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THE POINT OF CONTINUITY PROPERTY:

DESCRIPTIVE COMPLEXITY AND ORDINAL INDEX

Benoit Bossard, Ginés López∗

Communicated by G. Godefroy

Abstract. Let X be a separable Banach space without the Point of
Continuity Property. When the set of closed subsets of its closed unit ball
is equipped with the standard Effros-Borel structure, the set of those which
have the Point of Continuity Property is non-Borel. We also prove that,
for any separable Banach space X , the oscillation rank of the identity on
X (an ordinal index which quantifies the Point of Continuity Property) is
determined by the subspaces of X with a finite-dimensional decomposition.
If X does not contain l1, subspaces with basis suffice. If X∗ is separable,
one can even restrict to subspaces with shrinking basis.

1. Notations and preliminaries. In this paper, after a first section

devoted to notations and preliminaries, we study in the second section the de-

scriptive complexity of the Point of Continuity Property (PCP). We refer the

reader to [7] and [14] for the foundations of the descriptive set theory. In a sep-

arable Banach space X without PCP, we equip the set F(X) of closed subsets
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of its closed unit ball BX , with the standard Effros-Borel structure. Then the

subset of F(X) consisting of elements which have PCP, is non-Borel. For related

results, see [1].

In the third section, we recall the definition of the oscillation rank of

the identity from (BX , w) to (BX , ‖ ‖), which is the ordinal index obtained by

slicing BX with weak open subsets (about slicing, see [4]). A separable Banach

space X has PCP if, and only if, this rank is a countable ordinal. We show that

this rank is the supremum of the ranks of its subspaces with a finite-dimensional

decomposition, or of its subspaces with a basis, if X contains no isomorph of

l1, or of its subspaces with a shrinking basis, if X∗ is separable. That specifies

some results proved by J. Bourgain [2], N. Ghoussoub and B. Maurey [6] and,

the second author [10]. (See also [8] and [9] for related results)

We begin by recalling some notations. In the sequel, we will denote by

ω = {0, 1, 2, . . .} the first infinite ordinal, by ω∗ the set ω \ {0}, by ω1 the first

uncountable ordinal and by ω<ω the set of all finite sequences in ω, including the

empty sequence. If s ∈ ω<ω, |s| will be its length, and we write

s = (s(0), s(1), s(2), . . . , s(|s| − 1)).

Concatenation is denoted ⌢, and if p ∈ ω, we will write (p) ⌢ s = p ⌢ s and

s ⌢ (p) = s ⌢ p. When s 6= Ø, s− is the sequence such that s = s− ⌢ p for

some p ∈ ω. We have a partial order in ω<ω defined by

s ≤ t if t = s or t = s ⌢ u for some u ∈ ω<ω.

A tree on ω is a subset θ ⊂ ω<ω such that t ∈ θ whenever s ∈ θ and t ≤ s. A

branch b of θ is an infinite sequence of elements in ω such that s ∈ θ whenever

s ∈ ω<ω and s(i) = b(i), ∀0 ≤ i ≤ |s| − 1.

Let T be the set of trees on ω. We recall that a tree θ ∈ T is said well

founded if it has no branch. We denote by WF the set of well founded trees.

We denote by ht(θ) the height of θ ∈ T , and we refer to [7] for the defin-

ition and for a complete information about the following notions and properties.

Let P a Polish space. A subset A of P is analytic if it is the Borel image

of a Borel subset of a Polish space, A is coanalytic (a
∏

∼

1

1

set) if P \A is analytic,

A is
∏

∼

1

1

−hard if for every Polish space Y and every
∏

∼

1

1

set Q in Y , there is a



The point of continuity property. . . 201

Borel map f : Y → P with Q = f−1(A), and A is
∏

∼

1

1

−complete if A is
∏

∼

1

1

and

∏

∼

1

1

−hard.

It is known that a
∏

∼

1

1

−hard subset is not analytic, thus non-Borel, and

WF is
∏

∼

1

1

−complete in the Polish space T equipped with the topology inherited

from 2ω<ω

.

