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INTEGRAL MANIFOLDS AND BOUNDED SOLUTIONS OF

SINGULARLY PERTURBED SYSTEMS OF IMPULSIVE

DIFFERENTIAL EQUATIONS
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Abstract. Sufficient conditions for the existence of bounded solutions of
singularly perturbed impulsive differential equations are obtained. For this
purpose integral manifolds are used.

1. Introduction. The impulsive systems of differential equations are in
adequate apparatus for mathematical simulation of numerous real processes and
phenomena studied in physics, biology, population dynamics, biotechnologies,
control, economics, etc. Such processes and phenomena are characterized by the
fact that at certain moments of their evolution they undergo rapid changes. That
is why in their mathematical simulation it is convenient to neglect the duration
of these changes and assume that such processes and phenomena change their
state momentarily, by jumps.

In the recent years these equations have been the object of numerous
investigations [1]–[8].
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In the present paper the questions of the existence of bounded solutions
of singularly perturbed impulsive differential equations are considered.

2. Preliminary notes and definitions. Let R
n be the n-dimensional

Euclidean space with norm ‖ · ‖. Let M = (0, µ) µ = const > 0; En is the unit
matrix of type n × n; Vρ = {x ∈ R

n : ‖x‖ ≤ ρ}, ρ = const > 0; V ⊂ Vρ.
Let ti ∈ R, ti < ti+1, i = ±1,±2, . . . and lim

i→±∞
ti = ±∞.

We consider the following system of impulsive differential equations

(1)

{

ż = A(t)z, t 6= ti,

∆z(ti) = Ai(x(ti)), i = ±1,±2, . . . ,

where t ∈ R, z ∈ R
n; ∆z(ti) = z(ti + 0) − z(ti − 0).

Such systems are characterized by the fact that under the action of a
force of negligible duration the mapping point of the extended phase space at the
moments t = ti, i = ±1,±2, . . . jumps from the position (ti, z(ti)) to the position
(ti, z(ti) + Aiz(ti).

In the paper consider the system of singularly perturbed impulsive differ-
ential equations

(2)



























ẋ(t) = B(t)x + f(t, x, y, µ), t 6= ti,

∆x(ti) = Bix(ti) + Ii(x(ti), y(ti), µ),

µẏ(t) = D(t)y + h(t, x, y, µ), t 6= ti,

∆y(ti) = Dky(ti) + Ji(x(ti), y(ti), µ), i = ±1,±2, . . . ,

where x ∈ R
m; y ∈ R

n; t ∈ R; µ ∈ M is a small parameter; B(t) and D(t) are
matrix-functions of type m × m and n × n respectively; Bi and Di are constant
matrices of type m × m and n × n respectively; f : R × R

m × V × M → R
m;

h : R × R
m × V × M → R

n; I1
k : R

m × V × M → R
m; I2

k : R
m × V × M → R

n;
∆x(ti) = x(ti + 0) − x(ti − 0); ∆y(ti) = y(ti + 0) − y(ti − 0), i = ±1, . . .

Definition 1. We call an arbitrary manifold G in the extended phase

space of the system (2) integral manifold, if (t0, x(t0), y(t0)) ∈ G implies (t, x(t),
y(t)) ∈ G, t0 ∈ R, t ≥ t0.

Introduce the following notations:
E = {ϕ : R × R

m × M → R
n, ϕ = ϕ(t, x, µ) is continuous with respect

to its arguments x and µ, and it is piecewise continuous on t ∈ R with points
of discontinuity of the first kind t = ti, i = ±1,±2, . . . at which it is continuous
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from the left |ϕ(t, x, µ)| = sup{‖ϕ(t, x, µ)‖ : (t, x, µ) ∈ R × R
m × M} is the norm

of the function ϕ ∈ E.

Let ρ = const > 0, η = const > 0.

L(ρ, η) = {ϕ ∈ E : |ϕ(t, x, µ)| ≤ ρ, |ϕ(t, x̃, µ) − ϕ(t, x, µ)| ≤ η‖x̃ − x‖, t ∈
R, x̃, x ∈ R

m, µ ∈ M}.

Definition 2. The set

(3) J = {(t, x, y, µ) ∈ R × R
m × R

n × M : y = ϕ(t, x, µ), ϕ ∈ L(ρ, η)}

is called integral manifold of class L(ρ, η) or (ρ, η)-integral manifold.

Definition 3. The function ϕ(t, x, µ) from (2) is called a parameter
function with respect to the integral manifold J .

In the present paper for arbitrary ρ and η sufficient conditions for exis-
tence of bounded solutions with the method of integral manifolds for the system
(2) are found.

