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ABSTRACT. If £ is a countable ordinal and (f) a sequence of real-valued
functions we define the repeated averages of order £ of (fx). By using a
partition theorem of Nash-Williams for families of finite subsets of positive
integers it is proved that if £ is a countable ordinal then every sequence
(fx) of real-valued functions has a subsequence (f},) such that either every
sequence of repeated averages of order £ of (f},) converges uniformly to zero
or no sequence of repeated averages of order £ of (f}) converges uniformly to
zero. By the aid of this result we obtain some results stronger than Mazur’s
theorem.

Introduction. Argyros, Mercourakis and Tsarpalias in [3] introduced
for every ¢ < wy the summability methods (¢1), where L € [N].
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In this paper we define the families M¢[N], & < wq, where N = (ny)
a strictly increasing sequence of positive integers, as follows: We set My[N]| =
{{ng}:kE=1,2,...} . If M¢[N] has been defined then we set

M1 [N U{u VAi A Ay, € M[N] with A < ... < A, and

min Ay = ng}.

If £ is a limit ordinal and ((x) be the strictly increasing sequence of successor
ordinals with supj, (x = & that defines the sequence (&%) for every L € [N] then
we set

o0
MeN] = | J{4 € M, [N]:minA = ng}.
k=1

If (fx) is a sequence of real-valued functions defined on a set X, £ < w;
and H € M¢[N] we define the function a®((fy); H) called repeated average of
order £ of sequence (fx) (cf. Definition 1.7).

By using a well-known result of Nash-Williams in [16] and a method
created by Prof. Negrepontis and author (cf. [12] or [15, Def. 3.6, Lemma 3.7])
we prove that if n € N, &1,...,&, < w1, N € [N] and {P;,P>} a partition of
[N]<“ then there exist N’ € [N] and j € {1, 2} such that U}, E; € P; for every
Ei € Mg [N'],...,Ey € Mg, [N'] with Ey < ... < E, (cf. Theorem 2.1).

By using the above result we prove the following dichotomy: If (f) is a
sequence of real-valued functions defined on a set X, M € [N] and £ < w; then
there exists N € [M] such that

either (1) for every strictly increasing sequence (H,) of M¢[N] the sequence
gn = a*(fr); Hy), n € N converges uniformly to zero;

or (2) does not exist a strictly increasing sequence (H,,) of M¢[N] such that
the sequence g, = a*((fx); Hn), n € N converges uniformly to zero

(cf. Theorem 2.5). This result is analogous with a dichotomy theorem of Erdos
and Magidor in [7] for regular methods of summability.

Kechris and Louveau in [9] defined the convergence index “y((fx))” of
a sequence (fy) of continuous real-valued functions. We prove that if K is a
compact metric space, (fx) a uniformly bounded sequence of continuous real-
valued functions on K and ¢ < wy with v((fx)) < w® then for every M € [N]
there exists N € [M] such that for every strictly increasing sequence (H,) of
members of M¢[N] the sequence g, = a*((fors1 — for); Hn), n € N converges
uniformly to zero (cf. Proposition 2.6).
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Also we prove that if K is a compact metric space, (fi) a sequence of
continuous real-valued functions and 1 < ¢ < w; such that for every subsequence
(f7) of (fx) there exists a strictly increasing sequence (H,,) of members of M¢[N]
such that the sequence g, = a*((f}, 41— Jap)i Hn), n € N converges uniformly to
zero then there exists a subsequence (f7) of (f) with v((f})) < w® (cf. Proposi-
tion 2.7).

Kechris and Louveau in [9] defined the oscillation index “G(f)” of a real-
valued function f. We prove that if K is a compact metric space, 1 < ¢ < w; and
(fx) a sequence of continuous real-valued functions on K pointwise converging to
f then the following hold:

(i) If for every subsequence (f}) of (f) there exists a strictly increasing
sequence (H,) of members of M¢[N] such that the sequence g, = a*((f};, 1=
f4); Hy), n € N converges uniformly to zero then B(f) < w®.

(ii) If f is bounded and B(f) < w® then there exists a sequence (hy)
of convex blocks of (f;) (i.e., hy € conv((fp)p>k) for all k) such that for every
M € [N] there exists N € [M] such that for every strictly increasing sequence (H,,)
of members of M¢[N] the sequence g, = a((haxt1 — hax); Hp), n € N converges
uniformly to zero. (Here conv((¢y)) denotes the set of all combinations of the
¢r’s) (cf. Corollary 2.8).

Also we obtain the following result: If K is a compact metric space and
1 < € < wq such that for every sequence (fj) of continuous real-valued functions
on K pointwise converging to zero there exists a strictly increasing sequence
(H,) of members of M¢[N] such that the sequence g, = a*((fx); Hy), n € N
converges uniformly to zero. Then 3(f) < w¢ for every Baire-1 function f on K
(cf. Corollary 2.9).

Finally, we prove that if X is a pseudompact topological space (i.e., if (U,)
is a decreasing sequence of non-empty open subsets of X then (77, clU, # O)
and (fi) a uniformly bounded sequence of continuous real-valued functions on X
pointwise converging to zero with infy, || fx]lcc > 0 then there exists 1 < £ < wy
such that for every M € [N] there exists N € [M] such that for every strictly
increasing sequence (H,) of members of M¢[N] the sequence g, = a*((fx); Hn),
n € N converges uniformly to zero (cf. Proposition 2.12).

1. Preliminaries. This section contains definitions, combinatorial lem-
mas and known results which we shall use for the proof of main results in the
section 2.

By N we mean the set of all positive integers, by w we mean the first
infinite ordinal (i.e., w :={0,1,2,...}) and by w; we mean the first uncountable
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ordinal. For any set M, the set of all finite subsets of M and the set of all infinite
subsets of M will be denoted by [M]|<“ and [M] respectively. A family F of
finite subsets of N is said to be hereditary if all subsets of members of F belong
to F. A family F of finite subsets of N is said to be compact if the set of all
characteristic functions g, where F' € F, is compact subspace of {0,1}* with
the product topology. A family F of finite subsets of N is said to be adequate if
it is hereditary and compact.
For F C [N]<¥ and M € [N] the set F N [M]<¥ denoted by F[M].

