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ABSTRACT. Let X be a separable Banach space without the Point of
Continuity Property. When the set of closed subsets of its closed unit ball
is equipped with the standard Effros-Borel structure, the set of those which
have the Point of Continuity Property is non-Borel. We also prove that,
for any separable Banach space X, the oscillation rank of the identity on
X (an ordinal index which quantifies the Point of Continuity Property) is
determined by the subspaces of X with a finite-dimensional decomposition.
If X does not contain [y, subspaces with basis suffice. If X* is separable,
one can even restrict to subspaces with shrinking basis.

1. Notations and preliminaries. In this paper, after a first section
devoted to notations and preliminaries, we study in the second section the de-
scriptive complexity of the Point of Continuity Property (PCP). We refer the
reader to [7] and [14] for the foundations of the descriptive set theory. In a sep-
arable Banach space X without PCP, we equip the set F(X) of closed subsets
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of its closed unit ball By, with the standard Effros-Borel structure. Then the
subset of F(X) consisting of elements which have PCP, is non-Borel. For related
results, see [1].

In the third section, we recall the definition of the oscillation rank of
the identity from (Bx,w) to (Bx,|| ||), which is the ordinal index obtained by
slicing Bx with weak open subsets (about slicing, see [4]). A separable Banach
space X has PCP if, and only if, this rank is a countable ordinal. We show that
this rank is the supremum of the ranks of its subspaces with a finite-dimensional
decomposition, or of its subspaces with a basis, if X contains no isomorph of
l1, or of its subspaces with a shrinking basis, if X* is separable. That specifies
some results proved by J. Bourgain [2], N. Ghoussoub and B. Maurey [6] and,
the second author [10]. (See also [8] and [9] for related results)

We begin by recalling some notations. In the sequel, we will denote by
w = {0,1,2,...} the first infinite ordinal, by w* the set w \ {0}, by w; the first
uncountable ordinal and by w<% the set of all finite sequences in w, including the
empty sequence. If s € w<¥, |s| will be its length, and we write

s=(s(0),s(1),s(2),...,s(]s| = 1)).

Concatenation is denoted —~, and if p € w, we will write (p) ~ s =p —~ s and
s ~ (p) =s —~p. When s # ), s— is the sequence such that s = s— —~ p for
some p € w. We have a partial order in w<“ defined by

s<t if t=s or t=s ~u for some u € w<¥.

A tree on w is a subset § C w<¥ such that ¢t € § whenever s € § and t < 5. A
branch b of 6 is an infinite sequence of elements in w such that s € # whenever
s €w<¥ and s(i) = b(i), V0O <i<]|s|— 1.
Let 7 be the set of trees on w. We recall that a tree 8 € 7 is said well
founded if it has no branch. We denote by WF the set of well founded trees.
We denote by ht(#) the height of § € 7, and we refer to [7] for the defin-
ition and for a complete information about the following notions and properties.
Let P a Polish space. A subset A of P is analytic if it is the Borel image
of a Borel subset of a Polish space, A is coanalytic (a Hl set) if P\ A is analytic,
~1
Alis Hl—hard if for every Polish space Y and every 1_[1 set @) in Y, there is a
~1 ~ 1
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1 1
Borel map f:Y — P with Q@ = f~}(A), and A is H —complete if A is H and

~ 1 ~ 1
1
H —hard.
~ 1

It is known that a Hl—hard subset is not analytic, thus non-Borel, and
~ 1

WF is Hl—complete in the Polish space 7 equipped with the topology inherited

~ 1
from 29~

Let X be a Banach space. If C' is a nonempty subset of X, C is said to
have the Point of Continuity Property (PCP), if on every closed and bounded
subset of C' the identity map has some point of weak to norm continuity. So, X
has PCP if, and only if, its closed unit ball, By, has PCP. We denote by PCP(X)
the family of all closed subsets of Bx with PCP. This property is, for example,
a very important property to study the relation between Radon-Nikodym and
Krein-Milman properties. For a complete information about PCP we refer to [2],
[5], and [12].

The closed ball with center z € X and radius r > 0 is denoted by B(x,r).
When X is separable, F(X) is the set of closed subsets of By equipped with the
Effros-Borel structure (see [3]), thus F(X) is a standard Borel space (i.e. whose
Borel structure is generated by a Polish topology). The Effros-Borel structure is
generated by the family

{{FeF(X):FNO # @} : O is an open subset of Bx}.

