ω and D1(X) 6= C(X). From Corollary 2.5 the spaces D1(X) and
B1(βX) are isometrically isomorphic.

Example 2.9. Let X be an infinite scattered compact space [8, 22].
Recall that a space is scattered if its every non-empty subspace contains at least
one isolated point. In this case Bα(X) = B1(X) = D1(X) for every α ≥ 1 and
D2(X) 6= D1(X)(see [5, 15]).
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Proposition 2.10. Let X be a space and α ≥ 1. Then Bα(X) ⊆
Dα+1(X) and there exists a linear continuous mapping p : Dα+1(X) → Bα+1(X)
such that p(f) = f for every f ∈ Bα(X) and ‖p(g)‖ ≤ ‖g‖ for every g ∈
Dα+1(X).

P r o o f. In virtue of Corollary 2.6 we consider thatDα+1(X) = B1(bα(X).
The mapping p, defined by letting p(f) = f |X for every f ∈ B1(bαX), has the
required properties. �

Remark 2.11. For every limit ordinal α we put Dα(X) = Bα(X).

Corollary 2.12. Let X be a space and 0 ≤ α ≤ β ≤ Ω + 1. If Bα(X) is
complemented in Bβ(X), then Bα(X) is complemented in Dβ(X), too.

Corollary 2.13. The space BΩ(X) is complemented in DΩ+1(X).

Remark 2.14. For every α there exists a canonical embedding of the
Banach space Dα(X) in Dα+1(X).

Question 2.15. Let D1(X) = B1(X). Is it true that X is a pseudocom-
pact space?

Question 2.16. Let 0 ≤ α < β ≤ Ω, β be not a limit ordinal and Dα(X)
be complemented in Dβ(X). Is it true that Bα(X) is complemented in Bβ(X)?

3. The convergent sequences of the maximal ideal spaces. The
following theorem answers a question of F. K. Dashiell [9].

Theorem 3.1. Let α ≥ 1 and X be an infinite space. Then for every
infinite closed subspace Y of bαX the set Y \ νX contains a copy of βN .

P r o o f. In virtue of P. R. Meyer’s theorem (see the Proof of Proposition
2.7.), it is sufficient to prove the theorem for a realcompact space X = νX. Then
PX is a realcompact space, too. In the compactification bαX of the space PX
we have points of two types.

Type 1. x ∈ X.
In this case for every sequence {Un : n ∈ N} of neighbourhoods of the

point x in bαX there exists an open set U in bαX such that x ∈ U ⊆ ∩{Un : n ∈
N}, i.e. x is a P -point of the space bαX.

Type 2. x ∈ bαX \X.
In this case there exists a sequence {Wn(x) : n ∈ N} of clopen subsets of

bαX such that x ∈ W (x) = ∩{Wn(x) : n ∈ N} ⊆ bαX \ X and bαX = W1(x),
i.e. x is not a P -point of the space bαX.

Let Y be an infinite closed subspace of bαX and α ≥ 1. In the P -space
every compact subset is finite. Therefore there exists an accumulation point
y0 ∈ Y \X of Y . Fix a sequence {Hn : n ∈ N} of clopen subsets of bαX with:
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1. y0 ∈ Hn+1 ⊂ Hn ⊂Wn(y0) for every n ∈ N .
2. Yn = Y ∩ (Hn \Hn+1 6= Ø for every n ∈ N .
3. Xn = X ∩ (Hn \Hn+1 6= Ø for all n ∈ N .
4. H1 = W1(y0) = bαX.
Fix zn ∈ Yn and xn ∈ Xn. Denote L = {zn : n ∈ N}. Then Z = CLY L

is a compactification of the discrete space L and Z ⊆ Y \X.
Consider the continuous function h : bαX → R, where h−1(0) = ∩{Hn :

n ∈} = H and h−1(n−1) = Hn \ Hn+1 for each n ∈ N . By construction, X =
∪{Vn : n ∈ N}. In virtue of Property 1.6, we have g = h|X ∈ Bα(X). Let M
be a subset of L. We put N(M) = {n ∈ N : yn ∈ M}. Then V (M) = ∪{Xn :
n ∈ N(M)} = g−1({n−1 : n ∈ N(M)}) ∈ Aα(X) and W (M) = X \ V (M) =
g−1{n−1 : n ∈ N \N(M)} ∈ Aα(X). From Property 1.6, clV (M) and clW (M)
are clopen subsets of bαX, clV (M)∩clV (M) = Ø and clZM = Z∩clV (M). Hence
clZM ∩ clZ(L \M) = Ø and the spaces Z and βL = βN are homeomorphic. �

Corollary 3.2. Let α ≥ 1 and X be an infinite space. Then |Y | ≥ 2c for
every infinite closed subspace Y of bαX, where c is the cardinal number assigned
to the set of all real numbers.