Let X be a Banach space. If C is a nonempty subset of X, C is said to

have the Point of Continuity Property (PCP), if on every closed and bounded

subset of C the identity map has some point of weak to norm continuity. So, X

has PCP if, and only if, its closed unit ball, BX , has PCP. We denote by PCP (X)

the family of all closed subsets of BX with PCP. This property is, for example,

a very important property to study the relation between Radon-Nikodym and

Krein-Milman properties. For a complete information about PCP we refer to [2],

[5], and [12].

The closed ball with center x ∈ X and radius r > 0 is denoted by B(x, r).

When X is separable, F(X) is the set of closed subsets of BX equipped with the

Effros-Borel structure (see [3]), thus F(X) is a standard Borel space (i.e. whose

Borel structure is generated by a Polish topology). The Effros-Borel structure is

generated by the family

{{F ∈ F(X) : F ∩ O 6= Ø} : O is an open subset of BX}.

If A ⊂ X, span (A) denotes the vector space spanned by A, span (A) its

closure, and diam (A) = sup{‖x − y‖ : x, y ∈ A}. Given x ∈ X, E ⊂ X∗ and

ε > 0, we write

Γ(x, E , ε) = {y ∈ X : |x∗(x − y)| < ε ∀x∗ ∈ E}.

We refer to [11] for the definition of a finite-dimensional Schauder decomposition

(FDD). A basic sequence {xi}i∈ω in X is shrinking if

(span {xi : i ∈ ω})∗ = span {x∗
i : i ∈ ω},

where {x∗
i }i∈ω is the sequence of biorthogonal functionals of {xi}i∈ω.
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2. Descriptive complexity of PCP. In this section we show a new

application of the descriptive theory in Banach spaces. For this, we use the

theory of analytic sets, whose foundations are exposed in [7] and [14], to study

the descriptive complexity of the point of continuity property in Banach spaces.

Our main goal in this section is the following:

Theorem 1. Let X be a separable Banach space failing PCP. Then

PCP(X) is
∏

∼

1

1

−hard, thus non-Borel.

To prove this theorem we need the following lemmas and preliminaries:

Lemma 2 [2, Lemme 5.5]. Let X be a Banach space, A ⊂ X, x ∈ A
w
.

Then for every d ∈ ω and for every ε > 0 there is C ∈ PF (A) such that:

∀E ∈ Pd, Γ(x, E , ε) ∩ C 6= Ø,

where Pd denotes the set of finite subsets of BX∗ with d elements, at most, and

PF (A) is the set of finite subsets of A.

Now, we define Λ, a family of subsets in ω<ω × ω<ω by M ∈ Λ if:

1. (Ø,Ø) ∈ M.

2. If (s, t) ∈ M , then |s| = |t| and (s′, t′) ∈ M for any s′, t′ ∈ ω<ω such that

|s′| = |t′| and s′ < s, t′ < t.

3. ∀(s, t) ∈ M, ∀m ∈ ω ∃p ∈ ω∗ such that (s ⌢ m, t ⌢ i) ∈ M if, and only if,

i < p.

It is clear that, if M ∈ Λ, then for every s ∈ ω<ω there is t ∈ ω<ω such

that (s, t) ∈ M .

For every n ∈ ω, we define Λn, a new family of subsets of ω<ω × ω<ω by:

M ∈ Λn if

1. (Ø,Ø) ∈ M.

2. If (s, t) ∈ M , then |s| = |t| and (s′, t′) ∈ M for any s′, t′ ∈ ω<ω such that

|s′| = |t′| and s′ < s, t′ < t.
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3. ∀(s, t) ∈ M ′, ∀m ∈ ω ∃p ∈ ω :

(s ⌢ m, t ⌢ i) ∈ M if, and only if, i < p, where

M ′ = {(s, t) ∈ M : ∃(s′, t′) ∈ M with s < s′, t < t′}.

4. ∀s ∈ ω<ω such that |s| ≤ n, ∃t ∈ ω<ω : (s, t) ∈ M.

With these preliminaries we can prove the following.