If A C X, span(A) denotes the vector space spanned by A, span (A) its
closure, and diam (A) = sup{|lz — y|| : z,y € A}. Given z € X, £ C X* and

e > 0, we write
Nz, Ee)={ye X :|z"(x—y)| <eVa* e}

We refer to [11] for the definition of a finite-dimensional Schauder decomposition
(FDD). A basic sequence {z;}ic, in X is shrinking if

span{x; : i € w})* =span{z} :i € w},
1

where {z }ic., is the sequence of biorthogonal functionals of {x;}ic,.
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2. Descriptive complexity of PCP. In this section we show a new
application of the descriptive theory in Banach spaces. For this, we use the
theory of analytic sets, whose foundations are exposed in [7] and [14], to study
the descriptive complexity of the point of continuity property in Banach spaces.

Our main goal in this section is the following;:

Theorem 1. Let X be a separable Banach space failing PCP. Then

1
PCP(X) is H —hard, thus non-Borel.
~1

To prove this theorem we need the following lemmas and preliminaries:

Lemma 2 [2, Lemme 5.5]. Let X be a Banach space, A C X, z € A,
Then for every d € w and for every € > 0 there is C € Pr(A) such that:

VE € Py, T(x,E,e)NC # D,

where Py denotes the set of finite subsets of Bx~ with d elements, at most, and
Pr(A) is the set of finite subsets of A.

Now, we define A, a family of subsets in w<* x w<¥ by M € A if:

1. (0,0)e M.

2. If (s,t) € M, then |s| = [t| and (¢/,t') € M for any s',t' € w<* such that
|| = |t'| and &' < s,t" < t.

3. Y(s,t) € M, Vm € w dp € w* such that (s ~m,t ~ 1) € M if, and only if,
1 < p.

It is clear that, if M € A, then for every s € w<%“ there is t € w<* such
that (s,t) € M.

For every n € w, we define A, a new family of subsets of w<% x w<“ by:
M e A, if

1. (0,0)e M.

2. If (s,t) € M, then |s| = |t| and (s',t') € M for any s',t' € w<* such that
|| = |t'| and §' < s,t" < t.
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3. V(s,t)eM', VmewIpew:
(s ~m,t ~i) € M if, and only if, i < p, where
M ={(s,t) e M :3(s',t') € M with s < &', t <t'}.
4. Vs € w<¥ such that |s| < n, It € w<¥ : (s,t) € M.

With these preliminaries we can prove the following.

Lemma 3. Let X be a Banach space failing PCP. Then there are
M e A, (z))spem C Bxs (Visy))sem weak open subsets, and € > 0 such
that for every (s,t),(s',t") € M we have:

i) Ym € w, Y€ € Ppy1, D(w(sy), &, mLH) N Fis4)(m) # O, where

Fop(m) ={z(s~mi~i) 1 (s ~m,t ~i) € M}.

ii) Vm € w, F(sp(m) N B(x(sy),e) = D.

i) 250 € Vist), Vis) N B(@(s—y—y,6) = D and, " < s,t" <t implies V(5 C
Vst 41y Furthermore, if s and s ort and t' are incomparable, then Visy N

V(s’,t/) =0.

Proof. Let A C Bx and € > 0 be such that every weak open subset of
A has diameter, at least, 2¢.

By induction in n € w, we construct M, € Ay, (¥(s4))(s,0em, C A
and (Vi) (s,)em, Weak open subsets, such that i) and ii) are satisfied for any
(s,t) € M',,, and iii) is satisfied for any (s,t), (s',t') € M,.

We put My = {(0,0)}, Vig.0) = X and 7 ¢y any element of A.

Let n > 0 and suppose the construction is made for 0 < i <n — 1.

Let (s,t) € My—1: |s| =|t| =n — 1. Then

w

T(s,t) € ‘/(s,t) \B(x(s,t)as) )

by hypotheses on A. From Lemma 2, there is C'(0) = {yg,y?,...,ygo},
C(0) C Vigp) \ B(x(s4),€) such that

vE € Py, F(.’E(&t),g, 1)NC(0) # 0.
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Then there are VP, V0, ..., V,?O weak neighbourhoods of ¥, 1Y, ... ,ygo respec-
tively, and Wy weak neighbourhood of z(, s, all contained in V(; ;), pairwise dis-
joint such that VjO N B(z(s4),€) =D, 0<j < ng.

