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ON THE BRILL–NOETHER THEORY OF SPANNED

VECTOR BUNDLES ON SMOOTH CURVES

E. Ballico

Communicated by V. Kanev

Abstract. Here we study the integers (d, g, r) such that on a smooth
projective curve of genus g there exists a rank r stable vector bundle with
degree d and spanned by its global sections.

Introduction. Let X be a smooth projective curve of genus g ≥ 2. The
first step of the usual Brill–Noether theory for rank r stable vector bundles on X
is the description of the possible pairs (deg(E), h0(X,E)) with E rank r stable
vector bundle. The first aim of this paper is to show that if r ≥ 2 there is a
huge difference (even for curves with general moduli) between this Brill–Noether
theory and the Brill–Noether theory of stable and spanned vector bundles. The
second aim of this paper is to show that a natural filtration introduced in [3] and
used heavily in [6] to obtain Clifford’s type theorems for rank r vector bundles,
2 ≤ r ≤ 5, is quite relevant to our problem: the possible pairs (deg(E), h0(X,E))
depend on this filtration even for a curve with general moduli and the geometry
of the corresponding map to the Grassmannian G(r, v), v = h0(X,E), depends
on this filtration (see Definition 1.2). A key point is a construction of spanned
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bundles which we make in Section 1. In Section 2 we consider the case in which
X is a k-gonal curve. We stress the main difference between the results of this
section and [4, Th. 4.2]. In [4] we proved the existence of a rank r generically
spanned vector bundle E with many sections and with a certain degree. This
result is obviously significant for the Brill–Noether theory of stable vector bundles.
Furthermore, by the construction of such bundle given in the proof of Th. 4.2 [4],
such bundle is generically spanned and completely weakly filtrable in the sense of
[4] and [6] (see Definition 1.2). However, the subsheaf of such bundle E spanned
by H0(X,E) is isomorphic to a direct sum of line bundles (usually (L⊗t)⊕r or
(L⊗t)⊕a ⊕ (L⊗(t+1))⊕(r−a))) and in particular it is not stable. We will see that
this restriction on the examples we found in [4, proof of Th. 4.2], is not due
to the proof given in [4], but to the nature of the problem (see Proposition 2.4
and Remark 2.5). In Section 3 we consider stable weakly filtrable (in the sense
of Definition 1.2) rank 2 spanned vector bundles, while in Section 4 we consider
2-generic (see Definition 1.3) rank 2 stable vector bundles on curves with general
moduli (see Theorem 4.1) or on the general curve with gonality t, where t is any
fixed integer at least 7 (see Proposition 4.5). We believe that the range covered by
Theorem 4.1 (i.e. the case rank(E) = 2, h0(X,E) = 4) is the only case in which
asymptotically there is no difference for the degrees of stable weakly filtrable and
non weakly filtrable spanned vector bundles (see Remark 4.4), but we do not
know how to prove this feeling.

1. A general construction. In this paper we will not distinguish be-
tween vector bundles and locally free sheaves. We work over an algebraically
closed base field K. In this section we make no restriction on char(K). In this
section we will make the following construction of spanned vector bundles on a
smooth projective curve X.

Construction 1.1. We fix a vector bundle A on X and a rank t vector
bundle M on X which is spanned by its global sections. We fix an integer x with
t + 1 ≤ x ≤ h0(X,M). We are looking for exact sequences on X:

(1) 0 → A → E → M → 0

with h0(X,E) = h0(X,A)+x and such that the image of H0(X,E) into H0(X,M)
is a x-dimensional subspace of H0(X,M) spanning M . Notice that if A is
spanned, then any such E is spanned. Here we will construct ALL such bun-
dles E. Fix a linear subspace W ⊆ H0(X,M) with dim(W ) = x and W
spanning M ; if one is interested in generically spanned bundles, one has just
to assume A and M generically spanned, take W such that the subsheaf M ′ of
M spanned by W has rank t and then consider M ′ instead of M in the con-
struction below. We want to find ALL exact sequences (1) such that the image



Stable and spanned bundles 117

of the map H0(X,E) → H0(X,M) contains W . In particular we will obtain
h0(X,E) = h0(X,A) + x. Consider the Euler’s sequence on the Grassmannnian
G(t, x) seen as Grassmannian of t-dimensional quotient spaces of W :

(2) 0 → S → W ⊗ OG(t,x) → Q → 0.

Since W spans M , the universal property of the Grassmannian G(t, x) gives a
morphism f : X → G(t, x) such that M ∼= f∗(Q). Set U := f∗(S). Hence U is a
vector bundle with rank(U) = x − t, deg(U) = − deg(M) and U∗ is spanned by
W ∗. Thus if M has no trivial factor, we have h0(X,U) ≥ x. The case x = t+1 is
very nice because in this case we have U∗ ∼= det(M). Fix j ∈ H0(X,Hom(U,A)).
The map j induces a map u(j) : U → A ⊕ OX

⊕x. Recall that a subsheaf T ′ of
a locally free sheaf T on X is said to be saturated in T/T ′ has no torsion, i.e. if
either T ′ = T or T/T ′ is locally free. Since W spans M , U is a saturated subsheaf
of W ⊗OX and u(j)(U) is saturated in A⊕OX

⊕x. Hence Coker(u(j)) is a vector
bundle. Set E := Coker(u(j)). We have rank(E) = rank(A) + rank(M). By
construction E has A as a saturated subbundle. By construction E fits in an
exact sequence (1). By construction the x chosen spanning sections of M are
lifted to E. Now we check that this construction gives all such bundles. Take E
fitting in (1) with h0(X,E) = h0(X,A) + x. Hence the image, W , of H0(X,E)
into H0(X,M) has rank x; if E is spanned, then W spans M and E is a quotient
of A ⊕ W with U as kernel, i.e. we have an exact sequence

(3) 0 → U → A ⊕ W → E → 0

in which the map U → W is induced by (2), while the map U → A obtained
from (3) is our map j. Notice that (1) splits if and only if j = 0.