Lemma 3. Let X be a Banach space failing PCP. Then there are

M ∈ Λ, (x(s,t))(s,t)∈M ⊂ BX , (V(s,t))(s,t)∈M weak open subsets, and ε > 0 such

that for every (s, t), (s′, t′) ∈ M we have:

i) ∀m ∈ ω, ∀E ∈ Pm+1, Γ(x(s,t), E , 1
m+1 ) ∩ F(s,t)(m) 6= Ø, where

F(s,t)(m) = {x(s⌢m,t⌢i) : (s ⌢ m, t ⌢ i) ∈ M}.

ii) ∀m ∈ ω, F(s,t)(m) ∩ B(x(s,t), ε) = Ø.

iii) x(s,t) ∈ V(s,t), V(s,t) ∩ B(x(s−,t−), ε) = Ø and, s′ < s, t′ < t implies V(s,t) ⊂

V(s′,t′). Furthermore, if s and s′ or t and t′ are incomparable, then V(s,t) ∩

V(s′,t′) = Ø.

P r o o f. Let A ⊂ BX and ε > 0 be such that every weak open subset of

A has diameter, at least, 2ε.

By induction in n ∈ ω, we construct Mn ∈ Λn, (x(s,t))(s,t)∈Mn
⊂ A

and (V(s,t))(s,t)∈Mn
weak open subsets, such that i) and ii) are satisfied for any

(s, t) ∈ M ′
n, and iii) is satisfied for any (s, t), (s′, t′) ∈ Mn.

We put M0 = {(Ø,Ø)}, V(Ø,Ø) = X and x(Ø,Ø) any element of A.

Let n > 0 and suppose the construction is made for 0 ≤ i ≤ n − 1.

Let (s, t) ∈ Mn−1 : |s| = |t| = n − 1. Then

x(s,t) ∈ V(s,t) \ B(x(s,t), ε)
w
,

by hypotheses on A. From Lemma 2, there is C(0) = {y0
0 , y

0
1, . . . , y

0
n0
},

C(0) ⊂ V(s,t) \ B(x(s,t), ε) such that

∀E ∈ P1, Γ(x(s,t), E , 1) ∩ C(0) 6= Ø.
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Then there are V 0
0 , V 0

1 , . . . , V 0
n0

weak neighbourhoods of y0
0, y

0
1 , . . . , y

0
n0

respec-

tively, and W0 weak neighbourhood of x(s,t), all contained in V(s,t), pairwise dis-

joint such that V 0
j ∩ B(x(s,t), ε) = Ø, 0 ≤ j ≤ n0.

Now, x(s,t) ∈ W0 \ B(x(s,t), ε)
w

and a new application of Lemma 2 says

us that there is C(1) = {y1
0, y

1
1 , . . . , y

1
n1
} ⊂ W0 \ B(x(s,t), ε) such that

∀E ∈ P2, Γ

(

x(s,t), E ,
1

2

)

∩ C(1) 6= Ø.

By repeating this construction we obtain for every m ∈ ω, Wm weak neighbour-

hood of x(s,t) with Wm ⊂ Wm−1 ⊂ V(s,t), C(m) = {ym
0 , ym

1 , . . . , ym
nm

} ⊂ Wm−1 \

B(x(s,t), ε) and V m
0 , V m

1 , . . . , V m
nm

weak neighbourhoods of ym
0 , ym

1 , . . . , ym
nm

, re-

spectively, all contained in Wm−1, pairwise disjoint with

V m
j ∩ B(x(s,t), ε) = Ø, 0 ≤ j ≤ nm.

We put x(s⌢m,t⌢j) = ym
j , V(s⌢m,t⌢j) = V m

j ∀m ∈ ω, 0 ≤ j ≤ nm and

N(s,t) = {(s ⌢ m, t ⌢ j) : m ∈ ω, 0 ≤ j ≤ nm}.

Doing Mn = ∪{N(s,t) : (s, t) ∈ Mn−1, |s| = |t| = n − 1} ∪ Mn−1, we finish the

induction on n ∈ ω.

Finally, it is easy to see that M = ∪n∈ωMn verifies the conditions i), ii)

and iii) of Lemma, and the proof is complete. �

P r o o f o f T h e o r em 1. Let M , (x(s,t))(s,t)∈M and (V(s,t))(s,t)∈M be as

in Lemma 3.