Now, (s € Wo \ B (:z:(s,t),s)w and a new application of Lemma 2 says

us that there is C(1) = {yg, y1,-- -, ¥p, } € Wo \ B(2(s4),€) such that

1
V€ e Py, T <x(s7t),5, —) N C(l) 75 Q.

2

By repeating this construction we obtain for every m € w, W,,, weak neighbour-
hood of x4y with Wy, C Wyo1 C Vieyy, C(m) = {yg", v1" -y, b C W1\
B(w(sy),e) and Vg™, Vi, ..., V" weak neighbourhoods of yg*, 41", ...,y , re-
spectively, all contained in W,,_1, pairwise disjoint with

VI" O B(x(s4),6) =0, 0<j < npp.
We put @(s~m,t~j) = ¥y Vis~mi~j) = V;" Vm € w,0 < j < np and
N(s,t):{(sAm,t/\j):mew, 0<j<nnm}

Doing M, = U{N(sy) : (s,t) € Mp_1, |s| = [t| = n — 1} U M,,_1, we finish the
induction on n € w.

Finally, it is easy to see that M = U,¢,M,, verifies the conditions i), ii)
and iii) of Lemma, and the proof is complete. [

Proof of Theorem 1. Let M, (2(s1))(s,enm and (Vis4))(s,yem be as
in Lemma 3.

We fix Ag, Aq,...,A,,... infinite, pairwise disjoint subsets of w and let
us define ¥ : 7 — 7T by

V() ={tews“:3se€b,|t| =|s| and t(i) € Ay, Vi < |s]}.

It is easy to see that ¥ is Borel.
Now, denoting

My = {(S,t) eEM:se ‘11(9)}, Y = {l‘(&t) : (S,t) S Mg}.

Y is closed by iii) of Lemma 3.
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Let us define
[T — F(X); f(0) =2

Let us see that f is Borel. If B is an open subset of By, then
{0 €T :3(s,t) € Mg with z(,4) € B} =
={0eT :3(s,t) € M with s € U(0), (54 € B} =
= U {0eT:scU@)}

{(S,t)GMZ:B(S’t)GB}
So, f is Borel.
Finally, it is sufficient to see that ¥y € PCP(X) if, and only if, § € WF,

. . 1 .
since WF is H —complete in 7.

If 6 V%fF, U(#) € WF. Let C be a closed subset of ¥y. Then, there is
(s,t) € M such that z(s ) € C and x(y ) ¢ C, for every (s',t') € M with 5" > s.

So, by Lemma 3, Vi, ;) N C = {z(,y} and diam (V{;4y N C) = 0. Then
Sy € PCP(X).

Conversely, let ¢ € 7\ WF. Then, there is o a branch of 6. Let us define

C= {x(&t) : 8(2) S Aa(i) Vi < |S|}

So, C is a closed subset of ¥y.

Let z(s4) € C and V be a weak neighbourhood of x(, ). For some p,d €
w, £ € Pg, we have I'(z(54), &, m+1) C V for any m > p.

If m € AU(M), then F(&t)(m) C C, thus I'(x (S7t),5, m+1) N F(S t)( m) is
nonempty (Lemma 3, i), VN C # @ and diam (V N C) > ¢ (Lemma 3, ii). Then
Y9 ¢ PCP(X) and the proof is complete. [

Corollary 4. If X is a Banach space failing PCP and with a separable

1
dual, then PCP(X) is H —complete.
~1

Proof. It is sufficient to prove that PCP(X) is H

Let W, O be countable bases of open subsets in B x for the weak and
norm topology, respectively. Given F' € F(X), it is known that F' ¢ PCP(X) if,
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and only if, there are D € F(X), D C F, and £ > 0 such that diam(W N D) > e,
for all W € W with WN D # @. So, FF ¢ PCP(X) if, and only if, there are
e>0and D € F(X) such that:

1. DCF

2. For every W € W there are 01,09 € 0O, such that
01,00 C W, 01ND # @, OoND # @ and |x2 — x1|| > € for any
T € 01, To € 02.