For reader’s sake we repeat the following definitions introduced in [1] and
[3] and used heavily in [6].

Definition 1.2. Let E be a rank r generically spanned vector bundle
on X. We will say that E is completely weakly filtrable if there is an increasing
filtration {Ei}0≤i≤r of E with E0 = {0}, Er = E, Ei saturated subbundle of E
with rank(E) = i and h0(X,Ei/Ei−1) ≥ 2 for every i ≤ r.

Definition 1.3. Let E be a rank r generically spanned vector bundle on
X and V ⊆ H0(X,E). We will say that the pair (E,V ) is r-generic if for every
subsheaf F of E with rank(F ) < r we have dim(V ∩ H0(X,F )) ≤ rank(F ). We
will say that E is r-generic if the pair (E,H0(X,E)) is r-generic.

Remark 1.4. Let X be a smooth projective curve, E a rank r vector
bundle on X and V ⊆ H0(X,E) a linear subspace spanning E. Set v := dim(V ).
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See the Grassmannian G(r, v) as embedded in P(Λr(V ∗)) by the Plücker embed-
ding. Let hV,E : X → G(r, v) be the morphism associated to the pair (E,V ) by
the universal property of the rank r quotient bundle of G(r, v). The definition of
r-genericity implies that the pair (E,V ) is r-generic if and only if hV,E(X) is not
contained in a certain Schubert cycle of G(r, v). In particular if hV,E(X) spans

P(Λr(V ∗)), then the pair (E,V ) is r-generic. If r = 2 and v = 4 the spanned
pair (E,V ) is 2-generic if and only if hV,E(X) is not contained in a hyperplane,
H, of P5 tangent to the quadric hypersurface G(2, 4) ⊂ P5.

Remark 1.5. Fix integers r, v with v > r ≥ 1 and a smooth curve
X of genus g. Then there are many rank r spanned vector bundles, E, on X
with h0(X,E) ≥ v and such that there is a linear space V ⊆ H0(X,E) with
dim(V ) = v, V spanning E and such that the pair (E,V ) is r-generic. Indeed it
is very easy to construct spanned pairs (E,V ) such that the associated morphism
hE,V : X → G(r, v) ⊆ P(Λr(V ∗)) is an embedding and hV,E(X) spans P(Λr(V ∗)).
By Remark 1.4 the pair (E,V ) is r-generic. The non-trivial problem is to control
the pair of integers (deg(E), h0(X,E)) and to show if (or when) E may have some
stability property.

2. k-gonal curves. In this section we fix integers g, k,m with k ≥ 2,
m ≥ 2, g ≥ 2km. We fix a smooth k-gonal curve X such that there is L ∈ Pick(X)
with h0(X,L) = 2 such that h0(X,L⊗t) = t+1 for every integer t with 1 ≤ t ≤ m
and such that every base point free complete gx

d with d ≤ km is associated to L⊗t

for some integer t (and hence d = kt and x = t). If m is very small with respect
to g/k, this is the case for a general k-gonal curve (see [7, Prop. 4.2], for the
best possible result when k = 4 or 5). Call e the maximal integer t > 0 such that
h0(X,L⊗t) = t+1. We always have e ≤ [(g−1)/(k−1)] and e = [(g−1)/(k−1)]
if X is a general k-gonal curve (see [2] or, in characteristic 0, see [7, Prop. 1.1], for
a much stronger statement). Call hL : X → P1 the degree k morphism induced
by L. In this section we make no restriction on char(K).

Remark 2.1. Fix an integer r ≥ 2 and a spanned weakly filtrable
rank r vector bundle E on X. Let {E}0≤i≤r be the corresponding filtration with
Ei/Ei−1 ∈ Pic(X) for 1 ≤ i ≤ r and h0(X,Ei/Ei−1) ≥ 2 for 1 ≤ i ≤ r. It is
obvious that deg(E) =

∑

1≤i≤r
deg(Ei/Ei−1) ≥ rk. Now assume E stable. We have

deg(E) ≥ (r + 1)k because Ei/Ei−1 cannot have degree k for every integer i and
hence there is an integer j with deg(Ej/Ej−1) ≥ 2k. Furthermore, if deg(E) =
(r + 1)k, then Ei/Ei−1

∼= L except for one index, say j, and Ej/Ej−1
∼= L⊗2; by

the stability of E we have j > r/2.
Remark 2.2. Fix an integer r ≥ 2 and an integer v < m. Among

the extensions of L⊗v by L⊕(r−1) there are the following ones which we call
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“coming trivially from the pencil”. Consider all vector bundles, F , on P1 which
are extensions of the degree v line bundle by the direct sum of r − 1 line bundles
of degree 1. Let a1 ≥ · · · ≥ ar be the splitting type of F . It is known that
every sequence (a1, . . . , ar) with a1 ≥ · · · ≥ ar and

∑

1≤i≤r
ai = v + r − 1 is

the splitting type of at least one such extension. Every bundle h∗
L(F ) is the

direct sum of r line bundles each of them isomorphic to suitable powers of L
and we will say that the extension giving h∗

L(F ) comes from the pencil. No
bundle coming from the pencil is stable and there is a semistable bundle coming
from the pencil if and only if r divides v + r − 1, i.e. if and only if kr divides
the degree of the bundles we are interested in. If this condition is satisfied, by
the openness of stability we may at least say that the general extension of L⊗v

by L⊕(r−1) is semistable. To prove the stability of the general extension, E,
of L⊗v by L⊕(r−1) making numerical computations, this is an extremely useful
information because allows one to work by contradiction assuming the existence
of a proper subbundle, T , of E with µ(T ) = µ(E), i.e. with a prescribed slope.
If this condition is not satisfied one can apply this remark for different degrees
d divisible by k looking at extensions, say, of L⊗v by A := L⊕a ⊕ (L⊗2)⊕(r−1−a)

with 0 ≤ a < r and 2r − 2 − a + v divisible by r. And many other alternatives
are possible taking a different bundle A. All the extensions which come from the
pencils are spanned. Hence by the openness of semistability we may apply the
same remark to our search of extensions with spanned middle term, E. More
precisely, we may fix an integer y with 2 ≤ y ≤ v + 1 and use the Construction
1.1 using a spanning vector space V ⊆ H0(X,L⊗v) with dim(V ) = y and obtain
E with h0(X,E) ≥ h0(X,L⊕(r−1)) + y = 2r − 2 + y.