Together with system (2) consider the linear systems of impulsive differ-
ential equations

(4)

{

ẋ(t) = B(t)x, t 6= ti,

∆x(ti) = Bi(x(ti), i = ±1,±2, . . . ,

and

(5)

{

µẏ(t) = D(t)y, t 6= ti,

∆y(ti) = Diy(ti), i = ±1,±2, . . . .

Introduce the following conditions:

H1. The matrix function B(t) is continuous for t ∈ R.

H2. The matrix function D(t) is continuous for t ∈ R.

H3. The function f : R × R
m × V × M → R

m is continuous every where except
(t, x, y, µ) ∈ R × R

m × V × M , f(ti, x, y, µ) = f(ti − 0, x, y, µ) and f(ti +
0, x, y, µ) exists, i = ±1,±2, . . ..

H4. The function h : R × R
m × V × M → R

n is continuous every where except
(t, x, y, µ) ∈ R × R

m × V × M , h(ti, x, y, µ) = h(ti − 0, x, y, µ) and h(ti +
0, x, y, µ) exists, i = ±1,±2, . . ..
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H5. The functions Ii are continuous in R
m × V × M .

H6. The functions Ji are continuous in R
m × V × M .

H7. The Cauchy matrix X(t, s) of system (4) satisfies the inequality

‖X(t, s)‖ ≤ Keα|t−s|,

where t, s ∈ R; α = const > 0; K = const > 0.

H8. The eigenvalues λk = λk(t), k = 1, . . . , n of the matrix D(t) satisfy the
inequalities

Reλk(t) ≤ −∆ < 0, k = 1, . . . , n.

H9. ‖E + Di‖ < l, l = const > 0, i = ±1,±2, . . ..

H10. There exists κ = const > 0 such that

i(s, t) ≤ κ(t − s),

where i(s, t) is the number of the points ti in the interval (s, t).

Remark 1. We shall note that sufficient conditions under which the
inequality from H7 is valid, are given in [5] and [6].

Theorem 1 [8]. Let the following conditions hold:

1. Conditions H1 – H10 are met.

2. There exists a constant L > 0 such that

‖f(t, x, y, µ)−f(t, x, y, µ)‖+‖Ii(x, y, µ)−Ii(x, y, µ)‖ ≤ L(‖x−x‖+‖y−y‖),

‖h(t, x, y, µ)−h(t, x, y, µ)‖+‖Ii(x, y, µ)−Ii(x, y, µ)‖ ≤ L(‖x−x‖+‖y−y‖),

where x, x ∈ R
m; y, y ∈ V ; t ∈ R, µ ∈ M,k = ±1,±2, . . ..

3. There exists a constant Q > 0 such that

‖h(t, x, µ)‖ ≤ Q, ‖Ji(x, y, µ)‖ ≤ Q,

where (t, x, y, µ) ∈ R × R
m × V × M , k = ±1,±2, . . ..
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Then for all numbers ρ > 0 and η > 0 there exist a constants µ∗ > 0, Q∗ > 0,
L∗ > 0 such that if µ ∈ (0, µ∗], Q ∈ (0, Q∗] and L ∈ (0, L∗] then for the system

(1) there exists an (ρ, η)–integral manifold.

Corollary 1. If ρ, η, L and Q are functions of the variable µ such that

ρ(µ) → 0, η(µ) → 0, L(µ) → 0 and Q(µ) → 0 as µ → 0 then there exists

a constant µ∗ such that for each µ ∈ (0, µ∗] for the system (2) there exists an

(ρ, η)-integral manifold.

(6)

{

ẋ(t) = B(t)x + f(t, x, ϕ(t, x, µ), µ), t 6= ti,

∆x(ti) = Bix(ti) + Ii(x(ti), ϕ(ti, x(ti), µ), µ), i = ±1,±2, . . . .

Introduce the following conditions:

H11. For the system

(7)

{

ẋ(t) = B(t)x + f(t, x, 0, 0), t 6= ti,

∆x(ti) = Bix(ti) + Ii(x(ti), 0, 0), µ), µ), i = ±1,±2, . . .

there exists a bounded solution x = p0(t), t ∈ R.

H12. The derivate
∂g

∂x
of the function g(t, x, y, µ) = B(t)x+f(t, x, y, µ) is piece-

wise continuous function with points of discontinuity of the first kind at the
moments t = ti, i = ±1,±2, . . ..