Corollary 3.3. Let α ≥ 1 and X be an infinite space. Then the maximal
ideal space bαX does not contain non-trivial convergent sequences.

4. On Baire separated sets. A subset A of a space X is called a D-set
if there exist a separable metric space Y and a continuous mapping f : X → Y

such that A = f−1(f(A)). Every Baire set is a D-set.

Lemma 4.1. Let {Hn : n ∈ N} be a sequence of D-sets of a space X.
Then there exist a separable metric space Y and a continuous mapping f : X → Y

such that Hn = f−1(f(Hn)) for every n ∈ N . Moreover, if Hn ∈ Zα(X) or
Hn ∈ CZα(X), then f(Hn) ∈ Zα(Y ) or f(Hn) ∈ CZα(Y ) respectively.

P r o o f. For every n ∈ N fix a separable space Yn and a continuous
mapping fn : X → Yn such that Hn = f−1(f(Hn)). Let f : X → Y = f(X) ⊆∏
{Yn : n ∈ N} be the diagonal product of mappings {fn : n ∈ N}, where f(x) =

(fn(x) : n ∈ N) for all x ∈ X. The mapping f has the required properties. �

Definition 4.2. Two subsets A and B of a space X are called α-Baire
separated if there exists a set L ∈ Aα(X) such that A ⊆ L ⊆ X \B.

Theorem 4.3. Let α ≥ 1, f : X → Y be a continuous mapping of a
pseudocompact space X onto a space Y and A,B be disjoint D-sets of Y . The
sets A and B are α-Baire separated in Y if and only if the sets A1 = f−1(A) and
B1 = f−1(B) are α-Baire separated in X.
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P r o o f. It is obvious that A1 and B1 are D-sets in X. If L ∈ Aα(Y ),
L1 = f−1(L) and A ⊆ L ⊆ Y \B, then L1 ∈ Aα(X) and A1 ⊆ L1 ⊆ X \B1.

Now assume that H ∈ Aα(X) and A1 ⊆ H ⊆ X \B1.
Case 1. X is a compact metric space and α ≥ ω.
In this case there exists a mapping g : Y → X such that g(y) ∈ f−1(y)

for every y ∈ Y and g−1(U) is a Fσ-set of Y for every open subset U of X. In
this case L = g−1(H) ∈ Aα(Y ) and A ⊆ L ⊆ Y \B.

Case 2. X is a compact metric space.
We consider the function h : X → [0, 1] for whichH = f−1(0) andX\H =

f−1(1). By J. Saint Raimond’s Lemma [20, Lemma 3] there exists a mapping
g : Y → X such that g(y) ∈ f−1(y) for every y ∈ Y and ϕ = h ·g ∈ Bα(Y ). Then
ϕ−1(0) ∈ Aα(Y ) and A ⊆ ̟ − 1(0) ⊆ Y \B.

Case 3. X is a pseudocpompact space.
There are the separable metric spaces Z, S1 and continuous mappings

g : Y → Z, h1 : X → S1 such that Z = g(Y ), A = g−1(g(A)), B = g−1(g(B)),
H = h−1

1 (h1(H)) and h1(H) ∈ Aα(S1). Consider the mapping h : X → S =
h(X) ⊆ Z × S1, where h(x) = (g(x), h1(x)) for every x ∈ X, and the continuous
mappings ̟ : S → Z and ψ : S → S1, where ̟(z, s) = z and ψ(z, s) = s for all
(z.s) ∈ S. By construction, S and Z are compact metric spaces, H1 = h(H) =
ψ−1(h1(H)) ∈ Aα(S), A2 = g(A) and B2 = g(B) are disjoint subsets of the space
Z and ϕ−1(A2) ⊆ H1 ⊆ S \ ϕ−1(B2). In virtue of cases 1 and 2 there exists a
set L1 ∈ Aα(Z) such that A2 ⊆ L1 ⊆ Z \ B2. Then L = g−1(L1) ∈ Aα(Y ) and
A ⊆ L ⊆ Y \B. �

Now we shall develope one non-metrizable modification of Bade’s method
from [4].