Remark 2.3. The method of Remark 2.2 may give non-existence results
for stable spanned weakly filtrable bundles with certain numerical invariants for
the following reason. Since on P1 there is no stable bundle of rank r ≥ 2, it is
sufficient to show that every such spanned weakly filtrable bundle is the pull-back
by hL of a bundle on P1. Suppose that we are looking only at rank r bundles given
by extensions of L⊗v by a rank r − 1 bundle A coming from P1, say A = h∗

L(B).
The essential point is that the construction 1.1 gives ALL such bundles. Fix an
integer y with 2 ≤ y ≤ v + 1 and a vector space V ⊆ H0(X,L⊗v) spanning L⊗v.
Since h0(P1,O

P
1(v)) = v + 1, there is a vector space W ⊆ H0(P1,O

P
1(v)) with

dim(W ) = y and h∗
L(W ) = V . We apply the Construction 1.1 on P1 to B and

W and on X to A and V ; call TΠ(−1) and TΠ′(−1) the corresponding universal
quotient rank y − 1 vector bundles on Π := P(W ) and Π′ := P(V ). Since (A,V )
comes from (B,W ), we have TΠ′(−1) ∼= h∗

L(TΠ(−1)). Let a1 ≥ · · · ≥ ay−1 be
the splitting type of TΠ(−1). Since ΩΠ(2) is spanned by its global sections, we
have a1 ≤ v. Hence if h0(X,A ⊗ L⊗v) = h0(P1, B(v)), every such spanned E
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with h0(X,E) = h0(X,A) + y comes from P1.
Applying Remarks 2.2 and 2.3 and the definition of e to the bundle A :=

L⊕a ⊕ (L⊗2)⊕(r−1−a) considered in Remark 2.2 we obtain the following result.

Proposition 2.4. Fix integers r, a and v with r ≥ 2, v ≥ 2, 0 ≤ a < r
and v + 1 + min{1, r − 1 − a} ≤ e. Then every spanned extension of L⊗v by
L⊕a⊕(L⊗2)⊕(r−1−a) is the direct sum of line bundles isomorphic to tensor powers
of L. In particular no such bundle is stable. There is a semistable bundle of that
type if and only if 2r − 2 − a + v is divisible by r.

Remark 2.5. In the range of ranks and degrees covered by Proposition
2.4 (and for many more degrees not divisible by k) there exist stable generically
spanned weakly filtrable bundles [4, Th. 4.2]. In every example, E, constructed
in the proof of [4], Th. 4.2, the subsheaf of E generated by H0(X,E) is the direct
sum of r line bundles coming from P1. Proposition 2.4 shows that this is not
due to the proof but to the nature of the problem. If v + r ≤ m we obtain a
range in which there is no other way to obtain spanned weakly filtrable bundles.
Hence in this range there is no such stable weakly filtrable spanned bundle. For
non-weakly filtrable stable rank 2 bundles, see Proposition 4.5.

3. Rank 2 weakly filtrable bundles. Here we apply the Construction
1.1 to the case rank(A) = rank(M) = 1 and x = 2. Hence U ∼= M∗. We will
always assume A spanned. Hence any such E is spanned and we have rank(E) =
2, deg(E) = deg(A) + deg(M) and h0(X,E) ≥ h0(X,A) + 2. Furthermore,
h0(X,E) = h0(X,A) + 2 if h0(X,M) = 2. In this section we do not make any
restriction on char(K). We fix an integer g ≥ 2. Let ρ(g, x, d) := g − (x + 1)(g +
x − d) be the Brill–Noether number. For every integer s ≥ 1 let d{s} be the
minimal integer d with ρ(g, s, d) ≥ 0, i.e. with g − (s + 1)(g + s − d) ≥ 0. In
particular we have d{1} := [(g + 3)/2] and d{2} = 2 + [(2g + 2)/3].

(3.1) Here we discuss the stability of a rank 2 vector bundle E fitting in
an extension (1) and given by the Construction 1.1. If deg(A) > deg(M), then
E is always unstable. If deg(A) = deg(M), then E is always semistable but not
stable. If deg(M) > deg(A) we will see in 3.4 and 3.6 a few cases in which E is
stable. Only the case deg(M) = deg(A) + 1 is trivial by the following obvious
remark.

Remark 3.2. Assume rank(A) = rank(M) = 1 and deg(M) = deg(A)+
1. A bundle E fitting in an exact sequence (1) is stable if and only if the extension
(1) is not the splitted extension.

Definition 3.3. Let X be a smooth projective curve. For every integer
t ≥ 2 let X[{t}] be the first integer x such that there exists L ∈ Picx(X) with
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h0(X,L) ≥ t.
If X has general moduli we have X[{t}] = d{t−1} for every integer t ≥ 2.

Proposition 3.4. Let E be a rank 2 vector bundle on X fitting in a non-
splitted exact sequence (1) with A and M spanned, h0(X,M) = 2 and h0(X,E) =
h0(X,A) + 2 ≥ 4. Assume deg(A) < deg(M) < X[{h0(X,A) + 2}] and deg(A) +
deg(M) < 2(X[{h0(X,A) + 1}]). Then E is stable. Assume also deg(M) <
X[{h0(X,A) + 1}]; then A is the unique rank 1 subsheaf of E with maximal
degree.

