


Serdica Math. J. 24 (1998), 127-134

PSEUDORADIAL SPACES: FINITE PRODUCTS AND AN

EXAMPLE FROM CH
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Abstract. Aiming to solve some open problems concerning pseudoradial
spaces, we shall present the following: Assuming CH, there are two semi-
radial spaces without semi-radial product. A new property of pseudoradial
spaces insuring the pseudoradiality of a product is presented.

Let X be a topological space. Call a chain in X any mapping from an

infinite cardinal to X. If κ is a cardinal, then κ-chain is a mapping from κ to

X. As usual, ω-chain is called a sequence. A chain 〈xα : α < κ〉 converges to

a point x (equivalently, x is a limit point of a chain 〈xα : α < κ〉) if for every

neighborhood U of x there is some γ < κ such that U ⊇ {xα : γ < α < κ}. A
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convergent chain 〈xα : α < κ〉 is called strict or strictly convergent, if its limit

does not belong to any {xα : α < β}, β < κ.

A set T ⊆ X is called chain-closed or radially closed (strictly chain-closed,

sequentially closed, κ-chain-closed, resp.), if every convergent chain (strict chain,

convergent sequence, convergent λ-chain with λ ≤ κ, resp.) with values in T has

a limit in T , too. A set T is called κ-closed, if for each M ∈ [T ]≤κ, M ⊆ T .

A space X is called

— sequential, if every sequentially closed subset of X is closed;

— radial or Fréchet chain-net, if for every nonclosed T ⊆ X and every point

x ∈ T there is some chain in T which converges to x;

— semi-radial, if for every infinite cardinal κ and every T ⊆ X, whenever T is

κ-chain-closed, then T is κ-closed;

— almost radial, if every strictly chain-closed subset of X is closed;

— pseudoradial, if every chain-closed subset of X is closed.

Radial and pseudoradial spaces were introduced by H. Herrlich in 1967

[8] and the intensive study of these classes was initiated by A. V. Arhangel’skii

in late seventies [1]. The main open problem in this field is whether the class

of compact Hausdorff pseudoradial spaces is finitely productive. Assuming CH

or even c ≤ ω2, the answer is affirmative, since under these assumptions each

compact sequentially compact Hausdorff space is pseudoradial [12, 9]. Attempts

for a ZFC result revealed the importance of the class of semi-radial spaces: The

product of two compact Hausdorff pseudoradial spaces is pseudoradial, if one

factor is semi-radial [3]. The product of two compact Hausdorff almost radial

spaces is almost radial, if one factor is semi-radial [11]. Since radial =⇒ semi-

radial =⇒ almost radial =⇒ pseudoradial, these theorems improve the previous

results by J. Gerlits, Z. Nagy, Z. Froĺık and G. Tironi [7, 6].

The aim of the present paper is to show that the class of semi-radial spaces

is not finitely productive, answering thus a question from [2], and to introduce

another condition, which suffices to guarantee the pseudoradiality of a product

of pseudoradial compact Hausdorff spaces.
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Example. Assume CH. Then there are two compact Hausdorff radial

spaces, whose product is not semi-radial.

P r o o f. In order to get the desired spaces, we shall construct an auxiliary

Hausdorff gap on the set of natural numbers N first. Assuming the Continuum

Hypothesis, it is easy to find a transfinite sequence {Aα, Bα : α ∈ ω1} satisfying

the following:

(i) Every Aα as well as Bα is an infinite subset of N;

(ii) for every α < ω1, Aα ∩ Bα is finite;

(iii) whenever α < β < ω1, then |Aα \ Aβ| < ω and |Aβ \ Aα| = ω; similarly,

|Bα \ Bβ| < ω and |Bβ \ Bα| = ω;

(iv) there is no set C ⊆ N satisfying |C \ Aα| = ω and |Bα ∩ C| < ω for all

α < ω1;

(v) symmetrically, there is no set C ⊆ N satisfying |C\Bα| = ω and |Aα∩C| < ω

for all α < ω1;

Proceeding by a transfinite induction, enumerate all infinite subsets of N

as {Zα : α < ω1} and choose arbitrarily two disjoint infinite subsets A0, B0 of

the set Z0 such that the difference Z0 \(A0∪B0) is infinite. If α < ω1 and all sets

Aβ , Bβ are known for β < α, then, assuming that the respective form of (i)–(iii)

holds for them and that N \ (Aβ ∪ Bβ) is infinite for each β < α, it is possible

to find two disjoint infinite sets A, B such that Aβ \ A is finite for all β < α as

well as Bβ \B, and N \ (A∪B) is infinite. (For the proof of this fact, see e.g., [5,

Lemma 14.16].) If |Zα \ (A ∪B)| < ω, then it is enough to set Aα = A, Bα = B,

otherwise choose two disjoint infinite subsets A′, B′ of the set Zα \ (A ∪B) such

that the set Zα \(A∪B∪A′∪B′) is infinite and define Aα = A∪A′, Bα = B∪B′.