Then F(X)\ PCP(X) is analytic, since it is a projection of the following
Borel set:

U N U {FD)eFX)?:DCF 00nD#0, 0:nD#0}
eeQt WeWw (01,02)el

where [ is the following subset of O x O:
I = {(01,02) : 01,02 C W and HJL‘Q — l‘1H >eVry € 01,.1‘2 S 02}
So, PCP(X) is coanalytic. [

We don’t know if Theorem 1 is true, for the convex point of continu-
ity property (CPCP), the analogous property to PCP, by changing closed and
bounded subsets by closed, bounded and convex subsets. By the other hand, it
would be interesting to know if there is some separable Banach space X such
that PCP(X) is not coanalytic.

3. Ordinal index and PCP. Let X be a separable Banach space. We
denote by o(X) the oscillation rank of identity from (Bx,w) into (Bx,| ||) (the
ordinal index obtained by slicing Bx with weak open subsets). We recall the
definition of this rank. Let C' be a weak closed and bounded subset of X and
€ > 0. We denote

Cl.={z € C:diam(V NC) > eV V weak neighbourhood of z}.

By a transfinite induction, we define a decreasing transfinite sequence (C&)q<y,
by
C2=C and CX'=(CO),
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and, if « is a limit ordinal

Then
inf{a : (Bx)2 = 0} if it exists,
oe(X) = {

w1 if not

and o(X) = sup{o.(X) : € > 0}.

It is a classical result that o(X) < w; if X has PCP, and o(X) = w; if
not. Furthermore, if X and Y are isomorphic Banach spaces, then o(X) = o(Y).
Here, we prove the following

Theorem 5. Let X be a separable Banach space. Then
i) o(X) =sup{c(Y):Y C X subspace with a FDD}
ii) If X contains no isomorph of 1,

o(X) =sup{o(Y) :Y C X subspace with a basis}

iii) If X* is separable,

o(X) =sup{c(Y) : Y C X subspace with a shrinking basis}.

If X fails PCP, the theorem is known. Indeed, in this case, J. Bourgain
proved in [2] that, X contains a subspace with a FDD and without PCP, N.
Ghoussoub and B. Maurey proved in [6] that, if X contains no isomorph of I,
then X contains a subspace with a basis and without PCP, and the second author
proved in [10] that, if X is an Asplund space, then X contains a subspace with
a shrinking basis and without PCP. To prove the Theorem 5, we will use the
arguments of these authors to build for any o < o(X), with the help of a tree on
w whose height is a, a subspace Y with a FDD or a basis such that o(Y) > «,
following the way used by G. Lancien in [8].

First, we recall some results of [8] and [9]. The following family (75 )a<w, CT
is constructed inductively:

Ty = {0}
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Tot1 ={0}U Q n —~ T, wheren ~ Ty ={n ~s:seTy,}
ncw
T, ={0} U 0 n —~ T,, if « is a limit ordinal,
ncw

where (o, )new 1s an enumeration of {5 : § < a}.
It is not difficult to see that ht(T,) = «, and for any s € Ty, To(s) =
Tha(s)a where

To(s)={tew:s ~teT,} and hy(s) = ht(T,(s)).

We denote
T, ={s €Ty :3n€wwith s ~n € Ty}.

Lemma 6 ([8, Lemma 3.3|, [9, Lemme 2.6]). If1<a <wi, there is a
bijection ¢q : w — Ty, which satisfies:

i) Vs,s' € T, with s < s' one has that ¢,'(s) < ¢;%(s").

ii) Vs € T,, and ¥n,p € w with n < p one has that ¢ (s ~n) < ¢7' (s ~ p)

The following result is proved in the same way as Proposition 2 in [13] or
Proposition 5.4 in [8].

Lemma 7. Let X be a separable Banach space with PCP. Then, there
is o < wy such that o(X) = w®.

We will use the following lemma.

Lemma 8. LetY be a separable Banach space, and o < wq. Assume
that there is € > 0 and a family (Fs)ser, of nonempty subsets of By, such that
for any s € Tc;,m € Fs,n € w and for any £ C By~ with, at most, n+ 1 elements
one has

T <x,5, ﬁ) A (Fan\ Bz,2)) £ O

Then Fp C (By)%, thus o(Y) > a.
2
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Proof. If o = 0, it is clear. We make a transfinite induction. Let
0 < a < wi, and suppose that there is ¢ > 0 and (Fjs)ser, as in the hypotheses
of Lemma. Assume the Lemma true for any ordinal less than «.