P r o o f. By assumption we have h0(X,E) = h0(X,A) + h0(X,M) and E
is spanned. Let D be a maximal degree rank 1 subsheaf of E. Since deg(D) is
maximal, D is saturated in E and hence E/D ∈ Pic(X). Since deg(A) > 0, we
have deg(D) > 0. Since deg (E/D) ≤ deg(M) < X[{h0(X,A) + 2}], we have
h0(X,E/D) < h0(X,E). Hence h0(X,D) 6= 0. Take s ∈ H0(X,D) ⊆ H0(X,E)
with s 6= 0. D is the saturation of s(OX) in E. If D = A, then E is stable because
deg(A) < deg(M). Assume D 6= A as subsheaves of E; we allow the case in which
A and D are isomorphic. Then there is an inclusion of A⊕D in E (as subsheaf!).
First assume h0(X,D) ≥ 2. Since h0(A⊕D) ≥ h0(X,A)+2 = h0(X,E) and E is
spanned, we have E = A⊕D, i.e. (1) splits, contradiction. Hence h0(X,D) = 1.
Thus h0(X,E/D) ≥ h0(X,A) + 1. Since (deg(A) + deg(M))/2 < X[{h0(X,A) +
1}], we obtain deg(E/D) > deg(E)/2, i.e. we obtain the stability of E. If
deg(M) < X[{h0(X,A) + 1}], the inequality deg(E/D) ≤ deg(M) gives that the
case D 6= A is impossible. Hence A is the unique rank 1 subsheaf of E with
degree at least deg(A). �

Definition 3.5. Let X be a curve of genus g ≥ 3. Fix integers d, r with
r > 0 and d > 0. We will say that X is general from the point of view of gr

d
′s

if the set Gr
d(X)′′ of all base point free gr

d
′s on X has the same dimension as

for a curve with general moduli, i.e. Gr
d(X)′′ 6= Ø if and only if ρ(g, r, d) ≥ 0

and dim(Gr
d(X)′′) = ρ(g, r, d) if ρ(g, r, d) ≥ 0 and d < g + r. We will say that a

smooth curve X of genus g ≥ 3 is general from the point of view of pencils if the
following conditions are satisfied:

(i) G1
d(X) 6= Ø if and only if 2d ≥ g + 1;

(ii) dim(G1
d(X)) = 2d− g − 1 for every integer d with g + 1 ≤ 2d ≤ 2g.

Notice that if, for some fixed r and d, the curve X is general from the
point of view of gr

d
′s, then there are appropriate ranges of pairs (u, v) and (a, b)

such that X has base point free complete gu
v
′s and no ga

b .
Using this definition we obtain at once the following particular case of

Proposition 3.4.
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Corollary 3.6. Let X be a smooth curve of genus g which is general
from the point of view of gx

y
′s for every x ≤ 3. Let E be a rank 2 vector bundle on

X fitting in a non-splitted exact sequence (1) with A and M spanned, h0(X,A) =
h0(X,M) = 2 and h0(X,E) = 4. Assume deg(A) < deg(M) < (3g + 12)/4 and
deg(A)+deg(M) < 4g/3+4. Then E is stable. If we have also deg(M) < 2+2g/3,
then A is the unique rank 1 subsheaf of E with maximal degree.

Remark 3.7. Let X be a smooth genus g curve which is general
from the point of view of pencils. Since for every integer d ≥ g/2 + 1 we have
ρ(g, 1, d + 1) − ρ(g, 1, d) = 2 > 1 = dim(X), for every integer d ≥ g/2 + 1 there
is a base point free g1

d on X. Furthermore, if d ≤ g + 1 there is a base point free
complete g1

d on X.

In the first step of the proof of Theorem 4.1 we will use the following
result.

(3.8) Let X be a general curve of genus g, 3 ≤ g ≤ 8. We want to find
a spanned and stable rank 2 vector bundle E fitting in (1) and with as degree
any integer d with g + 5 ≤ d ≤ 2g + 10. Set a := deg(A) and m := deg(M). If
d is odd, take a = (d − 1)/2 and m = (d + 1)/2; it works because a ≥ d{1} and
we may apply Remark 3.2; if (d + 1)/2 ≤ g + 1 (resp. (d − 1)/2 ≤ g + 1), i.e. if
d ≤ 2g−1 (resp. d ≤ 2g+1), we may take M (resp. A) with h0(X,M) = 2 (resp.
h0(X,A) = 2); hence if d ≤ 2g−1 or d = 2g+1 we find a spanned stable E fitting
in (1) and with h0(X,E) = 4. If d is even, take a = d/2 − 1 and m = d/2 + 1; if
m ≤ g + 1, i.e. if d ≤ 2g and (g, d) 6= (6, 12), (7, 14) or (8, 16), it works because
we have a ≥ d{1}, while we may take M with h0(X,M) = 2 and hence we may
apply Corollary 3.6. Now assume (g, d) = (6, 12), (7, 14) or (8, 16); take (a,m) =
(g − 1, g + 1), A ∈ Pica(X) and M ∈ Picm(X) with h0(X,A) = h0(X,M) = 2
and both A and M spanned; since h0(X,A ⊗ M) = d + 1 − g, Construction 1.1
gives a spanned vector bundle E fitting in a non-trivial extension (1); take A
such that h0(X,A(P )) = 2 for every P ∈ X, i.e. such that for every P ∈ X
the line bundle A(P ) is not spanned; hence there is no P such that A(P ) is a
quotient of E, i.e. such that E is an extension of A(P ) by M(−P ); it is easy
to check that every such E is stable; alternatively, use that for every P ∈ X
we have dim(Ext1(X;A(P ),M(−P ))) + dim(X) = dim(Ext1(X;A,M)) − 2 +
1 < dim(Ext1(X;A,M)) since A(P ) and M(−P ) are not isomorphic because
h0(X,A(P )) ≥ 2 > 1 = h0(X,M(−P )). Now assume 2g+2 ≤ d ≤ 2g+10. If d is
odd we take a = (d−1)/2, m = (d+1)/2, A and M not special and take as E any
bundle fitting in a non-splitted extension (1). E is stable by Remark 3.2. The
vector bundle E is spanned because A and M are spanned and h1(X,A) = 0. We
have h1(X,E) = 0 and hence h0(X,E) = d+2−2g. Take a general linear subspace
V of H0(X,E) such that dim(V ) = 4 and dim(V ∩ H0(X,A)) = 2. We obtain a
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spanned pair (E,V ) mapping X into G(2, 4). Since dim(V ∩H0(X,A)) = 2, the
spanned pair (E,V ) is not 2-generic. This part of the proof works verbatim even
for every genus g ≥ 3. Now assume d even. We make the same construction with
respect to the integers a := d/2− 1 and m := d/2 + 1. We need to prove that we
may obtain in this way a stable bundle E. Assume the existence of a saturated
rank 1 subbundle R of E with deg(R) ≥ d/2. Since the extension (1) does not
split, we have deg(R) = d/2 and hence E/R ∈ Picd/2(X). By Riemann–Roch
and Serre duality we have dim(Ext1(M,A)) = g + 1, dim(Ext1(E/R,R)) = g− 1
if E/R and R are not isomorphic and dim(Ext1(E/R,R)) = g if E/R ∼= R.
We vary A ∈ Pic(d/2−1)(X) and M in Pic(d/2+1)(X). We obtain that a general
extension (1) cannot be associated to any such R unless the general extension
(1) contains also a two-dimensional family of non-isomorphic saturated rank 1
subbundles, A′, of degree d/2 − 1. Since E is extension of E/R by R, each such
A′ induces a subsheaf of E/R with deg(A′) = deg(E/R)−1. Since any such sheaf
is of the form E/R(−P ) for some P ∈ X and dim(X) = 1, this is impossible.