This completes the inductive definition.

Since every infinite subset of N was taken into account, it should be clear

that the resulting family {Aα, Bα : α < ω1} is as required.

Both spaces X and Y will be homeomorphic to the space δ(N) from [10].

The space X is a disjoint union of N, {xα : α < ω1} and a one-point set {∞X},
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similarly, the space Y is a disjoint union N∪{yα : α < ω1}∪{∞Y }. The topology

of X is described by neighborhood systems as follows: Every n ∈ N is isolated, the

neighborhood base of a point xα consists of all sets {xγ : β < γ ≤ α}∪Aα\(Aβ∪F )

for β < α and finite F ⊂ N. Finally, the basic neighborhood of the point ∞X

has a form {∞X} ∪ {xγ : β < γ < ω1} ∪ N \ (Aβ ∪ F ) where β < ω1, F ∈ [N]<ω.

The topology of the space Y is described quite analogously — replace in

the previous definition all x’s and X’s by y’s and Y ’s, and all A’s by B’s.

Let us verify that the space X is radial. Since X is 1st countable at

all its points except ∞X , it suffices to consider only two cases: If M ⊆ N is

infinite and ∞X ∈ M , then, according to the definition of the topology of X,

|M \ Aα| = ω for each α < ω1. By (iv), there must exist some δ < ω1 with

Bδ ∩ M infinite. Whenever β < ω1, then by (ii) and (iii), Aβ ∩ Bδ is finite.

Consequently each neighborhood of ∞X contains all but finitely many points of

the set Bδ ∩M , so Bδ ∩M is a sequence contained in M and converging to ∞X .

If M ⊆ {xα : α < ω1} satisfies ∞X ∈ M , then M itself is a chain of length ω1

converging to ∞X , which follows immediately from the definition of the topology

of X.

It is obvious that the radiality of Y can be proved quite analogously.

The verification of compactness of both spaces is yet easier and we shall

leave it to the reader.

It remains to show that the space X × Y is not semi-radial. To this end,

consider the following subset D = {(n, n) : n ∈ N} ∪ {(xα,∞Y ) : α < ω1} ∪

{(∞X , yα) : α < ω1} of the product. We shall show that D is sequentially closed.

Whenever the values of a convergent sequence belong to the set {(xα,∞Y ) :

α < ω1} or to the set {(∞X , yα) : α < ω1}, then so does its limit, since both

subsets are homeomorphic to the space ω1 of all countable ordinals. If a sequence

〈(n, n) : n ∈ C〉 converges, then either the sequence 〈n : n ∈ C〉 converges in X to

some xα and so the same sequence converges to ∞Y in Y , or it converges in X to

∞X . In the latter case it cannot converge in Y to the point ∞Y , because of (iv)

and (v). Being convergent also in Y , it has to converge to some yβ. Therefore its

limit again belongs to D.

However, if U is a neighborhood of the point ∞X , then there is some
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α < ω1 and a finite set F ⊆ N such that U ⊇ N \ (Aα ∪ F ), and if V is a

neighborhood of ∞Y , then V ⊇ N \ (Bβ ∪ G) for some β < ω1 and some finite

G ⊆ N. Consequently, U × V ∩ D is infinite, since by (ii) and (iii), the set

N \ (Aα ∪ Bβ ∪ F ∪ G) is.

We have shown that D is sequentially closed but not ω-closed, thus the

product space X × Y is not semi-radial. �

We present here a compactness–like property of pseudoradial spaces that

appears to be true for one of the factors in many cases in which the product of

two pseudoradial spaces turns out to be pseudoradial. It is the following

Property. If X is a compact Hausdorff pseudoradial space, γ a limit or-

dinal and 〈Aι : ι < γ〉 a decreasing sequence of subsets of X, then
⋂

ι<γ cl1Aι 6= Ø.

For a time we did not have any example of a pseudoradial space not

satisfying the property. However recently A. Bella and I. Yaschenko [4] provided

two such examples. One such example is easily described; let X = (ω1+1)×[0, 1],

where ω1 + 1 is endowed with the usual order topology. Then X is compact and

pseudoradial, but does not satisfy the property. They also give an example of a

compact sequential space that does not satisfy the above property.

Theorem. Suppose the property holds for one of two factors. Then the

product of two compact Hausdorff pseudoradial spaces is pseudoradial.