A subset L of a space X is called Fσ-scattered if L is a union of a countable
family of compact scattered subsets.

A continuous image of an Fσ-scattered space is Fσ-scattered.
From R. Telgarski’s theorem [8, 22] an Fσ-scattered subset of a first count-

able space is countable and metrizable.
If L is an Fσ-scattered D-set in X, then L ∈ CZ1(X).

Theorem 4.4. Let X be a non-scattered compact space, H be a Baire
non-Fσ-scatterd subset of X and 1 ≤ α < Ω. Then there exist a compact set
H0 ∈ Z0(X) and disjoint sets A,B ∈ CZα(X) such that:

1. A ∪B ⊆ H0 ⊆ H.
2. A and B are not α-Baire separated.
3. If A′ ⊆ A and B′ ⊆ B are any Baire subsets with A \ A′ and B \ B′

Fσ-scattered, then A′ and B′ are not α-Baire separated.

P r o o f. By Lemma 4.1 there exist a metrizable compact space Y and a
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continuous mapping f : X → Y such that H = f−1(f(H)) and f(H) is a Borel
subset of Y .

If f(H) is an uncountable Borel set in Y , then f(H) contains the Cantor
set C (see [17, p. 446]). In this case we put H0 = f−1(C).

If the set f(H) is countable, then H0 = f−1(y) is a non-scattered compact
subset of X for some y ∈ f(H).

There exists a continuous mapping g of the compact H0 onto the closed
interval [0, 1].

Case 1. α ≥ 2.
In virtue of N. N. Luzin’s Lemma (see [18, p. 204] or [14, p. 274]) there

exist two disjoint sets A1, B1 ∈ CZα([0, 1]) which are not α-Baire separated in
[0, 1]. We put A = g−1(A1) and B = g−1(B1). Then A,B ∈ CZα(H0) ⊆
CZα(X). By Theorem 4.3, the sets A,B are not α-Baire separated in X. Let
C ⊂ A, D ⊂ B, L1 ∈ Aα(X), C ⊆ L1 ⊆ X \D and C1 = A \ C, D1 = B \D are
Fσ-scattered. Then L = (L1 \D1) ∪ C1 ∈ Aα(X) and A ⊆ L ⊆ X \B.

Case 2. α = 1.
Let {V1, V2, . . .} be a base of open sets for [0, 1]. Choose perfect nowhere

dense closed subsets {An, Bn : n ∈ N} of [0, 1] such that:
1. An ∩Bn = Ø for every n ∈ N .
2. A1 ∪B1 ⊆ V1.
3. An ∪Bn ⊆ Vn \ ({Ai ∪Bi : i < n}, for every n ≥ 2,
We put A = ∪{g−1(An) : n ∈ N} and B = ∪{g−1(Bn) : n ∈ N}. Then

A ∩ B = Ø and A, B ∈ CZ1(X). Suppose that there are Baire sets C,D and L

of X such that L ∈ A1(X), C ⊆ A, D ⊆ B, C ⊆ L ⊆ X \D and A \C, B \D are
Fσ-scattered. Every set H ∈ A1(X) is a Gδ-subset and a Čech complete space.

There exists a closed subspace Z of X0 such that g(Z) = [0, 1] and h =
g|Z : Z → [0, 1] is irreducible, i.e. h(F ) 6= [0, 1] for every proper closed subset F
of Z. Then U = L ∩ Z and V = Z \ L are dense Gδ-subsets of Z. By the Baire
category theorem two dence Gδ-sets in compact space must intersect. �

5. F -spaces and the maximal ideal spaces. A space is extremally
disconnected if the closure of every its open subset is open. A space X is an
F ′-space if the closure of every functionally open set H ∈ CZ0(X) is open. A
space X is an F -space if every two disjoint functionally open sets are functionally
separated. Every extremally disconnected space is an F ′-space ind every F ′-space
is an F -space (see [12]).

Theorem 5.1 (see [16, 6, 7]). bΩX is an F ′-space for every space X.