We fix ∆0,∆1, . . . ,∆n, . . . infinite, pairwise disjoint subsets of ω and let

us define Ψ : T → T by

Ψ(θ) = {t ∈ ω<ω : ∃s ∈ θ, |t| = |s| and t(i) ∈ ∆s(i), ∀i < |s|}.

It is easy to see that Ψ is Borel.

Now, denoting

Mθ = {(s, t) ∈ M : s ∈ Ψ(θ)}, Σθ = {x(s,t) : (s, t) ∈ Mθ}.

Σθ is closed by iii) of Lemma 3.



The point of continuity property. . . 205

Let us define

f : T −→ F(X); f(θ) = Σθ.

Let us see that f is Borel. If B is an open subset of BX , then

{θ ∈ T : ∃(s, t) ∈ Mθ with x(s,t) ∈ B} =

= {θ ∈ T : ∃(s, t) ∈ M with s ∈ Ψ(θ), x(s,t) ∈ B} =

=
⋃

{(s,t)∈M :x(s,t)∈B}

{θ ∈ T : s ∈ Ψ(θ)}.

So, f is Borel.

Finally, it is sufficient to see that Σθ ∈ PCP (X) if, and only if, θ ∈ WF ,

since WF is
∏

∼

1

1

−complete in T .

If θ ∈ WF, Ψ(θ) ∈ WF. Let C be a closed subset of Σθ. Then, there is

(s, t) ∈ M such that x(s,t) ∈ C and x(s′,t′) /∈ C, for every (s′, t′) ∈ M with s′ > s.

So, by Lemma 3, V(s,t) ∩ C = {x(s,t)} and diam (V(s,t) ∩ C) = 0. Then

Σθ ∈ PCP (X).

Conversely, let θ ∈ T \WF . Then, there is σ a branch of θ. Let us define

C = {x(s,t) : s(i) ∈ ∆σ(i) ∀i < |s|}.

So, C is a closed subset of Σθ.

Let x(s,t) ∈ C and V be a weak neighbourhood of x(s,t). For some p, d ∈

ω, E ∈ Pd, we have Γ(x(s,t), E , 1
m+1 ) ⊂ V for any m ≥ p.

If m ∈ ∆σ(|s|), then F(s,t)(m) ⊂ C, thus Γ(x(s,t), E , 1
m+1 ) ∩ F(s,t)(m) is

nonempty (Lemma 3, i), V ∩ C 6= Ø and diam (V ∩ C) > ε (Lemma 3, ii). Then

Σθ /∈ PCP (X) and the proof is complete. �

Corollary 4. If X is a Banach space failing PCP and with a separable

dual, then PCP(X) is
∏

∼

1

1

−complete.

P r o o f. It is sufficient to prove that PCP (X) is
∏

∼

1

1

.

Let W, O be countable bases of open subsets in BX for the weak and

norm topology, respectively. Given F ∈ F(X), it is known that F /∈ PCP (X) if,
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and only if, there are D ∈ F(X), D ⊂ F , and ε > 0 such that diam(W ∩D) > ε,

for all W ∈ W with W ∩ D 6= Ø. So, F /∈ PCP (X) if, and only if, there are

ε > 0 and D ∈ F(X) such that:

1. D ⊂ F

2. For every W ∈ W there are O1, O2 ∈ O, such that

O1, O2 ⊂ W , O1 ∩ D 6= Ø, O2 ∩ D 6= Ø and ‖x2 − x1‖ > ε for any

x1 ∈ O1, x2 ∈ O2.

Then F(X)\PCP (X) is analytic, since it is a projection of the following

Borel set:

⋃

ε∈Q+

⋂

W∈W

⋃

(O1,O2)∈I

{(F,D) ∈ F(X)2 : D ⊂ F, O1 ∩ D 6= Ø, O2 ∩ D 6= Ø}

where I is the following subset of O × O:

I = {(O1, O2) : O1, O2 ⊂ W and ‖x2 − x1‖ > ε ∀x1 ∈ O1, x2 ∈ O2}

So, PCP(X) is coanalytic. �

We don’t know if Theorem 1 is true, for the convex point of continu-

ity property (CPCP), the analogous property to PCP, by changing closed and

bounded subsets by closed, bounded and convex subsets. By the other hand, it

would be interesting to know if there is some separable Banach space X such

that PCP(X) is not coanalytic.