P r o o f. Suppose the contrary. For a triple (X,Y,C), where X and Y are

compact Hausdorff pseudoradial spaces and C is a radially closed subset of the

product, define λ(X,Y,C) to be the minimal length of a chain ranging in πX [C]

and converging to a point in X \πX [C], if there is some, λ(X,Y,C) is undefined,

if there is no such chain.

Let us observe that our assumption implies that at least one λ(X,Y,C)

is defined. Choose a pair (X,Y ) of compact Hausdorff pseudoradial spaces the

product of which is not pseudoradial. Then there is a chain-closed set C ⊆ X×Y

which is not closed. Select a point (x, y) ∈ C \ C. Since the closed subspace

{x} × Y is homeomorphic to Y , it is pseudoradial and thus C ∩ ({x} × Y ) is a

closed set. Choose a closed neighborhood V of the point y such that X × V is
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disjoint with C ∩ ({x} × Y ). The set C1 = C ∩ (X × V ) is an intersection of

chain-closed and a closed set, so it is chain-closed and (x, y) ∈ C1. Since the space

Y is compact, the projection πX is a closed mapping, therefore the set πX [C1] is

nonvoid and not closed in X. Consequently, for a triple (X,V,C1), the cardinal

λ(X,V,C1) is defined.

Let λ be the minimum of all λ(X,Y,C), where (X,Y ) runs through all

pairs of compact Hausdorff pseudoradial spaces without pseudoradial product and

C through all radially closed subsets of X × Y such that λ(X,Y,C) is defined.

According to the previous observation, the cardinal λ is defined correctly.

Let us fix two spaces X, Y and a set C ⊆ X×Y such that λ(X,Y,C) = λ.

Let 〈xα : α < λ〉 be a chain converging to a point x ∈ X \ πX [C] with all

xα ∈ πX [C] and denote Fα = πY [π−1
X {xα} ∩C]. Each set Fα is a compact subset

of Y .

Denote Aα =
⋃

α<β<λ Fβ .

If
⋂

α<λ Aα 6= Ø, then we easily get a contradiction with the assumption

x ∈ X \ πX [C]: Choose a point y ∈
⋂

α<λ Aα and denote by I the set {α < λ :

y ∈ Fα}. Obviously, |I| = λ. The chain 〈(xα, y) : α ∈ I〉 has all values in C, thus

(x, y) ∈ C, since C is radially closed.

So, for the rest of the proof, let us assume that
⋂

α<λ Aα = Ø. By the

property, there is some y ∈
⋂

α<λ cl1Aα and we may choose cardinals µα and

chains 〈yξ(α) : ξ < µα〉 for every α < λ so that each yξ(α) belongs to Aα and

each chain 〈yξ(α) : ξ < µα〉 converges to y.

Three cases are possible:

(i) The set I = {α < λ : µα > λ} is cofinal in λ. For each α ∈ I let γ(α)

be the first β satisfying α < β < λ and |{ξ < µα : yξ(α) ∈ Fβ}| = µα. Since the

set Fγ(α) is compact, y ∈ Fγ(α). However, the set {γ(α) : α ∈ I} is cofinal in λ, so

the point y belongs to all Aα, which contradicts the assumption
⋂

α<λ Aα = Ø.

(ii) The set J = {α < λ : µα = λ} is cofinal in λ. If for each α ∈ J

one can find some β satisfying α < β < λ and |{ξ < λ : yξ(α) ∈ Fβ}| = λ, then

we reach the contradiction exactly as in the case (i). However, if there is some

γ ∈ J such that for every β, γ < β < λ, we have that |{ξ < λ : yξ(γ) ∈ Fβ}| < λ,

then there is an obvious possibility to diagonalize: Let M be the set of all α < λ
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such that there is some yξ(γ) ∈ Fα; denote one such yξ(γ) as yα. Then the chain

〈(xα, yα) : α ∈ M〉 converges to (x, y), a contradiction.

(iii) The remaining. It means that there is some γ < λ such that µ(α) <

λ for all α, γ < α < λ. Since x /∈ πX [C], we have (x, y) /∈ C. Similarly as in

the observation at the beginning of this proof, choose a closed neighborhood U

of a point x such that (U × Y ) ∩ (X × {y}) ∩ C = Ø. There is some γ < λ such

that for all α > γ, xα ∈ intU , therefore for every α > γ, Aα ⊆ πY [C ∩ (U × Y )].

Now it is enough to denote D = {(y, x) : (x, y) ∈ C & x ∈ U}: we obtain that

λ(Y,U,D) < λ, contrary to the minimality of λ. �

Since any compact radial space satisfies the property, the above theorem

generalizes the theorem in [6] concerning the product of a compact pseudoradial

and a compact radial space.
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