P r o o f. By construction, H ∈ CZ0(bΩ(X)) if and only if H ∩ X ∈
BΩ(X) = AΩ(X). Therefore, from Property 1.6, clH is open in bΩX for every
H ∈ CZ0(bΩX). �
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A space X is called strongly non-F if there exists a non-empty subset L of
X such that for each point x ∈ L there exist two disjoint open sets U, V ∈ CZ0(X)
with x ∈ clX(U ∩ L) ∩ clX(V ∩ L) (see [9]).

Let φ : X → Y be a continuous mapping of X onto Y . Define φo :
C(Y ) → C(X) by the formula φo(f) = f · φ. The projection constant p(φ) is the
infimum of ‖u‖ of all linear projection u : C(X) → φo(C(Y )). We have p(φ) = ∞
if and only if φo(C(Y )) is uncomplemented in C(X) (see [4, 10, 21]).

Theorem 5.2. Let φ : X → Y be a continuous mapping onto a strongly
non-F -space Y , X1 be a dense subspace of X and clX(X1 ∩ φ

−1(U)) be open in
X for every U ∈ CZ0(Y ). Then p(φ) = ∞ and φo(C(Y )) is uncomplemented in
C(X).

P r o o f. We assume that X = βX. Then X and Y are compact spaces.

There exists a non-empty subset L of Y such that for every point y ∈ L

there are two disjoint sets Vy,Wy ∈ CZ0(Y ) with y ∈ clY (L∩Vy)∩ clY (L∩Wy).

Define M1(φ) = Y and inductively define Mn+1(φ) = {y ∈ Y : there
exist nets B = {bµ ∈ Mn(φ) : µ ∈ M}, C = {cη ∈ Mn(φ) : η ∈ H} such that
y = lim bµ = lim cη and φ−1(y) ∩ clX(φ−1(B)), φ−1(y) ∩ clX(φ−1(C)) are non-
empty disjoint sets}. By construction, Mn+1(φ) ⊆ Mn(φ) for every n ∈ N (sse
[4, 9]). Let y ∈ L ∩ clY (Mn(φ)). Then there exist nets B ⊆ Vy ∩Mn(φ) and
C ⊆ Wy ∩Mn(φ) such that y = limB = limC. Since clX(X1 ∩ φ−1(Vy)) and
clX(X1 ∩ φ−1(Wy)) are disjoint open sets and φ is a closed mapping, we have
L ⊆ M(φ) = ∩{Mn(φ) : n ∈ N}. From S. Z. Ditor’s Theorem [10, 4, 9], if
M(φ) 6= Ø, then p(φ) = ∞. �

Theorem 5.3 (see [9] for α = 0). Let X be a compact space, α <

β ≤ Ω and bαX be a strongly non-F -space. Then p(πβ
α) = ∞ and Bα(X) is

uncomplemented in Bβ(X).

P r o o f. If U ∈ CZ0(bαX), then U∩X ∈ CZα(X) ⊆ Aβ(X) and clbβX(U∩
X) is open in bβX. Theorem 5.2 completes the proof. �

Theorem 5.4. Let X be a pseudocompact space and βX be a non-
scattered space. Then for every countable ordinal α > 0 the maximal ideal space
bαX is strongly non-F .

P r o o f. In virtue of Proposition 2.6, we have Bη(X) = Bη(βX) for
every η ≤ Ω. Therefore, it is sufficient to prove the theorem for compact spaces
(X = βX).

Assume that 0 < α ≤ Ω. Define L = {x ∈ bαX : there exist two disjoint
open Fσ-sets U, V in bαX such that for every clopen neighbourhood W of x in
bαX the sets W ∩ U ∩X and W ∩ V ∩X are not Fσ-scattered in X}.
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Fix a non-Fσ-scattered Baire set H of X. By Theorem 4.4 there exist
two disjoint sets H1,H2 ∈ CZα(X) such that H1 ∪H2 ⊆ H and if C1 ⊆ H1 and
C2 ⊆ H2 are any Baire sets with H1 \C1 and H2 \C2 Fσ-scattered, then C1 and
C2 are not α-Baire separated in X. There exist two disjoint open Fσ-sets U, V in
bαX such that U∩X = H1 and V ∩X = H2. We put F = clH1∩clH2 = clU∩clV .
The set F is closed and non-empty. We claim that F ∩ L 6= Ø.

Case 1. α ≥ 2.