If o = 8+ 1, then for any n € w, F(,,) C (By)g since 8 < a. Let x € Fy
and V a weak neighborhood of x. There exists m € w and £ C By~ with, at

most, m + 1 elements, such that I'(z, & C V. Then

7m+1)

(:c £ 1“) N (Fomy \ B(,€)) O,

VN (By){ # 0 and diam (V 0 (By)?) > =

Consequently, € (By)2™ and Fy C (By)¢.

If v is a limit ordinal, then Fipy C (By)oén for any n € w, where (o )new
is the enumeration of the ordinals less than « used to build 7.

Let z € Fiy, 3 < o and let V be a weak neighborhood of x. There exists
m € w and £ C By~, with, at most, m + 1 elements, such that I'(z, £ cV.

Let [ > m such that oy > 3. Then

’m+1)

1
r (l‘,g, l—i-—1> N F(l) # @, thus V N (By)%q # O,

and V' N (By) # (. Consequently = € (By) for any 0 < «, ¢ € (By)% and
2
Fg C (By)e. =

The proof of Theorem 5, i) is a slight modification of J. Bourgain’s proof
about the existence of a subspace with a FDD and without PCP, when X fails
PCP ([2]). It follows from the next Lemma.

We fix M > 0 and (0p)pew C R such that §g =0, 6, > 0, 7, = 25 <1,

p
1:[1(1 +64) < M, for any p € w* and we denote 1, = 1 + 7.

Lemma 9. Let X be a separable Banach space and o < o(X). Then
there exists € > 0 such that (Bx )2t # @ and there exists a sequence (Fy, (p))pew

of finite subsets of X such that, with A%(m ) F¢ cmd X, = span (A%(p)),
n<p

we have
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. ha «
i) F¢>a() (rpyBx )" (¢a(p))+

ii) For anyn € w,s € TO:,$ € Fs and £ C Bx+, with, at most n+ 1 elements,

we have
r<x,5,%+1> m( SM\B(az —)) £ 0.

ili) For any p € w, there exists a subspace Y, of X such that X, 11 = X, @Y,
and the associated projection from Xp,y1 onto X, has norm less than 14-6y,.

Proof. We denote B = Bx, h = hy and ¢ = ¢,. by Lemma 7, a + 1 <
o(X) thus there exists ¢ > 0 and z{ € B2+, We choose Fy) = {z}, and we
make an induction. Let p € w* and suppose Fy;) built for any i < p. As X, is
a finite dimensional subspace, there is some finite subset G C Bx~ such that for
every u € X,

ul| < (14 6,)sup{z*(u) : z* € G}.
We define s € Ty, ip € wand n € w by ¢(p+ 1) = s —~ n and ¢(ig) = s. Using

the Lemma 5.6 of [2] with 2y = min{§, n%rl, dp+1}, there exists 7 > 0 such that:
if z € X and |z*(z)| < 7 for any x* € G, then there is some z € X with

Izl <y and x*(z) = 2*(z) Vz* € G.

Let z € Fs and V, =T'(2,G, 7).

By hypothesis, = € (nOB)h(S)

thus

w

z € (ry B!\ Bla, ) .

Using Lemma 2, there is a finite subset C, of (r;,B )h(s) N V. such that
Cy N B(x,5) = O and I'(z, &, 2(n+1)) NC, # O for any & C By» with, at most,
n + 1 elements.

If y € Cy, then y € V, and |z*(x — y)| < 7 for any z* € G. Thus, there is
some z € X such that ||z]| < v and z*(2) = 2*(z — y) for any 2* € G. Denoting
y' =y + z, we have z*(z) = 2*(y) for any 2* € G and ||y — ¢/|| < . Let

Co=1{y :y € G}y Fyprn) = UserOr Agpin) = Apn) Y Fopin)
and X1 = span (Agp41))- Then iii) is satisfied as in the proof of Proposition
5.4 of [2], with Y, = span{z — ¢/ : z € F,,y' € C,}.
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By a transfinite induction, we obtain the following

Claim. Let 8 < wj and a > 0. Then
(aB)f +rB C ((a+ T)B)?.