H13. For the system

(8)

{

Ẋ(t) = C(t)X, t 6= ti,

∆X(ti) = CiX(ti), i = ±1,±2, . . . ,

where

C(t) = B(t) +
∂

∂x
f(t, p0(t), 0, 0),

Ci = Bi +
∂

∂x
Ii(t, p

0(ti), 0, 0), i = ±1,±2, . . . ,

there exists a fundamental matrix φ(t) such that for

G(t, s) =

{

φ(t)Pkφ(s)−1, t ≤ s,

φ(t)(Pk − Em)φ(t)−1, s > t
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the following inequality hold

(9) ‖G(t, s)‖ ≤ N1e
−γ1|t−s|,

where Pk = diag[Ek, 0], N1, γ1 > 0, t ∈ R, s ∈ R.

3. Main results. We set

(10) x = p0(t) + v

and from H11, (6) it follows that

(11)

{

v̇ = C(t)v + r(t, v, µ), t 6= ti,

∆v(ti) = Civ(ti, µ) + Ĩi(v(ti, µ), µ), i = ±1,±2, . . . ,

where
r(t, 0, µ) = f(t, p0 + v, ϕ(t, p0 + v, µ), µ) − f0(t, p0(t), 0, 0)−

−
∂

∂x
f(t, p0(t), 0, 0)v,

Ĩi(v, µ) = Ii(p
0 + v, ϕ(t, p0 + v, µ)) − Ii(p

0, 0, 0) −
∂

∂x
Ii(p

0, 0, 0)v.

Lemma 1. Let the following conditions be fulfilled:

1. The conditions of Theorem 1 are met.

2. There exists ω = ω(µ), ω(µ) → 0, µ → 0 such that

‖f(t, x, 0, µ)‖ + ‖Ii(x, 0, µ)‖ ≤ ω(µ),

where (t, x, µ) ∈ R × R
m × M .

3. The conditions H11 and H12 are met.

4. The functions ρ = ρ(µ) and η = η(µ) are such that ρ(µ) → 0, η(µ) → 0 for

µ → 0.

Then for v, v ∈ Vσ (0 < σ < ρ) it follows

(12) ‖r(t, 0, µ)‖ + ‖Ĩi(0, µ)‖ ≤ v(µ),

(13) ‖r(t, v, µ) − r(t, v, µ)‖ + ‖Ĩi(v, µ) − Ĩi(v,mu)‖ ≤ L1(µ)‖ṽ − v‖,
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where v(µ) → 0 L1(µ) → 0 for µ → 0, t ∈ R, i = ±1,±2, . . ..

P r o o f. From (10) we obtain (12). Set

ϕ(t) = ϕ(t, p0 + v, µ),

vξ = v + ξ(v − v),

where ξ ∈ (0, 1].
From the theorem of everage values and from Lemma 1 it follows

‖r(t, v, µ) − r(t, v, µ)‖ + ‖Ĩi(v, µ) − Ĩi(v, µ)‖ ≤ ‖f(t, p0 + v, 0, µ)

−f(t, p0 + v, ϕ, µ)‖ + ‖f(t, p0 + v, ϕ, µ) − f(t, p0 + v, 0, µ)

−[f(t, p0 + v, ϕ, µ) − f(t, p0 + v, 0, µ)]‖ + ‖f(t, p0 + v, 0, µ)

−f(t, p0, 0, µ) −
∂

∂x
f(t, p0, 0, 0)v − [f(t, p0 + v, 0, µ) − f(t, p0, 0, µ)]

−
∂

∂x
f(t, p0, 0, µ)v‖ + ‖Ii(p

0(ti) + v(ti), ϕ(ti), µ) − Ii(p
0(ti) + v(ti), ϕ(ti), µ)‖

+‖Ii(p
0(ti) + v(ti), ϕ(ti), µ) − Ii(p

0(ti) + v(ti), 0, µ)

−[Ii(p
0(ti) + v(ti), ϕ(ti), µ)[Ii(p

0(ti) + v(ti), 0, µ) − Ii(p
0(ti), 0, µ)]

−Ii(p
0(ti) + v(ti), 0, µ)]‖ + ‖Ii(p

0(ti) + v(ti), 0, µ)

−Ii(p
0(ti) + v(ti), 0, µ) −

∂

∂x
Ii(p

0, 0, 0)v − [Ii(p
0(ti) + v(ti), 0, µ) − Ii(p

0(ti), 0, µ)]

−
∂

∂x
Ii(p

0, 0, µ)v‖ ≤ L1(µ)‖v − v‖,

where

L1 = Lη + max
0≤ξ≤1

‖
∂

∂x
f(t, p0vξ, ϕ, µ) −

∂

∂x
f(t, p0 + vξ, 0, µ)‖+

+ max
0≤ξ≤1

‖
∂

∂x
f(t, p0 + vξ, 0, µ) −

∂

∂x
f(t, p0 + vξ, 0, 0)‖

+ max
0≤ξ≤1

‖
∂

∂x
Ii(p

0 + vξ, ϕ, µ) −
∂

∂x
Ii(p

0 + vξ, 0, µ)‖

+ max
0≤ξ≤1

|
∂

∂x
Ii(p

0 + vξ, 0, µ) −
∂

∂x
Ii(p

0, 0, 0)‖. �
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Theorem 2. Let the following conditions hold:

1. The conditions of Theorem 1 are met.

2. Conditions H10 – H12 are met.

3. For the function f and Ii there exists ω(µ) ≥ 0 such that ω(µ) → 0 for

µ → 0, and

‖f(t, x, 0, µ)‖ + ‖Ii(x, 0, µ)‖ ≤ ω(µ),

for (t, x, µ) ∈ R × R
m × M , i = ±1,±2, . . ..

4. The functions ρ = ρ(µ) and η = η(µ) are such that ρ(µ) → 0, η(µ) → 0 for

µ → 0.

Then there exists µ > 0, µ ≤ µ∗ such that for µ ∈ (0, µ] for the system (2) there

exists a bounded solution.

P r o o f. With PCσ, 0 < σ < ρ we denote the space of all functions
v(t, µ) map the set R × M in the set R

m which are piecewise continuous with
discontinuity of the first kind in the points t = ti, i = ±1,±2, . . ., and they are
continuos with respect to µ and the inequality

‖v(t, µ)‖ ≤ σ

for t ∈ R, µ ∈ M holds.
In this space we shall investigate the operator S, where

(14) Sv =

∫ ∞

−∞
G(t, s)r(s, v(s, µ), µ)ds +

∞
∑

i=−∞

G(t, ti)Ĩi(v(ti, µ), µ).

From (9) and Lemma 1 we obtain

(15)

‖Sv‖ ≤

∫ t

−∞
‖G(t, s)‖(‖r(s, v(s), µ) − r(s, 0, µ)‖)ds

+

∫ ∞

t

‖G(t, s)‖(‖r(s, v(s), µ) − r(s, 0, µ)‖)ds

+
∑

ti<t

‖G(t, ti)‖(‖Ĩi(ti, v(ti), µ) − Ĩi(ti, 0, µ))‖ + ‖Ĩi(ti, 0, µ)‖)

+
∑

t<ti

‖G(t, ti)‖(‖Ĩi(ti, v(ti), µ) − Ĩi(ti, 0, µ))‖ + ‖Ĩi(ti, 0, µ)‖)

≤ 2N1(
1

γ1

+
1

eγ1 − 1
)(L1(µ)σ + v(µ)).
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On the other hand

(16)

‖Sṽ − Sv‖ ≤

∫ t

−∞
‖G(t, s)‖‖r(s, ṽ, µ) − r(s, v, µ)‖ds

+

∫ ∞

t

‖G(t, s)‖‖r(s, ṽ, µ) − r(s, v, µ)‖ds

+
∑

ti<t

‖G(t, ti)‖(‖Ĩi(ti, ṽ(ti), µ) − Ĩi(ti, v(ti), µ))‖)

+
∑

t<ti

‖G(t, ti)‖(‖Ĩi(ti, ṽ(ti), µ) − Ĩi(ti, v(ti), µ))‖)

≤ N1L1(µ)(
1

γ1

+
1

eγ1 − 1
)|ṽ − v|,

where |v| = sup {‖v(t, µ)‖, t ∈ R, µ ∈ M} . From (15) and (16) it follows that
there exists µ > 0, µ ≤ µ∗ such that for µ ∈ (0, µ] we obtain

(17) 2N1(
1

γ1

−
1

eγ1 − 1
)(L1(µ)σ + v(µ)) ≤ σ,

(18) 2N1(
1

γ1

−
1

eγ1 − 1
)(L1(µ)) < 1.

From (17) it follows that Sv ∈ PCσ and from (20) it follows that S is contracting
operator.

Then for the equality v = Sv for µ ∈ (0, µ] there exists only one solution
v ∈ PCσ.

From the relations

∂

∂t
G(t, s) = C(t)G(t, s), t 6= ti,

G(ti + 0, t) − G(ti, t) = CiG(ti, t),

G(t, t − 0) − G(t, t + 0) = Em, t 6= ti

it follows that

v(t) =

∫ ∞

−∞
G(t, s)r(s, v(s), µ)ds +

∞
∑

i=−∞

G(t, ti)Ĩi(v(ti), µ)

is solution of (11).
We set p(t) = p0(t)+ v(t, µ), and from (10) it follows that p(t) is solution

of (6). Then (p, q) is bounded solution of the system (2). �
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