In this case we prove that F ⊆ L. Let x ∈ F and W be a clopen
neighbourhood of x in bαX. Suppose that H3 = W ∩H1 is Fσ-scattered. Then
H3 ∈ A2(X) ⊆ AαX and clH3 ∩ clH2 = Ø. By construction, x ∈ clH1 ∩ clH2 ∩
clH3. Hence x ∈ L.

Case 2. α = 1.

Suppose that F ∩ L = Ø. Then for every x ∈ F there exists a clopen
neighbourhood Ux of x in b1X such that H1x = Ux ∩H1 or H2x = Ux ∩H2 is
Fσ-scattered. The set F is compact, so there exists a finite cover {Ux1, . . . , Uxn}
of F . Then C1 = H1 \ ∪{Uxi : H1 ∩Uxi is Fσ-scattered} and C2 = H2 \ ∪{Uxj :
H2 ∩ Uxj is Fσ-scattered} are Baire sets, H1 \ C1 and H2 \ C2 are Fσ-scattered
and clC1 ∩ clC2 = Ø. Therefore C1 and C2 are 1-Baire separated in X. Hence
F ∩ L 6= Ø.

Consequently L 6= Ø, L is dense in itself and L satisfies the conditions of
the definition of the strongly non-F -space. �

Corollary 5.5 ([4] for X = [0, 1], [9] if X contains an uncountable com-
pact metrizable space). Let 0 < α < η ≤ Ω, X be a pseudocompact space and βX
be non-scattered. Then p(πη

α) = ∞ and Bα(X) is uncomplemented in Bη(X).

Corollary 5.6. Let 0 < α < η ≤ Ω, X be a pseudocompact space and
βX is non-scattered. Then:

1. Bα(X) is uncomplemented in Dα+1(X), i.e. the Banach space Bα(X)
is not Baire complemented.

2. Bα(X) is uncomplemented in Dη(X).

6. Extentions of Baire functions.

Lemma 6.1. For every α ≤ Ω and f ∈ Bα(X) there exists a countable
subset E(f) ⊆ C(X) such that f ∈ pαE(f).

P r o o f. If f is continuous, then we put E(f) = {f}. Suppose that α ≥ 1
and for f ∈ ∪{Bη(X) : η < α} = B−

α (X) the set E(f) is constructed. For
f ∈ Bα(X) fix a sequence {fn ∈ B−

α (X) : n ∈ N} such that f = p − lim fn. In
this case we put E(f) = ∪{E(fn) : n ∈ N}. �
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Theorem 6.2. Let Y be a compact subspace of a space X. Then for
every α ≤ Ω and every function f ∈ Bα(Y ) there exists a function e(f) ∈ Bα(X)
such that f = e(f)|Y .

P r o o f. For α = 0 the existence of e(f) follows by the P. S. Urysohn’s
Lemma [11, p. 63]. Let α ≥ 1 and f ∈ Bα(Y ). There exists a countable family
E(f) = {fn ∈ C(Y ) : n ∈ N} such that f ∈ pαE(f): Consider the continuous
mapping g : X → Z = g(X) ⊆

∏
{Rn = R : n ∈ N}, where g(x) = (e(fn)(x) :

n ∈ N) for all x ∈ X. By construction, the set g(Y ) is compact and Z is
metrizable. Since g(x) = g(y) provided x, y ∈ Y and f(x) = f(y), there exists a
function h ∈ Bα(g(Y )) for which f(x) = h(g(x)) for every x ∈ Y . Now we put
e(f)(x) = h(g(x)) if x ∈ g−1(g(Y )) and e(f)(x) = 0 if x 6∈ g−1(g(Y )). �

Corollary 6.3. Let Y be a compact subspace of a space X and α ≤ Ω.
Then bαY = clbαXY .

Corollary 6.4. Let Y be a non-scattered compact subspace of a space X
and o < α < β ≤ Ω. Then:

1. p(φ) = ∞, where φ = π
β
α : bβX → BαX.

2. bαX is a strongly non-F -space.
3. BαX is uncomplemented in BβX.

7. On Theorem of the B. B. Wells.

Theorem 7.1 (B. B. Wells [23]). If a space X contains an infinite com-
pact metrizable space, then for every β ≥ 1 the space C(X) is not complemented

in Bβ(X) and P (πβ
0 ) = ∞. In particular, the space C(X) is not Baire comple-

mented.