Generalized Schreier families.

Definition 1.1. Let F,H € [N]~% and n € N. We write F < H if
either set is empty or if max F < min H, and n < F iff n =min F or {n} < F.

Alspach and Argyros in [1] introduced some families called generalized
Schreier families. We can define these families as follows:

Let S¢, be an family of finite subsets of N for each { < w;. The families
{Se}e<w, will be said to have the generalized Schreier property if

(i) So={0yuU{{n}:neN}j
(ii) &; is the Schreier family, i.e., S; = {F C N: |F| < min F'} (cf. [18]);

(iii) Ser1 = Uzozl{U?lei n <K < ... < F,,F; € 5 for i = 1,...n}
for 1 <€ < wy;

(iv) for every limit ordinal { < wi, there exists a strictly increasing sequence
of ordinals (&,) such that & = sup{&, : n € N} and S = U2 {F € S, :
n < F}.

It can be noticed that for each m < w there is an unique S,,,. The families
(Sm)m<w appeared for the first time in an example constructed by Alspach and
Odell [2]. For every ¢ > w there are infinitely many families S¢ such that the
families {S¢}e<w, have the generalized Schreier property.

Summability methods. The following definition was given by Argyros,
Mercourakis and Tsarpalias in [3].

Definition 1.2. We denote by Sp the positive part of the unit sphere
of I*(N). For A= (ay,) in S; we set supp A ={n € N: a,, # 0}.
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If F = (x,) is a sequence in a Banach space X and A = (a,) in Sl'f with
| supp A| < 400 we denote by A - F' the usual matrices product, that is:

(0. ]
A-F= Zanazn.
n=1

For A = (a,) € I'(N) and F € [N]<* we denote by (A, F) the quantity > a,.
neF

For M € [N] an M-summability method is a sequence (A,) C Slf with
supp A, < supp 4,41 for each n and M = U2, supp A,,.

For each M € [N] and £ < w; the M-summability method (¢}) is defined,
inductively, as it follows:

(i) For ¢ =0, M = (m,,) we set €M =e,,,.

(ii) If ¢ = ¢+1, M € [N] and (¢M) has been defined then we, inductively,
define (€M) as it follows. We set k1 = 0, s; = minsupp ¢, and

5{\424{”+...+<§‘{'

Suppose that for j = 1,2,...,n — 1, k;, s; have been defined and

M M
M ijJrl +..+ ij+5j

£

S1

Sj
Then we set,

kn="Fkn_1+ Sn_1, Sp = minsupp C%H and

M Cl?fﬂ ot C%ﬂn
€n = :
This completes the definition for successor ordinals.

(iii) If £ is a limit ordinal and if we suppose that for every ( < ¢, M € [N]
the sequence (¢M) has been defined, then we define (¢)) as it follows:

Let (¢,) be a strictly increasing sequence of successor ordinals with
sup,, ¢n, = & For M € [N], M = (my,) we inductively define My = M, n; = mq,
My = {my, : my & supp[Cu, 1™, n2 = min M, Mz = {my : my & supp[Gn, |12},
and n3 = min M3, and so on. We set

M M M,
5{\/[ = [Cm]l 1) 55\4 = [Cng]l 2)"' 7£I]c\/[ = [an]l kv"'

Hence (¢]') has been defined.

Sn

From Theorem 2.2.6 and Proposition 2.3.2 of [3] we get the next theorem:

Theorem 1.3.  Assume that the families S¢, & < wi of finite subsets
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of N have the generalized Schreier property. If F is an adequate family of finite
subsets of N, M € [N], £ < wy and € > 0 such that suppcr (&, F') > € for every
N € [M], n € N, then there exists a strictly increasing sequence (my,) of elements
of M such that

{mj:jeF}eF for all FeS;.

Definition 1.4. Let N = (ng) be a strictly increasing sequence of
positive integers. We define the families M¢[N], £ < w1 as follows: We set

Mo[N] = {{ni} : k=1,2,...}.
If M¢[N] has been defined then we set

Meaa[N] = [ J{UZ Ai 0 Ay, Ay € MIN] with Ay < ... < Ay,
k=1

and min Ay = ng}.

If € is a limit ordinal and () be the strictly increasing sequence of successor
ordinals with sup,, (, = £ that defines the sequence (EL) for every L € [N] then
we set

MeN] = | J{4 € M, [N]:minA = ng}.
k=1

Proposition 1.5. For every N € [N] and £ < wy holds
M¢[N] = {supp&f: Le[N], k=1,2,...}.

Proof. Let £ <w; and N € [N].
Step 1: M¢[N] C {suppéf: Le[N], k=1,2,...}.

Claim.  For every F' € M¢[N] it holds F = suppf{vF, where Np =
FU{me N :m >maxF}.

Proof of Claim. We proceed by induction on £ < wy. Let £ = 0 and let
F € My[N]. Then F' = {n} for some n € N. Therefore, Np = {m € N : m > n}
and supp §{VF ={n}=F.

Let 1 < £ < wq such that F = suppCva for every ¢ < &, N € [N]
and F' € M¢[N]. We shall prove that F' = supp &P for every N e [N] and
Fe Mg[N]
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Case 1: £ =n+ 1, where n < wy. Clearly n < £. Now let E € M¢[N].
Then there exist Ey,...,E, € My[N] with £y < ... < E,, minFE; = n and
E=FEU...UE, Weset L= Ng =FU{m € N :m > maxE}. For
every ¢ = 1,...,n, by the inductive assumption, we have supp nfEi = F;, where
L, =E,U{meL:m>maxFE;} =E;U...UE,U{m & N :m >maxFE,}.
It is easy to see that 7l = nlLEl,nQL = 772LE2, ook = nfE”, suppnF = E; for
every i = 1,...,n and minL = min £ = min E; = n. Also §NE =[n+1)F =

L L
u Hence supp{{v = U suppnf =Ul B, =E.