Now, we have I'(z, &, %H)HC; # ) if € has, at most, n+1 elements. Furthermore

C. N B(x, 7) = © and, using the claim, r;, <7, and h(¢(p + 1)) < h(s).
Finally, we obtain

C C (rig B)E + B(0,6p41) C [(rp + p1) BIE® C (11 B)LOHHL

Consequently i) and ii) are satisfied, and the Lemma follows. O

Proof of Theorem 5.i). Let @ < o(X) and let (X,)pew be the

sequence of finite dimensional spaces built in Lemma 9, and Y = Q Xp. Then,
PEW
from Lemma 9, iii) it follows that Y has a FDD with constant less than [] (146,).
pPEW

By Lemma 8 and Lemma 9, it is not difficult to obtain that Fg C (2By ¥,
8

since r, < 2, thus (By)%™ #£ @, with € > 0 fixed by Lemma 9. Consequently,
16
oY) >a Aso(Y) <o(X)if Y is a subspace of X, i) of Theorem 5 follows. O

We have ii) and iii) of Theorem 5 as a consequence of the following.

Lemma 10. Let X be a separable Banach space which contains no
isomorph of Iy and let o < 0(X). Then there exists € > 0 such that (Bx )¢ # O
and there ezists (xs)ser, C Bx which satisfies:

i) Vs €T, x5 € (BX)?“(S).

€
i) Vnew, Vs €Ty, ||To—pn — zs]| > 3"

iii) Vs € Th, w—lim(zs—p — x5) = 0.
n

1) (T, (n) = Ta(n)—)new* 15 a basic sequence, (shrinking if, in addition, X* is
separable).
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Proof of Theorem 5,ii) and iii). For any a < o(X) there is
e > 0 and (z4)ser, asin Lemma 10. Let Y =Span{zs : s € T, }. By a transfinite
induction, we obtain the following

Claim. (See Lemme 2.8 of [9]). Let 8 < wi, € > 0 and Z be a separable
Banach space. Suppose that there exists a family (z;)se7,, C Bz which satisfies:

a) Vs € Ty, Vn € w, ||2e—n — 2| > €.
b) Vs € Té, w — lim(zg~, — 25) = 0.
n

Then zg € (Bz)E.
Thus (By)¢ # O and o(Y) > «a. By iv) of Lemma 10, Y has a basis
2
(shrinking basis if X™* is separable), and ii) and iii) of Theorem 5 follow. O

Proof of Lemma 10. We denote B = Bx, h = h, and ¢ = ¢,. By
Lemma 7, a+1 < o(X), hence there exists ¢ > 0 such that B4+ £ (3. We choose
Tgo) = Tg € B2t so Tg) € B = ng(o)). Since X contains no isomorph of
Iy and z4(0) € B2\ B(zg(0), %)w, there exists

9

(x(z‘))iew C B\ B(ﬂ%(O)a 5)

“+o00

such that w — limz? = Ty0)- Let ¢ > 0 and (¢;)iew C (0,1) such that [ (1 —
i i=2

c;)”1 < 1+ ¢. Following pages 301 and 302 of [6], it is not difficult to build, by

induction for any k € w, r4;) € B and (z¥)icw a sequence in B such that

a) zygy € BIOWDH
b) (28)icw € B\ Blagyy, 5) and w — limaf = 2y,

c) (Tg(i)~j)j=y is a subsequence of (2*)ic, where my € w and iy € w are

defined by ¢(k) = (i) —~ my.

d) If & > 1, with v; = m4) — T@)—, then [y + avy| > 1 — ¢ for any a € R
and any y € span {v; : ¢ < k} such that |ly|| = 1.

Then, by d), the sequence (v) is basic, and (zg))keo satisfies the re-
quired conditions.
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If X* is separable, by the Zippin theorem ([15]), X embeds in a Banach
space Z with a shrinking basis (z;);cn which can be supposed monotone. We
denote Hg the natural projection from Z onto span{z; : i < k < j} when i < j.
Let (2})iew be a dense sequence in X*. It is not difficult to build, by induction
for any k € w, zyz) € B£(¢(k)) and (Ng)rew a strictly increasing sequence in w

such that, when k > 1, denoting vy = Zgk) — ZTyr)— one has:

1
a) |z} (vg)| < oF whenever 0 <[ < k.

9

b) fonll > 5
&) (o)l > < and fox — TV Lu)]| < ~ = <
Nj_1 \Vk 4 k Ny \Uk S U9k

By c), the sequence (vi)ken+ is equivalent to a basic block of a shrink-
ing basis (see [11, Prop. 1.a.9]), thus (vg)rew is a shrinking basic sequence, and
(zs)ser, satisfies the required conditions. O
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