P r o o f. There exists a subspace Y of X homeomorphic to a convergent
sequence {0, 1, . . . , n−1, . . .} and a linear operator u : B1(Y ) → B1(X) such that:

1. u(C(Y )) ⊆ C(X).
2. ‖u(f)‖ = ‖f‖ for every f ∈ B1(Y ).
3. f = u(f)|Y for all f ∈ B1(Y ).
Then b1Y = clb1X and the operator v : C(b1Y ) → C(b1X), where v(f) =

e1(u(f |Y )) for every f ∈ C(b1Y ), satisfies the following properties:
4. v is linear and ‖v‖ = 1.
5. v(f)|b1Y = f .
6. b1Y is the Stone-Čech compactification of the discrete countable space

PY .
The space C(Y ) is not complemented in C(b1Y ) = B1(Y ) (see [1, 2,

19, 21]). Since C(Y ) is complemented in C(X) and B1(Y ) is complemented in
B1(X), the space C(X) is not complemented in B1(X). �
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The spaces X,Y are called u-equivalent – notation X ∼ Y , if the Banach
spaces C(X) and C(Y ) are linearly homeomorphic. The symbol X + Y denotes
the discrete sum of the spaces X and Y . We have C(X + Y ) = C(X) × C(Y ).

From Propositions 2.3, 2.4 and Theorem 7.1 it follows.

Corollary 7.2. Let X,Y be spaces, Z be an infinite metrizable compact
space and X ∼ Y + Z. Then:

1. p(πβ
0 ) = ∞ for every β > 0.

2. C(X) is not complemented in Bβ(X) for all β > 0.
3. C(X) is not Baire complemented.

8. On a scattered spaces.

Theorem 8.1. For an infinite compact space X the following assertions
are equivalent:

1. X is scattered.
2. b1X is an F -space.
3. For some α < Ω the space bαX is an F -space.
4. b1X is an F ′-space.
5. B1(X) = Bα(X) for some α ≥ 2.

P r o o f. Implication 1 → 5 → 1 are proved in [5, 15]. Implications
4 → 2 → 3 are obvious. Implications 5 → 4 and 3 → 1 follows from Theorems
5.1 and 5.5 respectively. �

Remark 8.2. If X is an infinite pseudocompact scattered space, then:
1. X contains an infinite compact metrizable space.
2. X is not an F -space.
3. C(X) is not complemented in Bα(X) for each α ≥ 1.
4. C(X) is not Baire complemented.

9. On the F. K. Dashiell’s theorem.

Theorem 9.1 [9, Theorem 2.11]. For a compact space X the following
assertions are equivalent:

1. X is an F -space.
2. C(X) is Baire complemented by a projection of norm 1.
3. There exists a linear multiplicative norm 1 projection u : BΩ(X) →

C(X).

Corollary 9.2. For a compact space X the following are equivalent:
1. X is an F -space.
2. There exists a closed subspace X1 of b1X such that π1

0(X1) = X and
π1

0 |X1 → X is homeomorphism.
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3. There exists a closed subspace XΩ of bΩX such that πΩ
0 (XΩ) = X and

πΩ
0 |XΩ is homeomorphism.

4. There exists a sequence of compact subspaces {Xα ⊆ bαX : α ≤ Ω}
such that:

4.1. πα
0 (Xα) = X and πα

0 |Xα is a homeomorphism.

4.2. πβ
α(Xβ) = Xα and πβ

α|Xβ is a homeomorphism.

Theorem 9.3. Let ψ : X → Y be a continuous mapping of a space X
onto a dense subspace of a space Y and p(ψ) <∞. Then:

1. If C(X) is Baire complemented, then C(Y ) is Baire complemented, too.
2. If α ≤ Ω and C(X) is complemented in Bα(X), then C(Y ) is comple-

mented in Bα(Y ).

P r o o f. There is a continuous operator u : C(X) → C(Y ) such that
u(f · ψ) = f for every f ∈ C(Y ). In particular, C(Y ) is linearly homeomorphic
with the complemented subspace ψo(C(Y )) of the space C(X). If v : Bα(X) →
C(X) is a linear projection, then w : Bα(Y ) → C(Y ), where w(f) = u(v(f · ψ)),
is a linear projection, too. �

Corollary 9.4. For a compact space Y the following are equivalent:
1. C(Y ) is complemented in BΩ(Y ).
2. There exist an F ′-space X and a continuous mapping ψ : X → Y such

that ψ(X) = Y and p(ψ) <∞.
3. There exist an F ′-space X and a complemented subspace E of C(X)

linearly homeomorphic to C(Y ).