Case 2: £ is a limit ordinal. Let ({;) be the strictly increasing sequence
of successor ordinals that defines the sequence (£%) for every L € [N]. Let also
F € M¢[N]. Then F € Mg, [N], where n = min F'. By the inductive assumption
we have F' = supp[Cn]leF, where Np = FU{m € N : m > maxF'}. Since
n = min Ng we have [Cn]]lvp = f{VF. Hence supp dvp = supp[Cn]]lVF =F 0O

Step 2: {supp&l : L € [N],k=1,2,...} C M¢[N].

We proceed by induction on £ < wj. Let £ = 0 and L € [N] with
L={l1 <...<ly<...}. Then supp&f = supp0f = {l;} € My[N] for every
k=1,2,....

Now let 1 < ¢ < wy such that {supp¢f : L € [N],k=1,2,...} C M[N]
for every ¢ < £. By Definition 1.2 (i) and (iii) we easily prove that {supp 5,5 :
Le[N),k=1,2,...} CMN]. O

Repeated averages.

Definition 1.6. Let N € [N] and F be a finite subset of N. For
every n € N we define a%({n}) = xr(n), that is, a%({n}) = 1 if n € F and
a%({n}) =0 if n ¢ F. For every H = {ny < ... < ny} € Mi[N] we set

_imao oy - [FNH|

Let &€ < wy be an ordinal such that the numbers a%(H) have been defined for every
H € M¢[N]. Then for every H € M¢1[N] there exist unique Hy, ..., H,, €
M¢[N] such that m =min Hy, Hy < ... < Hy, and H = HU...UHy, (cf. Def.
1.4, Def. 2.2.1 and Lemma 2.2.3). We set

£+1 _lzm:
m i=1
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Let & be a limit ordinal such that a%(H ) has been defined for every ¢ < &
and H € M¢[N]. Let (&,) be the strictly increasing sequence of successor ordinals
with sup,, &, = £ that defines the family M¢[N]. For every H € M¢[N] we set

a%(H) = ai?(H), where n = min H.

(By induction on &, it is easy to remark that a%(H ) is well-defined for all £, H

and F, i.e., if ( < & and H € M¢[N] N M¢[N] then a%(H) = a%(H) for every
finite subset F' of N.)

Definition 1.7. Let (f) be a sequence of real-valued functions defined
on a set X. For any ordinal £ < wy, we define the function a*((fy); H), where
H € M¢[N], called repeated average of order & of the sequence (fy), as follows:

For each n € N we define

a®((fi); {n}) = fu-
For H={ny,...,nn} € M1[N] with ny < ... < ny, we define

A H) = = fo
=1

For any { <wi and H = Hi U ... U H,, € M¢1[N], where m = min H;
and Hy,...,Hy € M¢[N] with Hi < ... < H,,, we define

G H) = > (i H).
=1

Let & be a limit ordinal and (&,) be the strictly increasing sequence of
successor ordinals with sup, &, = £ that defines the family M¢[N]. Then for
every H € M¢[N] we set

as((fr); H) = a((f1); H) where n = min H.

It can be noticed that repeated averages of order m, where m < w, was
introduced by Alspach and Odell in [2] by using other notations.

Remarks 1.8. Let N € [N]. By induction on £ < wj it is easy to show
that
(i) If L € [N], n € L and F € [N]<“ it holds

<§£,F> = a%(H) where H = suppffi.
(ii) If A= (fx), L € [N] and n € L it holds
& A= a((fr): H) where H =supp&;.
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Definition 1.9 (cf. [16]). IfF C N and I ={z € F: x < n} for some
n € N we shall call I an initial segment of F.

A family C of finite subsets of N is said to be thin if there do not ezist
A, B € C such that A is an initial segment of B and A # B.

Theorem 1.10 (cf. [16]). If M € [N] and C is thin family of finite
subsets of M then for every partition {C1,Ca} of C there exists N € [M] such that
cn [N]<w CCyorCn [N]<w C Cs.

Trees.
Definition 1.11 (cf. [4]). Let X be a set.

(i) Atree on X will be a subset of | J,2 ; X™ with the property that (z1,...,xy) €
T whenever (x1,...,Tp, Tni1) € T.

(ii)) A tree T on X is well-founded if there is no sequence (x,) in X satisfying
(x1,...,2y) €T for each n € N.

(iii) Proceeding by induction we associate to each ordinal & a new tree TS such
that: Take TV =T.

If T is obtained, let
[e.e]

T8+ — U{(ml,...,xn) e X": (x1,...,xp,x) €T for some x € X}.
n=1

If € is a limit ordinal, define TS = ﬂg<g TC.

Proposition 1.12 (cf. [4, 5, 6]). If T is a well-founded tree on N then
there is € < wy such that T¢ = Q.

Convergence index, oscillation index. A real-valued function f de-
fined on a set X is bounded if || f||oo := sup,ex |f(z)| < +00. A sequence (fi) of
real-valued functions defined on a set X is uniformly bounded if supy || fx|lco <
+00.

Let X be a topological space and C'(X) the set of continuous real-valued
functions on X. By R we mean the set of all real numbers. A function f: X — R
is Baire-1 if there exists a sequence (fi) in C'(X) that converges pointwise to f.
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Definition 1.13 (cf. [8,9]). Let K be a compact metric space, f : K —
R a function, P C K and € > 0. Let PGOJ = P and for any ordinal a let Peof;rl
be the set of those x € P2y such that for every open set U arround x there are
two points x1 and x2 in PYp MU such that | f(z1) — f(x2)| > €. At a limit ordinal

o we set PYr =g, Pff. Let 3(f,€) be the least o with K* = @ if such an «
exists, and B(f,€) = w1, otherwise. Define the oscillation index B(f) of f by

B(f) = sup{S(f,€) : € > 0}.

The complexity of pointwise convergent sequence of continuous real-valued
functions defined on a compact metric space is described by a countable ordinal
index “+” which is defined in the following way.