Remark 3.9. Let X be a general curve of genus g ≥ 3 and E be one
of the spanned bundles on X constructed in 3.8 with d := deg(E) ≥ 2g + 4 but
no other restriction on d and g. We assume deg(M) > deg(A) ≥ g + 1 and
h1(X,A) = h1(X,M) = 0. In particular we have h1(X,E) = 0 and h0(X,E) =
d + 2 − 2g ≥ 7. If deg(M) = deg(A) + 1, the bundle E is stable by Remark 3.2.
If deg(M) − deg(A) is small, then usually the proof of 3.8 gives that a general
such E is stable; this is true if deg(M) = deg(A) + 2. Let V ⊆ H0(X,E) be a
general linear subspace with dim(V ) = 4. Hence V spans E. For general V we
have dim(V ∩ H0(X,A)) ≤ 1; for general V we have dim(V ∩ H0(X,Ai)) ≤ 1
for any finite family {Ai}i∈I of rank 1 subbundles of E with deg(Ai) = (d− 1)/2
for every i. E has only finitely many rank 1 subbundles of degree (d− 1)/2 ([12,
Prop. 4.2]). Hence for d odd the general pair (E,V ) is 2-generic. If d is even,
we get the same result since there is at most a one-dimensional family, T, of
maximal degree line subbundles of E ([12, Cor. 4.6]) and for general V we have
dim(V ∩H0(X,A)) ≤ 1 for every A ∈ T. For large d it would be possible to obtain
that the image of Λ2(V ) in H0(X,det(E)) has dimension 6, i.e. that hV,E(X)
is not contained in a hyperplane of P5. But we send the reader to Theorem 4.1
proved in a different way for such type of assertions.

Remark 3.10. Let X be a curve of genus g which is general from the
point of view of pencils. By Remark 3.2 for every odd integer d ≥ 2[(g + 3)/2]
there is a stable, spanned and weakly filtrable rank 2 vector bundle E on X with
h0(X,E) ≥ 2: just take A and M spanned with deg(A) = (d − 1)/2 ≥ d{1} and
deg(M) = (d + 1)/2.
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4. Curves with general moduli. Here we prove the existence of 2-
generic spanned pairs (E,V ) with E rank 2 stable vector bundle of low degree
and dim(V ) = 4 on a genus g curve with general moduli (see Theorem 4.1) or on
a general curve with prescribed gonality, t, at least 7 (see Proposition 4.5). In
this section we assume char(K) = 0. These results clarify completely the picture
in the case of invariants (rank(E),dim(V )) = (2, 4) for 2-generic spanned pairs.
Hence they fit very well after the corresponding study for non 2-generic rank 2
vector bundles made in Section 3. The following result covers the corresponding
case of [16, Th. 2], for the case g odd not considered there.

Theorem 4.1. Fix an integer g ≥ 3. Let X be a general curve of
genus g. Then for every integer d ≥ g + 21 there is a spanned pair (E,V ) on X
with rank(E) = 2, deg(E) = d, E stable, dim(V ) = 4 and such that the induced
morphism hV,E : X → G(2, 4) ⊂ P5 is an embedding with hV,E(X) spanning P5.

P r o o f. Call Q the universal rank 2 quotient bundle of G(2, 4). We
stress that the non-degenericity condition for hV,E(X) ⊂ P5 is obvious when
hV,E(X) is obtained as a general smoothing inside G(2, 4) of a reducible curve
A = Z ∪ D ⊂ G(2, 4) with A spanning P5. Notice that such curve may span P5

even if neither Z nor D span P5 and even if both Q|Z and Q|D are not induced
by a 2-generic spanned pair. We divide the proof into 3 steps.