Question 9.5. Let Y be an infinite compact space and C(Y ) be Baire
complemented. Is it true that C(Y ) is complemented in B2(Y ) or in BΩ(Y )?

10. On Baire saturated spaces. A space X is called a Baire saturated
space with a Baire nucleus Y if Y is a dense subspace of X and {f |Y : f ∈
C(X)} = {f |Y : f ∈ B1(X)}.

Example 10.1 Let Y be an infinite P -space,i.e. PX = X. Then Y is a
Baire nucleus of the Baire saturated space X = βY .

Example 10.2. For every infinite space X the spaces PX and PνX

are Baire nucleus of compact space bΩX.

Lemma 10.3. If Y is a Baire nucleus of the space X, then Y is a
P -space.

P r o o f. Suppose now that Y is a Baire nucleus of X, {Un : n ∈ N} be a
sequence of open subsets on X and y ∈ ∩{Y ∩ Un : n ∈ N} = U . There exists a
sequence of continuous functions {fn : X → [0, 1] : n ∈ N} foe which:
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1. fn(y) = 0 and fn+1(x) ≥ fn(x) for all x ∈ X and n ∈ N .
2. X \ Un ⊆ f−1

n (1) for all n ∈ N .
Then we have f = p − lim fn for some f ∈ B1(X). By construction, the

function g = f |Y is continuous, V = g−1(−1, 1) is open in Y and y ∈ V ⊆ U . �

Lemma 10.4. Let X be a Baire saturated space with a Baire nucleus Y .
Then there exists a unique linear multiplicative norm 1 projection u : BΩ(X) →
C(Y ) such that u(f)|Y = f |Y for every f ∈ BΩ(X).

P r o o f. From the definition, E = {f |Y : f ∈ C(X)} = {f |Y : f ∈
B1(X)}. By a simple induction and Lemma 10.3, we obtain that E = {f |Y :
f ∈ BΩ(X). For every g ∈ E there is a unique function v(g) ∈ C(X) such that
v(g)|Y = g. Now we put u(f) = v(f |Y ) for every f ∈ BΩ(X). �

Remark 10.5. Every separable dense in itself space is not Baire satu-
rated.

11. The embeddings of spaces Bα(X).

Theorem 11.1. Suppose that X is a space with one of the following
properties:

1. X contains a non-scattered compact subspace.
2. X is normal and contains a closed pseudocompact subspace Y for which

βY is not scattered.
3. X contains a subspace Y for which Z = clβXY is not scattered and

every continuous function F ∈ C(X) is bounded on Y .
Then for every countable ordinal number α ≥ 1 we have:
a. bαX is a strongly non-F -space.
b. Bα(X) is not Baire complemented.
c. If Bα+1(X) is a subspace of a linear topological space E, then Bα(X)

is not complemented in E.
d. Bα(X) is not ilinear homeomorphic to any complemented subspace of

BΩ(X ′) for some compact space X ′.
e. Bα(X) is not linear homeomorphic to any complemented subspace

C(X ′ for any F ′-space X ′.
f . Bα(X) is not linear homeomorphic to any complemented subspace of

same Baire complemented Banach space E.

P r o o f. Let every function F ∈ C(X) is bounded on Y and Z = clβXY

is not scattered, where Y is a subspace of X. In this case Z = clνXY and Z is
non-scattered compact subspace of a space νX. From Corollary 6.4, bανX is a
strongly non-F -space. From P. R. Meyer’s Theorem (see the proof of Proposition
2.7), bαX = bανX. Therefore Bα(X) = Bα(νX) is not a complemented subspace
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of spaces Dα+1(X) and Bα+1(X). The assertions a, b, c are proved. From Prop-
erty 2.3 and Theorems 5.1 and 9.1, Bα(X) is not linear homeomorphic to any
complemented subspace of a Baire complemented Banach space E. This proves
the assertions d, e, f . �

In [9, Corollary 3.7] the assertions d, e of Theorem 11.1 are formuled for
a compact space X which contains an uncountable metrizable compact space.
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