Definition 1.14 (cf. [9]). Let K be a compact metric space, (fi) a
sequence of continuous real-valued functions defined on K, P C K and € > 0. Let
P e (fo) = = P and for any ordinal « let PO‘(JJF%) be the set of those x € P* e (fi) such
that for every open set U around x and for every p € N there are m,n € N with

m>n>p and a point x’ in P2 NU such that \fm( "= fu@)] > e

At a limit ordinal o we set P ﬂﬁ<a . (It can be noticed that
P:‘(fk) is a closed subset of P with the relatwe topology in P.) Let v((fx),€) be
the least a with K2\ = D if such an « exists, and v((fx),€) = w1, otherwise.
Define the convergence index v((fx)) of (fx) b

Y((fr)) = sup{B((fx),€) : € > 0}.

In [9] it is proved that v((fx)) < wi iff (fx) is pointwise converging. Also
in [9] it is proved that if the sequence (fi) of continuous real-valued functions on
K converges pointwise to f then B(f) < ~((fx)).

By Lemma 3.3.3 and Definition 3.3.1 of [10] we get the following propo-
sition.

Proposition 1.15. Asumme that the families S¢, § < w1 of finite subsets
of N have the genaralized Schreier property. Let K be a compact metric space,
£ <wi, (fy) € C(K) and € > 0 such that for every E = {k1 < ... < ky} € &
(where A € N) there is xp € K with | for, +1(1‘E)—f2k].($E)| >e€foralll <j <A

Then there exists x € K such that x© € K"J(f )

Proposition 1.16 (cf. [10, Prop. 3.2 and Th. 3.3(i) = (iii)]). Assume
that the families S¢, § < w1 of finite subsets of N have the generalized Schreier
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property. Let K be a compact metric space, 1 < £ < wy (fx) € C(K) and
€ > 0 such that ¥((fn,),€) > w* for every strictly increasing sequence (ny) of
positive integers. Then there exists a subsequence (f},) of (fi) such that for every

F={k <...<k\} €S8 there is xp € K such that |f2/kj+1(.1‘p) — fék](mp)| > i
forall1 <j <A

2. Main results.

Theorem 2.1. Letn € N, &,...,&, < wi, N € [N] and {P1,P2} a
partition of [N]<%. Then there exists N' € [N] such that
either UP_ E; € Py for every Ey € Mg [N'],..., E, € Mg, [N'] with
Ei<...< E,;

or U E; € Py for every Ey € Mg, [N'],..., E, € Mg, [N'] with
Ei<...<E,.

For the proof of the above theorem we shall use the next proposition.

Proposition 2.2. For every n € N, &,...,&, < wy and for every
N € [N] the family

Me, e N ={UL 1 E; : By € Mg [N],...,E, € Mg, [N] with Ey <...<Ey,}
is thin subset of [N]<“.

For the proof of this proposition we shall use a method created by Prof.
Negrepontis and the author (cf. [12] or [15, Def. 3.6, Lemma 3.7]). This method
consists in a double induction. More precisely, we give the next definition and
we prove Lemmas 2.2.2 and 2.2.3.

Definition 2.2.1. For any n € N and &1,...,&, < w1 we say that
the n-tuple (&1,...,&,) has property (T') if whenever N € [N] and Eq,F) €
Mg, [N],...,Ep, Fy, € Mg, [N] with Ey < ... < E, and F\ < ... < F, such
that E1 U ... U E, is an initial segment of F} U ... U F, then E; = F; for every
1=1,...,n.

Lemma 2.2.2. If (&,...,&,) has property (T) then (£,&1,...,&,) has
property (T') for every & < wy.

Proof. We proceed by induction on ¢ < wj.
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Step 1: £ =0.
Assume that (&1,...,&,) has property (7') and we shall prove that (0,&,...,
&n) has property (T). Indeed, let N € [N], mi,mo € N, Ey,F1 € Mg, [N],...,
E,, F, € M¢,[N] withm; < By < ... < E,, my < F1 < ... < F, and {m}U
E,U...UE, is an initial segment of {mo} U Fy; U...UF,,. Then m; = my and
EyU...UE, is an initial segment of F} U...UF,. Since ({1, ...,&,) has property
(T') we have E; = F; for every i = 1,...,n.

Step 2: Suppose that 1 < € < wy such that the conclusion holds for every
¢ < ¢ and we shall prove that it holds for &.
Assume that the n-tuple (&1,...,&,) has property (7)) and we shall show that
(&,&1,--.,&) has property (7). Indeed, let N € [N], H,G € M¢[N], B, F €
Mg, [N],...,Ep, F,, € Mg [N]with H< By <...<E,,G<F; <...<F,and
HUE;U...UE, is initial segment of GU Fy U ... U F,. Then min H = minG.
We set m = min H = min G. Consider these two cases:

Case 1: € = ( + 1, where ( < wy. Then H = H; U ...U H,,, where
m = minHy, H; < ... < Hy,, and and H; € M¢[N] for every j = 1,2,...,m.
Also G = G1 U...UGp, where m = minG1, G < ... < Gy, and G; € M¢[N]
for every j =1,...,m. Clearly H1U...UH, UFE;U...UFE, is initial segment of

GiU...UG,UF U...UF, and since ¢ < £ we have that ((,...,(,&1,...,&)
~———

m—times
has property (7') by the inductive assumption, whence H; = G for j =1,...,m
and F; = F; fori=1,...,n.

Case 2: £ is a limit ordinal. Let ({;) be the strictly increasing sequence
of successor ordinals with supy (, = ¢ that defines the family M¢[N]. Since
m =min H = min G = m we have H,G € M¢, [N]. Since ¢, < ¢ the (n+1)—
tuple (¢m,&1,--.,&n) has property (T'), by the inductive assumption. Therefore
H=Gand F; =F; fori=1,...,n. The proof is complete. O

Lemma 2.2.3. The n-tuple (&1,...,&,) has property (T') for every
neNand &, ...,& <wi.