Step 1. Here we fix a pair of integers (d′, g′) with 3 ≤ g′ ≤ 8 and 2g′ +5 ≤
d′ ≤ 2g′ + 10. We want to prove the existence of a non-degenerate smooth
curve X ⊂ G(2, 4) with pa(X) = g′ and deg(X) = d′. First assume d′ odd.
We take a smooth rational normal curve Y ⊂ G(2, 4) ⊂ P5. Hence pa(Y ) = 0
and deg(Y ) = 5. Let T ⊂ G(2, 4) be the union of Y , g′ general smooth conics
intersecting quasi-transversally Y at two points and (d′−5−2g′)/2 general smooth
conics intersecting Y at one point. If d′ is even, instead of T we take the union
of Y , g′ general smooth conics intersecting quasi-transversally Y at two points,
(d′−4−2g′)/2 general conics intersecting Y ′ at one point and a line intersecting Y
at one point. Then we ask the reader to read the smoothing technique described
in Steps 2 and 3 to obtain a smooth X ⊂ G(2, 4); each time we add a conic
intersecting Y at two points (resp. one point) instead of P1, . . . , P6 as in Step 3 we
take P1, P2 (resp. P1). We claim that for this set of integers the general such curve
X has general moduli. As in the following steps our curve is built inductively in
the following way. We have two smooth curves Z, D ⊂ G(2, 4) intersecting quasi-
transversally at t ≥ 1 points. We assume D rational, H1(Z, TG(2, 4)|Z) = 0 and
that TG(2, 4)|D is the direct sum of line bundles of degree at least t− 1 (see the
structure of TG(2, 4)|D for D the curves appearing in the claim in Steps 3). Hence
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H1(D, (TG(2, 4)|D)(−Z ∩ D)) = 0. From the Mayer–Vietoris exact sequence

(4) 0 → TG(2, 4)|(Z ∪D) → TG(2, 4)|Z ⊕TG(2, 4)|D → TG(2, 4)|(Z ∩D) → 0

we obtain H1(Z∪D,TG(2, 4)|(Z ∪D)) = 0. If X is a general smoothing of Z∪D
we obtain H1(X,TG(2, 4)|X) = 0 by semicontinuity. Hence the coboundary map
H0(X,NX,G(2,4)) → H1(X,TX) is surjective. If X is smooth the deformation

space of X is smooth and it has H1(X,TX) as tangent space. The Hilbert
scheme Hilb(G(2, 4)) of G(2, 4) is smooth at the point parametrizing X because
we have also H1(X,NX,G(2,4)) = 0. Since H0(X,NX,G(2,4)) is the tangent space
at X to Hilb(G(2, 4)), the surjectivity of the coboundary map gives that near
X Hilb(G(2, 4) contains curves with general moduli. Thus we checked the claim.
Now we claim that to obtain that for general X the associated rank 2 spanned
vector bundle Q|X is stable we may use 3.8 and 3.9. Indeed, we are considering
bundles, E, on a smooth curve X with h1(X,E) = 0. For such bundles h0(X,E)
is constant for small deformations and hence the spannedness condition is open.
Such bundles form an open subset of the deformation space of any bundle on X
with the same property. Such bundles form a non-empty Zariski open subset of
the corresponding moduli space; notice that this open set is irreducible and that
every bundle on a smooth curve is the flat limit of a flat family of stable bundles
([13, Prop. 2.6], or [11, Cor. 2.2]). Since stability is an open condition, we obtain
the last claim.

Step 2. Here we cover the cases 3 ≤ g ≤ 8 and d ≥ 2g + 11. Further-
more, for these pairs of integers (d, g) we will find an example Z ⊂ G(2, 4) with
h1(Z, TG(2, 4)|Z) = h1(Z,NZ,G(2,4)) = 0, where NZ,G(2,4) is the normal bundle
of Z in G(2, 4). We use induction on d assuming that we know the existence of
a genus g smooth curve Z ⊂ G(2, 4) with deg(Z) = d − 6 and with Q|Z nice.
The starting cases of the induction are the cases 2g + 5 ≤ d − 6 ≤ 2g + 10 given
in Step 1. Now we take a general P ∈ Z and a general smooth rational curve
D ⊂ G(2, 4) with P ∈ D and deg(D) = 6; we could take deg(D) = 5 without
any further modification. Now we ask the reader to copy the proof of the next
step taking P instead of P1, . . . , P7; here the cohomological vanishing needed for
the Mayer–Vietoris type proofs given in [10] and [15] and used in this step are
much easier than the ones needed for the next step; see Step 1 for an example of
Mayer–Vietoris exact sequence and an explanation of its use. We showed in Step
1 how to use the vanishing of H1(D, (TG(2, 4)|D)(−Z ∩ D)) and semicontinuity
to obtain the existence of curves, X, with general moduli and such that Q|X is
stable and 2-generic.

Step 3. Now we assume g ≥ 9. Fix an integer d ≥ g + 9. We assume the
existence of a smooth curve Z ⊂ G(2, 4) with deg(Z) = d − 6, pa(Z) = g − 6, Z
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with general moduli and such that Q|Z is stable. We assume h1(Z,NZ,G(2,4)) = 0;
we obtained this condition in the examples given in Step 2 and the proof below
will show how to obtain inductively this condition. We assume that for any 7
general points P1, . . . , P7 of G(2, 4) there is a curve Z as above with Pi ∈ Z for
every i; the proof below will show how to obtain inductively this condition and
the same inductive proof shows why we obtained this condition in the examples
given in Step 2. Fix any 7 general points P1, . . . , P7 of Z; by the choice of Z we
may assume that the points P1, . . . , P7 are general in G(2, 4).

Claim. There is a smooth rational curve D of P5 with Pi ∈ D for every
i, deg(D) = 6, D ⊂ G(2, 4) and such that Q|D is the direct sum of 2 line bundles
of degree 3.