3. Ordinal index and PCP. Let X be a separable Banach space. We

denote by σ(X) the oscillation rank of identity from (BX , w) into (BX , ‖ ‖) (the

ordinal index obtained by slicing BX with weak open subsets). We recall the

definition of this rank. Let C be a weak closed and bounded subset of X and

ε > 0. We denote

C ′
ε = {x ∈ C : diam(V ∩ C) > ε ∀ V weak neighbourhood of x}.

By a transfinite induction, we define a decreasing transfinite sequence (Cα
ε )α<ω1

by

C0
ε = C and Cα+1

ε = (Cα
ε )

′

ε,
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and, if α is a limit ordinal

Cα
ε = ∩

β<α
Cβ

ε .

Then

σε(X) =

{

inf{α : (BX)αε = Ø} if it exists,

ω1 if not

and σ(X) = sup{σε(X) : ε > 0}.

It is a classical result that σ(X) < ω1 if X has PCP, and σ(X) = ω1 if

not. Furthermore, if X and Y are isomorphic Banach spaces, then σ(X) = σ(Y ).

Here, we prove the following

Theorem 5. Let X be a separable Banach space. Then

i) σ(X) = sup{σ(Y ) : Y ⊂ X subspace with a FDD}

ii) If X contains no isomorph of l1,

σ(X) = sup{σ(Y ) : Y ⊂ X subspace with a basis}

iii) If X∗ is separable,

σ(X) = sup{σ(Y ) : Y ⊂ X subspace with a shrinking basis}.

If X fails PCP, the theorem is known. Indeed, in this case, J. Bourgain

proved in [2] that, X contains a subspace with a FDD and without PCP, N.

Ghoussoub and B. Maurey proved in [6] that, if X contains no isomorph of l1,

then X contains a subspace with a basis and without PCP, and the second author

proved in [10] that, if X is an Asplund space, then X contains a subspace with

a shrinking basis and without PCP. To prove the Theorem 5, we will use the

arguments of these authors to build for any α < σ(X), with the help of a tree on

ω whose height is α, a subspace Y with a FDD or a basis such that σ(Y ) ≥ α,

following the way used by G. Lancien in [8].

First, we recall some results of [8] and [9]. The following family (Tα)α<ω1⊂T

is constructed inductively:

T0 = {Ø}
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Tα+1 = {Ø} ∪ ∩
n∈ω

n ⌢ Tα where n ⌢ Tα = {n ⌢ s : s ∈ Tα}

Tα = {Ø} ∪ ∩
n∈ω

n ⌢ Tαn if α is a limit ordinal,

where (αn)n∈ω is an enumeration of {β : β < α}.

It is not difficult to see that ht(Tα) = α, and for any s ∈ Tα, Tα(s) =

Thα(s), where

Tα(s) = {t ∈ ω<ω : s ⌢ t ∈ Tα} and hα(s) = ht(Tα(s)).

We denote

T
′

α = {s ∈ Tα : ∃n ∈ ω with s ⌢ n ∈ Tα}.

Lemma 6 ([8, Lemma 3.3], [9, Lemme 2.6]). If 1 ≤ α < ω1, there is a

bijection φα : ω −→ Tα which satisfies:

i) ∀s, s′ ∈ Tα with s < s′ one has that φ−1
α (s) < φ−1

α (s′).

ii) ∀s ∈ T
′

α and ∀n, p ∈ ω with n < p one has that φ−1
α (s ⌢ n) < φ−1

α (s ⌢ p)

The following result is proved in the same way as Proposition 2 in [13] or

Proposition 5.4 in [8].

Lemma 7. Let X be a separable Banach space with PCP. Then, there

is α < ω1 such that σ(X) = ωα.

We will use the following lemma.