Proof. By induction on < w; we prove that (§) has property (T"). For
¢ =0 is trivial. Now, let 1 < & < wy such that the 1-tuple (¢) has property (7)
for every ¢ < €.
If ¢ = ( + 1, where { < w; then (¢) has property (7') and therefore, by
Lemma 2.2.2, ((,..., () has property (T') for every j € N. By using the definition
—
J—times
of the property (7') we prove that (§) has property (7).
If £ is a limit ordinal and ({) a strictly increasing sequence of ordinals
with supy, (x = £ then the 1-tuple (¢;) has the property (T') for every j € N.
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By using the definition of the property (T') we obtain that the 1-tuple (£) has
property (7).

Therefore, by Lemma 2.2.2, (&,...,&,) has property (1') for every
&, & <wi. O

Proof of Theorem 2.1. It is immediate by Proposition 2.2 and
Theorem 1.10. O

The following theorem is an other form of Theorem 1.3. By the proof of
Theorem 2.3 we obtain an alternative proof of Theorem 1.3.

Theorem 2.3. Assume that the families S¢, § < w1 of finite subsets of
N have the generalized Schreier property. Let F be an hereditary family of finite
subsets of N, € < wi, N € [N] and § a positive real number such that for every
N’ € [N] there exist H € M¢[N'] and F € F with a%(H) > 4.

Then there exists a strictly increasing sequence (ny) of elements of N such
that

{mj:jeE}eF for all E€S;.

The proof of the above theorem requires the following lemmas.

Lemma 2.3.1. Let ( <wj, N €[N}, d >0 and 0 < ¢ <. Then for
every ordinal § with ¢ < & < wy and L € [N] there exists L¢ € [L] satisfying the
following property:

For every H € Mg¢[L¢] and F € [N]<¥ with a%(H) > § there exists
H' € M¢[L¢] such that H C H and a%(H) >0

Proof. Fix ( <wj, N € [N]. We shall prove it by induction for £ greater
than ¢, every L € [N], 6 > 0 and 0 < §' < §. Consider these next cases:

Case 1: £ =n+ 1, where n < wy. Indeed, if N € [N], L € [N], § > 0 and
0 < ¢’ < 6 then there exists L, € [L] satisfying the conclusion for the ordinal 7.
We set L¢ = L, and it is obvious that for every H = Hy; U ... U H,,, € M¢[L¢],
where Hy, ..., Hp, € My[L¢] with min H; =m, Hy < ... < Hy, and F € [N]<¥
with a$,(H) > & there exists ip € {1,...,m} such that aL(H;,) > & and so, by
the inductive assumption, there exists H' € M¢[L¢] such that H' C H;, and
aS,(H') > &

Case 2: & is a limit ordinal. Fix the strictly increasing sequence (&) of
successor ordinals such that sup, &, = £ that defines the family M¢[N]. Since
each &, is successor ordinal it has the form &, = (, + 1.
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Choose Lo € [N] with min Ly = mq, where m; € N with m; > 2, (, > ¢

1 6—4
and — <
my

my = min Li_q then (my) is strictly increasing and Ly = L, for N = Ly_q,
S+

. We inductively choose Lo O L1 O ... D L O ... such that if

6= and ¢§'.

Claim. The set {my :k=1,2,...} is the desired L¢.

Indeed, let H € M¢[L¢] and F € [N]<“ with a5,(H) > 6. Then H €
Mg, [L¢], where m,, = min H. Since &, = Gn, + 1 there are Hy,..., Hy,, €
Me,. [L¢] such that min Hy = my,, Hy < ... < Hp and H = H U...UH,,,.
Then

6 < af(H) = afy"™ (H) = — (Z ay ”<HZ->>
™ \i=1
1 ™ 1 5+
and hence m—m;a%’”” (Hi) 26— o S

5+ 5+
+ . It is clear that min H;, > m,, and +

. Then there exists 2 < ig < m,,

such that a%’””(HZ- ) > > 4.

Hence H;, € M, [Ly] and hence there exists H' € M¢[Ly] such that a%(H ">
0" and H' C H;,. This completes the proof of Lemma. O

The next Definition and Lemmas 2.3.3, 2.3.4 are based in the method of
double induction created by Prof. Negrepontis and the author (cf. [12] or [15,
Def. 3.6, Lemma 3.7]).

Definition 2.3.2. Assume that the families S¢, § < wy of finite subsets
of N have the generalized Schreier property. Forn € N and &1, ...,&, < w1 we say
that the n-tuple (&1, ...,&,) has property (x) if whenever F is a hereditary family
of finite subsets of N, N € [N] and § a positive real number such that for every
Hy € Mg [N],...,H, € Mg, [N] with Hi < ... < Hy, there exists F € F with
aii (H;) > 0 for every i =1,...,n then there exists a strictly increasing sequence
(my) of elements of N such that {m; : j € Ul E;} € F forall Ey € S, ..., E, €
8¢, with By < ... < Ej.

Lemma 2.3.3. If (&1,...,&) has property (x) then (§,&1,...,&,) has
property (x) for every £ < wy.

Proof. We proceed by induction on & < wj.

Step 1: £ = 0. Assume that (&1,...,&,) has property (%) and we shall
show that (0,&1,...,&,) has property (x). Indeed, let F be a hereditary family
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of finite subsets of N, N € [N] and 0 a positive real number such that for every
m € N, H € Mg [N],...,H, € Mg, [N] with m < Hy < ... < H, there exists
F € F with a%({m}) > § and aii(Hi) > ¢ forevery i =1,...,n.

We set m; = minN, Ny = (m) = N, N{ = {m € N : m > mq}
and G = {F € F : minF > my,{m1} UF € F}. By the hypothesis, for
every Hy € Mg [N],...,H, € Mg, [N] with m; < Hy; < ... < H, there exists
F € F such that a%({m1}) > § and aii(Hi) > ¢§ for every ¢ = 1,...,n. Since
a%({m1}) = xr(mi) > 4 it follows m; € F. Also the set G = F N N| belongs to
Gy and ag(HZ-) = aii(HZ-) for every i = 1,...,n. Because (&1,...,&,) has property
(*) there exists a strictly increasing sequence Ny = (mZ) of elements of N{ such
that

{m? JEeUL Bt eG
for every By € ¢, ..., By € S, with By <... < E,.
By induction on j > 1, we can find a strictly increasing sequence N; =

(mi) of elements of N such that N4 is subsequence of N; and setting m; = m’

J
and G; ={F € F :min F > mj,{m;} UF € F} we get
{miJrl tke UL B} eg;

for every Ey € S¢,,...,Ep € S¢, with By < ... < E,. By [3, Lemma 2.1.8(b)], if
{p1,...,pr} € Sa, where o < wy, and q1 > p1,...q\ > px then {q1,...,q\} € Sau.
The proof of Step 1 can be finished by taking the sequence (my) and using the
above fact.