P r o o f o f t h e c l a im. A general linear subspace V ⊂ H0(P1,OP 1(3)⊕
O

P
1(3)) with dim(V ) = 4 embeds P1 into G(2, 4) as a degree 6 curve Y . Hence

TG(2, 4)|Y is the direct sum of 4 line bundles of degree 6 and NY,G(2,4) is the
direct sum of three line bundles of degree at least six. In particular for any 7
points A1, . . . , A7 of Y we have H1(Y, (TG(2, 4)|Y )(−A1 − · · · − A7)) = 0 and
H1(Y,NY,G(2,4)(−A1−· · ·−A7)) = 0. By a theorem of Kleppe (see [14, Th. 1.5]),
for general Pi ∈ G(2, 4), 1 ≤ i ≤ 7, there is a deformation, D, of Y , i.e. a degree
6 smooth rational curve D with Pi ∈ D for every i. By semicontinuity we have
H1(D, (TG(2, 4)|D)(−P1−· · ·−P7)) = 0 and H1(D,ND,G(2,4)(−P1−· · ·−P7)) =
0, TG(2, 4)|D is the direct sum of 4 line bundles of degree 6 and ND,G(2,4) is the
direct sum of three line bundles of degree at least six. Taking sufficiently general
the points Pi and Z we may assume that Z and D intersects quasi-transversally
and exactly at the points Pi. Hence A := Z ∪ D is a degree d curve of G(2, 4)
spanning P5 and with pa(A) = g. By the general theory proved in [15, Lemma
5.1 and Th. 5.2], and independently in [10] we have h1(A,NA,G(2,4)) = 0 and
the curve A is smoothable inside G(2, 4), i.e. it is a flat limit of smooth curves
of G(2, 4). Call X the general member of this flat family degenerating to A.
Hence X is a smooth curve of genus g and degree d. By semicontinuity we
have h1(X,NX,G(2,4)) = 0; here we obtain again curves with non-special normal

bundle to continue the inductive construction. Assume h1(Z, (TG(2, 4)|Z)) = 0.
This condition was obtained in the examples given in Steps 1 and 2. As in Step
1, i.e. copying [15, Cor. 5.3] and proofs of 6.2 and 6.3, by a Mayer–Vietoris
exact sequence we obtain h1(A,TG(2, 4)|A) = 0. Hence by semicontinuity we
may assume h1(X,TG(2, 4)|X) = 0. Since Q|Z is stable and Q|D is semistable,
Q|(Z ∪ D) is stable ([5, Lemma 1.1]). By [9, Th. 2.4], for general X the bundle
Q|X is stable. Consider the normal bundle exact sequence

(5) 0 → TX → TG(2, 4)|X → NX,G(2,4) → 0
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Since h1(X,TG(2, 4)|X) = 0, the coboundary map H0(X,NX,G(2,4)) → H1(X,
TX) is surjective. As in [15], 3.3 and 6.3, this means that the map, Ψ, from
a neighborhood of the point representing X in the Hilbert scheme Hilb(G(2, 4))
into the moduli scheme Mg of smooth genus g curves is smooth and in particular
it is open and dominant. Hence we may assume that X has general moduli and
we conclude by the universal property of the Grassmannian G(2, 4). To conclude
the proof we need the existence of the nice curve Z with invariants (g − 6, d− 6).
More precisely, it is sufficient to prove the existence of the nice curve Z with
invariants (g′ − 6, d′ − 6) with 9 ≤ g′ ≤ 14 and low d′ and then use the proof
of Step 2 to increase d without increasing g. If g′ = 9 Step 1 covers the pairs
(g′ − 6, d′ − 6) with 11 ≤ d′ ≤ 16 and Step 2 all cases with d′ ≥ 17. Similarly, for
10 ≤ g′ ≤ 14; for more details, see the last part of the next remark.

Remark 4.2. The last few lines of the proof of 4.1 show that cover
in that way a few cases not claimed by the statement of 4.1. If we drop the
assertion “general moduli” we will show here how to modify Step 3 of the proof
of 4.1 to obtain the existence of curves X ⊂ G(2, 4) with all the other results for
all pairs (d, g) with g ≥ 3 and d ≥ (4/5)g + 13. We may assume g ≥ 9. Fix an
integer d ≥ (4/5)g + 13 and assume the existence of a smooth curve Z ⊂ G(2, 4)
with deg(Z) = d − 4, pa(Z) = g − 5, and such that Q|Z is stable. We assume
h1(Z,NZ,G(2,4)) = 0; we obtained this condition in the examples given in Step 2
of the proof of 4.1 and the proof below will show how to obtain inductively this
condition. Fix any 6 general points P1, . . . , P6 of a general hyperplane section
H∩Z of Z. Take a general linear subspace W of dimension 4 of H0(P1,O

P
1(2)⊕

O
P

1(2)). Hence W spans O
P

1(2) ⊕ OP 1(2). We claim that we obtain in this
way the existence of a smooth rational curve D ⊂ H with Pi ∈ D for every i,
deg(D) = 4 and D ⊂ G(2, 4) ∩ H. Indeed any two ordered sets, say (P1, . . . , P6)
and (P ′

1, . . . , P
′
6), of P4 in linearly general position are projectively equivalent.

Take a rational normal curve, D′, of P4 and any 6 points of D′ in linearly general
position. Since D′ is contained in a smooth quadric hypersurface, Q′, of P4 and
Q′ is a hyperplane section of a smooth quadric hypersurface of P5, the claim
follows. Alternatively, the claim may be proved as the claim in Step 3 of the
proof of 4.1. We have Q|D ∼= O

P
1(2) ⊕ O

P
1(2) because G(2, 4) ∩ H is a smooth

quadric. In particular Q|D is semistable. Since D ⊂ G(2, 4) ∩ H, ND,G(2,4) has
OD(1) as a direct factor. ND,G(2,4) fits in an exact sequence

(6) 0 → O
P

1(2) → O
P

1(4)⊕4 → ND,G(2,4) → 0.