Lemma 8. Let Y be a separable Banach space, and α < ω1. Assume

that there is ε > 0 and a family (Fs)s∈Tα of nonempty subsets of BY , such that

for any s ∈ T
′

α, x ∈ Fs, n ∈ ω and for any E ⊂ BY ∗ with, at most, n + 1 elements

one has

Γ

(

x, E ,
1

n + 1

)

∩ (Fs⌢n \ B(x, ε)) 6= Ø.

Then FØ ⊂ (BY )αε
2
, thus σ(Y ) ≥ α.



The point of continuity property. . . 209

P r o o f. If α = 0, it is clear. We make a transfinite induction. Let

0 < α < ω1, and suppose that there is ε > 0 and (Fs)s∈Tα as in the hypotheses

of Lemma. Assume the Lemma true for any ordinal less than α.

If α = β + 1, then for any n ∈ ω, F(n) ⊂ (BY )βε
2

since β < α. Let x ∈ FØ

and V a weak neighborhood of x. There exists m ∈ ω and E ⊂ BY ∗ with, at

most, m + 1 elements, such that Γ(x, E , 1
m+1) ⊂ V . Then

Γ

(

x, E ,
1

m + 1

)

∩ (F(m) \ B(x, ε)) 6= Ø,

V ∩ (BY )βε
2
6= Ø and diam (V ∩ (BY )βε

2
) >

ε

2
.

Consequently, x ∈ (BY )β+1
ε
2

and FØ ⊂ (BY )αε
2
.

If α is a limit ordinal, then F(n) ⊂ (BY )αn
ε
2

for any n ∈ ω, where (αn)n∈ω

is the enumeration of the ordinals less than α used to build Tα.

Let x ∈ FØ, β < α and let V be a weak neighborhood of x. There exists

m ∈ ω and E ⊂ BY ∗ , with, at most, m +1 elements, such that Γ(x, E , 1
m+1) ⊂ V .

Let l ≥ m such that αl ≥ β. Then

Γ

(

x, E ,
1

l + 1

)

∩ F(l) 6= Ø, thus V ∩ (BY )αl
ε
2
6= Ø,

and V ∩ (BY )βε
2
6= Ø. Consequently x ∈ (BY )βε

2
for any β < α, x ∈ (BY )αε

2
and

FØ ⊂ (BY )αε
2
. �

The proof of Theorem 5, i) is a slight modification of J. Bourgain’s proof

about the existence of a subspace with a FDD and without PCP, when X fails

PCP ([2]). It follows from the next Lemma.

We fix M > 0 and (δp)p∈ω ⊂ R such that δ0 = 0, δp > 0, τp =
p
∑

q=1
δq < 1,

p
∏

q=1
(1 + δq) < M , for any p ∈ ω∗ and we denote rp = 1 + τp.

Lemma 9. Let X be a separable Banach space and α < σ(X). Then

there exists ε > 0 such that (BX)α+1
ε 6= Ø and there exists a sequence (Fφα(p))p∈ω

of finite subsets of X such that, with Aφα(p)
= ∩

n≤p
Fφα(n)

and Xp = span (Aφα(p)
),

we have



210 Benoit Bossard, Ginés López

i) Fφα(p)
⊂ (rpBX)

hα(φα(p))+1
ε .

ii) For any n ∈ ω, s ∈ T
′

α, x ∈ Fs and E ⊂ BX∗, with, at most n + 1 elements,

we have

Γ

(

x, E ,
1

n + 1

)

∩
(

Fs⌢n \ B
(

x,
ε

4

))

6= Ø.

iii) For any p ∈ ω, there exists a subspace Yp of X such that Xp+1 = Xp ⊕ Yp

and the associated projection from Xp+1 onto Xp has norm less than 1+δp.

P r o o f. We denote B = BX , h = hα and φ = φα. by Lemma 7, α + 1 <

σ(X) thus there exists ε > 0 and x0
0 ∈ Bα+1

ε . We choose Fφ(0) = {x0
0}, and we

make an induction. Let p ∈ ω∗ and suppose Fφ(i) built for any i ≤ p. As Xp is

a finite dimensional subspace, there is some finite subset G ⊂ BX∗ such that for

every u ∈ Xp

‖u‖ ≤ (1 + δp) sup{x∗(u) : x∗ ∈ G}.