Step 2: Let 1 < £ < wi such that the conclusion of Lemma holds for
every ¢ < &. We shall prove that it holds for &.

Indeed, we assume that (&1,...,&,) has property (*) and we shall prove
that (§,&1,...,&,) has property (x). Let F be a hereditary family of finite subsets
of N, N € [N] and ¢ > 0 such that for every H € M¢[N],H; € M¢,[N],...,H, €
Mg, [N] with H < Hy < ... < Hj, there exists F' € F such that a%(H) > ¢ and
aii(Hi) > § for every i =1,...,n. Let ¢ with 0 < ¢’ < 4.

Consider the next cases:

Case 1: £ = (+ 1, where ( < wi. Then ¢ < £ and so, by the inductive
assumption, (¢,...,(,&1,...,&,) has property (k) for every j € N.

~—

j—times
Claim. For every j € N and for every N’ € [N] there exists N” € [N']

such that for every Gi,...,Gj € M¢IN"|,H € Mg, [N"],...,H, € Mg, [N"]
with Gh < ... < Gj < Hy < ... < H, there exists F' € F such that a%(G,\) >0
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forA=1,...,j anda%(Hi)Zé/forz':l,...,n.
Proof of Claim. Let j € N and N’ € [N]. We set
Pr = {U_,GyUUL H;: Gy,...,Gj € M[N'], Hy € Mg, [N'],..., H,

€ Mg, [N'] with Gy <...<G; <H; <...<H, such that there exists

F e F with a%(G,\) > ¢ and aii(Hi) > ¢ for every A\=1,...,5, i=1,...,n}

and Py = [N']<¥“ \ Py. {Py, P2} is a partition of [N']<“. By Theorem 2.1, it
is enough to show that for every N” € [N'] there exist G1,...,G; € M¢[N"],
Hy € Mg [N"],...,H, € Mg, [N"] with G; < ... < G; < Hy <...< H, such
that there exists F' € F with

a%(GA)Zél for A\=1,...,5 and aii(Hi)zd’ for t=1,...,n.

Indeed, let N” € [N']. We choose k; € N” with ki <§—0. Let G =

J
GiU...U ij S Mg[N”], where min G = ,I{Jj, Gq,... ,ij S MC[N”] and G1 <
o< ij, and let Hy € Mél[N”],...,Hn € Mgn[N”] with G < Hy < ... < H,.
Then there exists F' € F such that

a%(G) > ¢ and aii(Hi) > ¢ for every i=1,...,n.

We claim that [{1 <A <E;: a%(G,\) > 0’} > j. Indeed, we assume that
{1 <A <kj:d5%(Gy) > 8} < j. Then

ks
1 & j ki—7j
(5<a5FG _——E aCFG — =4 & (5—5/4—5/——(5
( ) kj A=1 ( )\)<kj kj = ’

a contradiction. This completes the proof of Claim. O

By using that (¢,...,(,&1,...,&,) has the property () for every j € N
N—_—

j—times

and using the claim we can find strictly increasing sequences N; = (mi), jeN
of elements of N such that for every j € N, N, is subsequence of IN; and {m?C :
ke U_ ExUUL F} € F for every By,...,E; € S, Fi € S¢,,..., Fy € S,
with By < ... < Ej < F} < ... < F,. The proof of Case 1 can be finished by
taking the diagonal sequence {m¥ : k =1,2,...} and using [3, Lemma 2.1.8(b)].

Case 2: £ is a limit ordinal. Let ((x) be a strictly increasing sequence
of ordinals with supy (x = £. By the inductive assumption, ((,&1,...,&,) has
property (x) for every k € N.

Claim. For j € N, N’ € [N] there exists N" € [N'] such that for every
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H € M[N"],Hy € Mg [N"),....,H, € Mg, [N"] with H < Hi < ... < H,
there exists F' € F with

af(H) >0 and afi(H) > 8 for every i=1,....n.

Proof of Claim. Let j € N and N’ € [N]. By Theorem 2.1, it
is enough to show that for every N” € [N'] there exist H € M, [N"],H; €
Mg, [N"],...,Hy, € Mg, [N"] with H < Hy < ... < H, and there exists F € F
with a%(H) > ¢ and aii(Hi) > ¢ foreveryi=1,...,n.

Indeed, let N” € [N']. By Lemma 2.3.1, there exists L € [N”] such that
for every H € M¢[L] and F € F with a%(H) > § there exists H' € M¢,[L] such
that H' C H and a$(H') > &'. Choose H € M¢[L], Hy € Mg [L],...,H, €
Mg, [L] with H < Hy < ... < H,. By the hypothesis there exists F' € F such
that a%(H) > § and a%(Hi) > 0 for every i = 1,...,n. For H fix H € M¢,[L]
such that H' C H and a%(H/) > ¢ Since H C H and H < H; < ... < H,, we
have H' < Hy < ... < H,. This completes the proof of Claim. O

We set My = M. By using that for every j > 1, (¢;,&1,...,&) has
property (*) and using the claim we can find a subsequence M; = (mfc) of M;_4
such that {m] :k € EUUL F;} € Fforall E€ S, Fi € Sy, ..., Fy € S, with
E < Fy <...<F, . The proof of Case 2 can be finished by taking the diagonal
sequence {mf : k =1,2,...} and using again [3, Lemma 2.1.8(b)].

Lemma 2.3.4. The n-tuple (&1,...,&,) has the property (x) for every
ne€Nand &,...,& <wi.