We obtain easily that ND,G(2,4) is the direct sum of two line bundles of degree
7 and one line bundle of degree 4. Taking sufficiently general the points Pi and
Z we may assume that Z and D intersect quasi-transversally and exactly at the
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points Pi. Hence A := Z ∪D is a degree d curve of G(2, 4) spanning P5 and with
pa(A) = g.NA,G(2,4)|D is obtained from ND,G(2,4) making 6 positive elementary
transformations supported by the points P1, . . . , P6 (see [10]). For general H and
Pi we obtain that every direct factor of NA,G(2,4)|D has degree at least 5. By the
general theory proved in [15, Lemma 5.1 and Th. 5.2], and independently in [10]
we have h1(A,NA,G(2,4)) = 0 and the curve A is smoothable inside G(2, 4), i.e. it
is a flat limit of smooth curves of G(2, 4). A general member, X, of a smoothing
family of A gives a solution of our problem for the following reason. Since Q|Z is
stable and Q|D is semistable, for general C the bundle Q|C is stable ([5, Lemma
1.1] and [9, Th. 2.4]). To start the induction we need to prove the existence of
the nice curve Z with invariants (g − 5, d − 4). More precisely, it is sufficient
to have the nice curve Z with invariants (g − 5, d′ − 4) for every integer d′ with
[(4g + 4)/5] + 13 ≤ d′ ≤ [(4g + 4)/4] + 16 and then add smooth rational curves,
say of degree 4 linked for a point repeating the construction with one point, P1,
instead of 6 points P1, . . . , P6. If g = 9 we need the existence of the curve Z with
invariants (4, d′) with 16 ≤ d′ ≤ 19; this is proved in Step 1 and Step 2 which
would cover also the cases d′ = 13, 14 and 15 not claimed in the statement of 4.1.
If g = 10 we need to cover the pairs (5, d′) with 17 ≤ d′ ≤ 20; this is done in
Step 1. If g = 11 we need to cover the pairs (6, d′) with 18 ≤ d′ ≤ 21; Step 1 of
the proof of 4.1 covers the cases 17 ≤ d′ ≤ 21; just to warn the reader that the
statements of 4.1 and 4.2 are not sharp we remark that if (g′, d′) = (6, 16) we may
use 3.9. If g = 12 we need to cover the pairs (7, d′) with 19 ≤ d′ ≤ 22; these cases
are covered in Step 1 of the proof 4.1. If g = 13 we need to cover the pairs (8, d′)
with 20 ≤ d′ ≤ 23; these cases are covered in Step 1 of the proof of 4.1. If g ≥ 14
we have g − 5 ≥ 9 and, as explained before the starting cases for g = 9, at this
point we have proved the existence of a nice curve Z with invariants (g−5, d−4).

Remark 4.3. Consider the Euler’s sequence on G(2, 4):

(7) 0 → S → OG(2,4)
⊕4 → Q → 0

with S rank 2 universal subbundle. We claim that the proof of Theorem 4.1
show the existence of smooth curves X ⊂ G(2, 4) of genus g with general moduli,
with deg(Q|X) = d and such that both Q|X and S|X are stable, where S is the
tautological rank 2 subbundle of G(2, 4), i.e. such that there is an exact sequence

(8) 0 → F → OX
⊕4 → E → 0

with deg(E) = d, deg(F ) = −d and both E and F stable. Let D ⊂ G(2, 4) be the
smooth rational curve of degree 6 considered in Step 3 of the proof of Theorem
4.1. Consider the restriction to D of the Euler’s exact sequence (7) on G(2, 4).
Since S|D is the direct sum of two line bundles of degree −3, it is semistable.
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Now we follow the proof of 4.1. At each step in which we obtain a reducible
curve, T , such that Q|T is stable, we obtain the same curve T with both Q|T
and S∗|T stable. Then we smooth the reducible curve T inside G(2, 4). By the
openness of stability and semistability ([9, Th. 2.4]) we obtain a nearby smooth
curve Y such that both Q|Y and S∗|T are stable, proving the claim. We may
apply verbatim this observation in the set-up of Remark 4.2.

Remark 4.4. Let X ⊂ G(2, 4) be a smooth curve of genus g and
degree d. We have χ(NX,G(2,4)) = 4d + 1 − g. Assume h1(X,NX,G(2,4)) = 0.
Then the Hilbert scheme Hilb(G(2, 4)) of G(2, 4) is smooth of dimension 4d +
1 − g at X. If the unique irreducible component of Hilb(G(2, 4)) containing X
contains curves with general moduli, we have 4d + 1 − g − dim(Aut(G(2, 4)) ≥
3g − 3. Hence the statement of Theorem 4.1 is quite good for embeddings with
h1(X,NX,G(2,4)) = 0: d must be at least of order g. With the notations of 4.1,
for large d step 3 of its proof give curves C and X and bundles F and E with
h0(C,OC(1)) = h0(X,OX(1)) = 6, i.e with h0(C,det(F )) = h0(X,det(E)) = 6
and with h0(C,F ) = h0(X,E) = 4.

Fix an integer t with 7 ≤ t ≤ g/2 + 1. Look at the last few lines of the
proof of 4.1. We obtain an open map Ψ. Hence if for the reducible curve A
considered in the proof of 4.1 is in the closure in M−

g of the irreducible variety
of all t-gonal smooth genus g curves, we may take as X not a curve with general
moduli, but a general t-gonal curve. Assume that the curve Z considered in the
proof of 4.1 is t-gonal. Then the general theory of admissible coverings given
in [8, §4], shows that A is in the closure in M−

g of the irreducible variety of all
t-gonal smooth genus g curves. Since the curves constructed in Steps 1 and 2 of
the proof of 4.1 are t-gonal, we obtain the following result; to copy the proof of
4.1 we use the convention that if t ≥ [(g + 3)/2] “general t-gonal curve of genus
g” means “general curve of genus g”.

Proposition 4.5. Fix integers g, t, d with g ≥ 2, 14 ≤ 2t ≤ g+3 and d ≥
g+21. Let X be a general t-gonal curve of genus g. There is a rank 2 stable vector
bundle E on X with deg(E) = d and a subspace V ⊆ H0(X,E) with dim(V ) =
4 such that V spans E, the pair (E,V ) is 2-generic, the associated morphism
hV,E : X → G(2, 4) ⊂ P5 is an embedding and hV,E(X) is not contained in a
hyperplane.
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