We define s ∈ Tα, i0 ∈ ω and n ∈ ω by φ(p + 1) = s ⌢ n and φ(i0) = s. Using

the Lemma 5.6 of [2] with 2γ = min{ ε
2 , 1

n+1 , δp+1}, there exists τ > 0 such that:

if x ∈ X and |x∗(x)| < τ for any x∗ ∈ G, then there is some z ∈ X with

‖z‖ < γ and x∗(z) = x∗(x) ∀x∗ ∈ G.

Let x ∈ Fs and Vx = Γ(x,G, τ).

By hypothesis, x ∈ (ri0B)
h(s)+1
ε , thus

x ∈ (ri0B)
h(s)
ε \ B(x,

ε

2
)
w

.

Using Lemma 2, there is a finite subset Cx of (ri0B)
h(s)
ε ∩ Vx such that

Cx ∩ B(x, ε
2) = Ø and Γ(x, E , 1

2(n+1) ) ∩ Cx 6= Ø for any E ⊂ BX∗ with, at most,

n + 1 elements.

If y ∈ Cx, then y ∈ Vx and |x∗(x − y)| < τ for any x∗ ∈ G. Thus, there is

some z ∈ X such that ‖z‖ < γ and x∗(z) = x∗(x − y) for any x∗ ∈ G. Denoting

y′ = y + z, we have x∗(x) = x∗(y′) for any x∗ ∈ G and ‖y − y′‖ < γ. Let

C
′

x = {y′ : y ∈ Cx}, Fφ(p+1) = ∪x∈FsC
′

x, Aφ(p+1) = Aφ(p) ∪ Fφ(p+1)

and Xp+1 = span (Aφ(p+1)). Then iii) is satisfied as in the proof of Proposition

5.4 of [2], with Yp = span {x − y′ : x ∈ Fs, y
′ ∈ C

′

x}.
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By a transfinite induction, we obtain the following

Claim. Let β < ω1 and a > 0. Then

(aB)βε + rB ⊂ ((a + r)B)βε .

Now, we have Γ(x, E , 1
n+1)∩C

′

x 6= Ø if E has, at most, n+1 elements. Furthermore

C
′

x ∩ B(x, ε
4 ) = Ø and, using the claim, ri0 ≤ rp and h(φ(p + 1)) < h(s).

Finally, we obtain

C
′

x ⊂ (ri0B)h(s)
ε + B(0, δp+1) ⊂ [(rp + δp+1)B]h(s)

ε ⊂ (rp+1B)h(φ(p+1))+1
ε .

Consequently i) and ii) are satisfied, and the Lemma follows. �

P r o o f o f Th e o r e m 5. i). Let α < σ(X) and let (Xp)p∈ω be the

sequence of finite dimensional spaces built in Lemma 9, and Y = ∩
p∈ω

Xp. Then,

from Lemma 9, iii) it follows that Y has a FDD with constant less than
∏

p∈ω

(1+δp).

By Lemma 8 and Lemma 9, it is not difficult to obtain that FØ ⊂ (2BY )α+1
ε
8

,

since rp < 2, thus (BY )α+1
ε
16

6= Ø, with ε > 0 fixed by Lemma 9. Consequently,

σ(Y ) > α. As σ(Y ) ≤ σ(X) if Y is a subspace of X, i) of Theorem 5 follows. �

We have ii) and iii) of Theorem 5 as a consequence of the following.

Lemma 10. Let X be a separable Banach space which contains no

isomorph of l1 and let α < σ(X). Then there exists ε > 0 such that (BX)αε 6= Ø

and there exists (xs)s∈Tα ⊂ BX which satisfies:

i) ∀s ∈ Tα, xs ∈ (BX)
hα(s)
ε .

ii) ∀n ∈ ω, ∀s ∈ T
′

α, ‖xs⌢n − xs‖ >
ε

2
.

iii) ∀s ∈ T
′

α, w − lim
n

(xs⌢n − xs) = 0.