Proof. By induction on £ < wq, we prove that (£) has property (x). For
¢ = 0 is trivial. Now, let 1 < £ < w; such that the 1-tuple (¢) has property (x)
for every ¢ < €.
If ¢ = (+1, where ¢ < w; then ({) has the property (%) and therefore, by
Lemma 2.3.3, (C, ..., () has property (x) for every j7 € N. By using the definition
Y
J—times
of the property (x) and a diagonal argument we prove that (£) has property (x).
If ¢ is a limit ordinal and ({) a strictly increasing sequence of ordinals
with supy (r = £ then the 1-tuple (¢;) has the property (x) for every j € N.
Using the definition of the property (*) and a diagonal argument we obtain that
the 1-tuple (£) has the property (). Therefore, by Lemma 2.3.3, (&1, ...,&,) has
property (x) for every &1,...,&, <wi. O
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Proof of Theorem 2.3. We set
P1={H € M¢[N]: there exists F € F such that a%(H) >0}

and Py = M¢[N]\P1. {P1, P2} is a partition of the set M¢[N]. By the assumption
P1 N M¢[N'] is nonempty for every N’ € [N]. Therefore, by Theorem 2.1, there
exists N’ € [N] such that for every H € M¢[N’] there exists F' € F such that
a%(H ) > 0. Also the 1-tuple (&) has property (*) by Lemma 2.3.4. Hence there
exists a strictly increasing sequence (my) of elements of N’ such that {m; : j €
F} € F for every F € S¢. O

Proposition 2.4. Let (fx) be a sequence of real-valued functions defined
on a set X, 0 a positive real number and & < wy. Then for every N € [N] there
exists N' € [N] such that

either ||a*((fx); H)|loo < 0 for every H € M¢[N');

or |af((fx); H)lloo = 0 for every H € M¢[N'].
Proof. We set
Pr={H € M[N] : [[a*((fr); H)]lo < 0}

and Py = [N]|<“ \ P;. By Theorem 2.1, there exists N’ € [N] such that either
M¢[N'] € Py or M¢[N'] € Py. The proof is complete. [

Theorem 2.5. Let (fx) be a sequence of real-valued functions defined
on a set X, M € [N] and & < wy. Then there exists N € [M] such that

either (1) for every strictly increasing sequence (Hy) of members of M¢[N] the
sequence gn = a((fx); Hn), n € N converges uniformly to zero;

or (2) does not exist a strictly increasing sequence (Hy) of members of M¢[N]
such that the sequence g, = a*((fx); Hn), n € N converges uniformly to zero.

Before to prove this theorem we shall use a method created by Mer-
courakis in [14]. This method consists in two next lemmas.

Lemma 2.5.1. Let (fi) be a sequence of real-valued functions on a set
X, Ny € [N] and £ < wy. Suppose that every N € [Ny| has the following property:

(**) for each § > 0 there exists N5 € [N] such that ||a®((fi); H)|leo < 0
for all H € M¢[Ns].

Then there exists N € [Ns| such that for every strictly increasing sequence
(Hy,) of members of M¢[N] the sequence g, = a*((fx); Hn), n € N converges
uniformly to zero.



On averaging null sequences of real-valued functions 97

Proof. By our assumption applied to N = Ny and § = 1, there exists
N1 € [No] such that [la®((fx); H)||oo < 1 for all H € M¢[N1]. We proceed
inductively and find a decreasing sequence of infinite subsets of Ng N1 2 Ny D
... 2 N, D ... such that for every n =1,2,... we have,

1
16 ((fx); H)lloo < — for all H € Me[N,]

We choose a strictly increasing sequence m; < mo < ... < my, < ... of positive
integers such that m, € N, for all n = 1,2,.... We claim that N = {m,, : n =
1,2,...} is the desired set. Indeed, let (H,) be a strictly increasing sequence of

1
elements of M¢[N], § > 0 and ng € N such that — < 6. Then there exists n; € N
o

1
such that H,, € M¢[N,,] for every n > ny and hence ||a*((fx); Hn)llowo < — < 0
no

for every n > ni. The proof of our Lemma is complete. 0O

Lemma 2.5.2. Let (fi) be a sequence of real-valued functions on a set
X, M € |N] and £ < wy. Suppose that there exists Ny € [M] not having property
(**) (stated in the previous lemma). Then there exists N € [M] and 6 > 0 such
that ||a*((fx); H)|loo > 6 for every every H € M¢[N].

Proof. Since Ny does not have property (**) there exists 6 > 0 such
that for every N € [Np] there exists H € M¢[N] such that ||a®((fx); H)||oo > 0.
Then from Proposition 2.4, there exists N € [Ng] such that ||a®((fx); H)|leo > &
for every H € M¢[N], which finishes the proof of the lemma. O

Proof of Theorem 2.5. Suppose that every N € [M] has property
(%) of Lemma 2.5.1, then (according to this lemma) there exists N € [M] such
that for every strictly increasing sequence (H,,) of elements of M¢[N] the sequence
gn = a*((fx); Hy), n € N converges uniformly to zero, namely we get (1). If there
exists No € [M] not having () then we get (2) by Lemma 2.5.2. The proof of
Theorem 2.5 is complete. O

Proposition 2.6. Let K be a compact metric space, (f) a uniformly
bounded sequence of continuous real-valued functions defined on K and & < w
with v((fx)) < w&. Then for every M € [N] there exists N € [M] such that
for every strictly increasing sequence (H,) of members of M¢[N] the sequence
dn = & ((farg1 — for); Hn), n € N converges uniformly to zero.

Proof. Let M € [N]. By Lemma 2.5.1, it is enough to prove that for every
§ >0 and N € [M] there exists N5 € [N] such that ||a*((fors1 — for); H)|loo < 0
for all H € M¢[Ns]. Indeed, we assume that there exists 6 > 0 such that for
every N’ € [N] there exists H € M¢[N'] such that ||a*((fort1 — for); H)|lso > 6.
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§
For every x € K let F, = {k € N : |fory1(x) — for(z)| > 5} Then for
every H € M¢[N] and x € K we have

(o = ki H)(@)] < 5 + o, (E)sup ).

