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ABSTRACT. We consider some relations between p-sequential-like properties
and cleavability of topological spaces. Under a special assumption we give
an very easy proof of the following result of A.V. Arhangel’skii (the main
result in [1]): if a (countably) compact space X is cleavable over the class
of sequential spaces, then X is also sequential.

All spaces in this paper are assumed to be Hausdorff. Recall some defin-
itions that we shall use.

Let F be a filter on w. A sequence (x, : n € w) in a space X, F-converges
to a point z in X if for every neighbourhood U of z, the set {n € w : z,, € U}
belongs to F [2]. We shall consider p-sequential and p-Fréchet-Urysohn spaces
for p € w* = Pw \ w. A space X is said to be p-sequential if for every non-closed
subset A of X there exist a point x € X \ A and a sequence (z,) in A which
p-converges to x. X is an FU(p)-space if for every A C X and every = € A there
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is a sequence (z,) in A which p-converges to = (see [10]; different generalizations
of these notions were considered in [7, 8, 3, 4, 11]).

If P is a class of topological spaces and M is a class of (continuous)
mappings, then a space X is said to be M-cleavable (resp. M-pointwise cleavable)
over P if for every A C X (resp. every x € X) there exist Y € P and f € M,
f:X — Y, such that f(X) =Y and f~1f(A) = A (vesp. f~'f(z) = {z}) (see
1, 9)).

Definition 1. Letp € w*.

(a) ([2]) A space X is said to be p-compact provided every sequence in
X has a p-limit point. If X is p-compact for every p € w* one says that X is
ultracompact.

(b) ([5]) A space X is called p-closed if every p-compact subspace of X

1s closed.

It was remarked in [5] that if a space X admits a continuous bijection
onto a p-closed space, then X is p-closed. We give the following (simple, but

useful in what follows) generalization of this fact.

Proposition 2. If a space X is cleavable over the class K of all p-closed

spaces, then X s a p-closed space.

Proof. Let A be a p-compact subspace of X. Choose a p-closed space
Y and a continuous mapping f : X — Y such that f~!1f(A) = A. The set f(A)
is p-compact in Y and thus it is closed. Then the set f~!f(A) is closed in X, i.e.
X is a p-closed space. O

Proposition 3. If a p-compact space X is cleavable over the class of

p-closed spaces, then X is p-sequential.

Proof. By the previous proposition X is p-closed. But p-compact p-
closed spaces are precisely p-sequential spaces [5]. O

Every p-sequential space is p-closed. Therefore, we have this

Corollary 4. If a p-compact space X is cleavable over the class of

p-sequential spaces, then X is p-sequential.



p-sequential spaces and cleavability 91

Theorem 5. If a compact space X is cleavable over the class K of ccc
p-sequential spaces, then X is weakly FU(w*)-space (i.e. X is a FU(q)-space for

some q € w*).

Proof. By Corollary 4 X is p-sequential, so its tightness is countable.
On the other hand, every Y € K has cardinality < 2% because Y is a compact
p-sequential space and for such spaces Y we have |Y| < 2¢Y) [6, Th. 3]. Hence,
X is cleavable over a class of spaces having cardinality < 2¥. According to a
known result [1, 9] the cardinality of X is < 2¥. Theorem 3.12 in [3] garantues
now that there is a ¢ € w* for which X is a FU(q)-space. O

A similar result is the following one.

Theorem 6. If a separable p-compact space X 1is cleavable over the

class KC of p-closed spaces, then X is a weakly FU(w*)-space (and p-sequential).

Proof. X is a p-compact p-closed space (and so p-sequential). By the
formula |X| < d(X)¥ for every p-compact p-closed space X, we conclude | X| <
2¥. Since X is a p-seqeuential space, its tightness is countable. Again by Theorem
3.12 in [3] we have that X is a weakly FU (w*)-space. O

Theorem 7. If a space X is closed pointwise cleavable over the class of

FU(p)-spaces, then X is also a FU (p)-space.

Proof. Let A be a subset of X and z € A. Choose a FU (p)-space
Y and a closed continuous mapping f : X — Y such that f~!1f(x) = {x}.
There is a sequence (y,) C f(A) which p-converges to f(z) € f(A)\ f(A). For
every n € w take a point x, € f~!'(y,) N A. Then the sequence (z,,) C A p-
converges to x. Indeed, let U be any neighbourhood of z. Since f is closed
and {r} = f~!1f(x) there is a neighbourhood V' of f(z) such that f~1(V) c U.
Because of {n c w:y, € Viepand{necw:z, €U} D{new:y, €V} we
have that the set {n € w:x, € U} € p, i.e. (x,) p-converges to z. [

We need now the following lemma.

Lemma 8. Fvery countably compact p-sequential space X is p-compact.
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Proof. Let (z,) be asequence in X. Since X is countably compact, there
exists an accumulation point x of this sequence. The set A = {x,, : n € w}U{z}
is not closed as x € A\ A. Since X is p-sequential, there is a sequence (ay) C A,
ap = Tn,, which p-converges to a point y € A\ A. This means that for every
neighbourhood U of y the set {ny : ar = x,, € U} belongs to p. Clearly, then
because of {n € w:x, € U} D {ng : &y, € U} we have {n € w:z, € U} € p.
Therefore, (z,,) p-converges to y and X is p-compact. O

Recall that a space X is called w-bounded if the closure of every countable

subset of X is compact.

Theorem 9. If a countably compact reqular space X is closed pointwise

cleavable over the class C of Fréchet-Urysohn spaces, then X is w-bounded.

Proof. Every Y € C is a FU(p)-space for every p € w* [9]. By Theorem
7, X is also a FU(p)-space for every p € w*. Therefore, by Lemma 8, X is
p-compact for every p € w*, i.e. X is ultracompact. According to a result of
Bernstein [1, Thms 3.4 and 3.5] (see also [12]) it follows that X is w-bounded. O
The following theorem is a special case of Theorem 23 in [2] but with very
easy proof. The Novak number n(X) of a space X is the smallest cardinality of

a family of nowhere dense subsets of X covering X.

Theorem 10 (n(w*) > ¢). If a ultracompact space X is cleavable over

the class IC of sequential spaces, then X is also sequential.

Proof. Every Y € K is a p-sequential space for each p € w*, so that
every Y € K is p-closed for each p € w*. By Proposition 2 X is also p-closed for
every p € w*. Therefore, X is a p-closed p-compact space for all p € w*, hence X
is p-sequential for all p € w*. By a result of Malykhin (which states that under
n(w*) > ¢ a space is sequential if and only if it is p-sequential for every p € w*;
see Theorem 1.10 in [5]), this means that X is sequential. O

Every ultracompact space is compact, so that we have
Corollary 11 (n(w*) > ¢). If a compact space is cleavable over the class
of sequential spaces, then X is also sequential.

We end by a question regarding p-compact spaces. Every w-bounded

space is p-compact for every p € w*. A.V. Arhangel’skii has remarked that if an
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w-bounded space is cleavable over the class of spaces of countable tightness, then

it itself has countable tightness [1]. So, the following question is natural.

Question 12. Let a p-compact space X be cleavable over the class of

Hausdorff spaces of countable tightness. Is the tightness of X countable?

1]

[10]
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