iv) (xφα(n) − xφα(n)−)n∈ω∗ is a basic sequence, (shrinking if, in addition, X∗ is

separable).
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P r o o f o f T h e o r em 5, i i) a n d i i i). For any α < σ(X) there is

ε > 0 and (xs)s∈Tα as in Lemma 10. Let Y = span {xs : s ∈ Tα}. By a transfinite

induction, we obtain the following

Claim. (See Lemme 2.8 of [9]). Let β < ω1, ε > 0 and Z be a separable

Banach space. Suppose that there exists a family (zs)s∈Tα ⊂ BZ which satisfies:

a) ∀s ∈ T
′

β, ∀n ∈ ω, ‖zs⌢n − zs‖ > ε.

b) ∀s ∈ T
′

β, w − lim
n

(zs⌢n − zs) = 0.

Then zØ ∈ (BZ)βε .

Thus (BY )αε
2
6= Ø and σ(Y ) ≥ α. By iv) of Lemma 10, Y has a basis

(shrinking basis if X∗ is separable), and ii) and iii) of Theorem 5 follow. �

P r o o f o f L em m a 10. We denote B = BX , h = hα and φ = φα. By

Lemma 7, α+1 < σ(X), hence there exists ε > 0 such that Bα+1
ε 6= Ø. We choose

xφ(0) = xØ ∈ Bα+1
ε , so xφ(0) ∈ Bα

ε = B
h(φ(0))
ε . Since X contains no isomorph of

l1 and xφ(0) ∈ Bα
ε \ B(xφ(0),

ε
2)

w
, there exists

(x0
i )i∈ω ⊂ Bα

ε \ B(xφ(0),
ε

2
)

such that w − lim
i

x0
i = xφ(0). Let c > 0 and (ci)i∈ω ⊂ (0, 1) such that

+∞
∏

i=2
(1 −

ci)
−1 < 1 + c. Following pages 301 and 302 of [6], it is not difficult to build, by

induction for any k ∈ ω, xφ(k) ∈ B and (xk
i )i∈ω a sequence in B such that

a) xφ(k) ∈ B
h(φ(k))+1
ε .

b) (xk
i )i∈ω ⊂ B

h(φ(k))
ε \ B(xφ(k),

ε
2) and w − lim

i
xk

i = xφ(k).

c) (xφ(ik)⌢j)
mk

j=0 is a subsequence of (xik
i )i∈ω where mk ∈ ω and ik ∈ ω are

defined by φ(k) = φ(ik) ⌢ mk.

d) If k > 1, with vi = xφ(i) − xφ(i)−, then ‖y + avk‖ ≥ 1 − ck for any a ∈ R

and any y ∈ span {vi : i < k} such that ‖y‖ = 1.

Then, by d), the sequence (vk) is basic, and (xφ(k))k∈ω satisfies the re-

quired conditions.
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If X∗ is separable, by the Zippin theorem ([15]), X embeds in a Banach

space Z with a shrinking basis (zi)i∈ω which can be supposed monotone. We

denote Πj
i the natural projection from Z onto span {zk : i ≤ k ≤ j} when i ≤ j.

Let (x∗
l )l∈ω be a dense sequence in X∗. It is not difficult to build, by induction

for any k ∈ ω, xφ(k) ∈ B
h(φ(k))
ε and (Nk)k∈ω a strictly increasing sequence in ω

such that, when k ≥ 1, denoting vk = xφ(k) − xφ(k)− one has:

a) |x∗
l (vk)| <

1

2k
whenever 0 ≤ l ≤ k.

b) ‖vk‖ >
ε

2

c) ‖ΠNk−1
Nk−1

(vk)‖ >
ε

4
and ‖vk − ΠNk−1

Nk−1
(vk)‖ ≤

1

4

1

2k

ε

4
.

By c), the sequence (vk)k∈ω∗ is equivalent to a basic block of a shrink-

ing basis (see [11, Prop. 1.a.9]), thus (vk)k∈ω is a shrinking basic sequence, and

(xs)s∈Tα satisfies the required conditions. �
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[2] J. Bourgain. La proprieté de Radon-Nikodym. Publications Mathémati-
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Departamento de Análisis Matemático
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