So, for every N’ € [N] there exist H € M¢[N'] and = € K such that
¢ 1)
a5 (H) > —————.
) 2 e Tl
Therefore, by Theorem 2.3, there exists a strictly increasing sequence

my,) of elements of N such that for every F' € S¢ there exists x € K with
y 3

| fomp+1(z) — fom, (x)] > g for every k € F.
We set n; = 1 and nop = 2my, nogr1 = 2myi+1 for every k € N. Therefore,
by Proposition 1.15, K‘gg(f ) # @ and hence y((fz)) > wt. O
2\
Proposition 2.7. Let K be a compact metric space, (fi) a sequence of
continuous real-valued functions and 1 < & < wy such that for every subsequence
(f7.) of (fx) there exists a strictly increasing sequence (Hy) of members of Mg¢[N]
such that the sequence g, = af((fé]CJrl — f5.); Hn), n € N converges uniformly to
zero. Then there exists a subsequence (f1) of (fi) such that v((f})) < w®.

Proof. Assume that v((f])) > w® for every subsequence (f;) of (fx).

Claim.  There exist € > 0 and a subsequence (f) of (fx) such that
Y((f{),€) > Wt for every subsequence (f{!) of (f}).

Proof of Claim. Assume the contrary. Then for every ¢ > 0 and
for every subsequence (f;) of (f;) there exists a subsequence (f;/) of (f) such
that v((f7),€) < w®. We set My = N. So, by induction on m € N, there exists
a subsequence M, = (n}") of My, such that y((fuy), L) < wf. Then for the
sequence f; = fn§7 k € N we have v((f})) < w®, a contradiction. The proof of
Claim is complete. O

For every a < wy we set S, = {F € [N]<¥ : F' C H for some H € M,[N]}.
The families {S,}a<w, have the generalized Schreier property. By Claim and
Proposition 1.16, there exists a subsequence (f;) of (f;) such that for every
F={k <...<k\} €8 there exists xr € K with

€
|\ forin(xr) — for(zr)] > 7 for all keF.

For every = € K we set

Fo={k e N: B (@) - fol@)l > 7}
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Ff={keN: firn(@ - @) > 5}

and
€

Fr = {kheN: (@) - @) < -7}
So, for every H € M¢[N] there exists + € K such that a%z (H)=1. Also

a5 (H) = Q;J(H) + a;z_ (H)

for every € K and H € M¢[N]. Therefore for every N € [N] and H € M¢[N]
1 1

there exists x € K such that a§+(H) > 5 or a;, (H) > 7 By using Theorem

2.1, there exists N € [N] such that

9

either for every H € M¢[N] there exists € K with a; + (H) >

N~ N =

or for every H € M¢[N] there exists x € K with ai_ (H) >

T

By Theorem 2.3, there exists a strictly increasing sequence (my) of elements of
N such that

either for every F' = {k1 < ... < ky} € S¢ there exists + € K such that
€ .
fémkﬁl(az) — fémkz (x) > 1 for every 1 <7 < );

or for every F' = {k1 < ... < ky} € S there exists x € K with f5,, ,(z) —

fémk(ﬂf) < —i for every 1 < i < \.

So, \|a§((fémk+1 — fémk);H)HOO > ¢ for every H € M¢[N]. We set fi" = fi,
]éé/k;-i—l = fhmyr1 and fyy, = f3,, for every k € N. Then [|a®((fyj4y — for); H)lloo =
1 for every H € M¢[N], a contradiction by the hypothesis. This finishes the

proof of Proposition. O

Corollary 2.8. Let K be a compact metric space, 1 < & < wyi and
(frx) € C(K) pointwise converging to f.

(i) If for every subsequence (f[) of (fi) there exists a strictly increasing se-
quence (Hy) of members of M¢[N] such that the sequence g, = af((fék,+1 —
for); Hn), n € N converges uniformly to zero then B(f) < wt.
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(ii) If f is bounded and B(f) < w® then there exists a sequence (hy) of convex
blocks of (fx) (i.e., hi € conv((fp)p>k) for all k) such that for every M € [N]
there exists N € [M] such that for every strictly increasing sequence (Hy,)
of members of M¢[N] the sequence g, = a*((hog+1 — hor); Hn), n € N
converges uniformly to zero. (Here conv((¢r)) denotes the set of convex
combinations of the ¢ ’ s.)

Proof. (i) By Proposition 2.7 there exists a subsequence ( f}) of (f) with
Y((f1)) < ws. Also B(f) <~((ff)) by Proposition 1.1 of [9]. Hence 3(f) < w®.

(ii) By using [9; Theorem 1.3] or the proof of [11; Theorem 17] we prove
that there exists a sequence (h;) of convex blocks of (f) with v((hy)) < w.
Therefore, by Proposition 2.6, the conclusion is immediate. O

Corollary 2.9. Let K be a compact metric space and 1 < & < w;y such
that for every sequence (f) C C(K) pointwise converging to zero there exists a
strictly increasing sequence (Hy) of members of M¢[N| such that the sequence
gn = a((fr); Hn), n € N converges uniformly to zero. Then B(f) < w® for every
Baire-1 function f on K.

Proof. Let (fx) C C(K) pointwise converging to f. Then the sequence
(fok+1 — for) converges pointwise to zero. So, by the hypothesis, for every sub-
sequence (f;) of (f) there exists a strictly increasing sequence (H,) of members
of M¢[N] such that the sequence gn, = a*((f}41 — f4); Hn), n € N converges
uniformly to zero. Therefore, by Corollary 2.8 (i), B(f) < ws. O

Corollary 2.10. Let E be a Banach space, A = (z,) C E, M € [N] and
&€ < wy. Then there exists N € [M] such that

either lim ||€X - A|| = 0 for every L € [N];
n—oo
or does not exist L € [N] such that lim, . |~ - A = 0.

Proof. We consider the elements x,, n € N, as functions on the dual
unit ball. So, by using Theorem 2.5, Proposition 1.5 and Remarks 1.8(ii), we get
the conclusion. O

The next Proposition is a result stronger than a theorem of Ptak in [17].
Proposition 2.11.  Let (fx) be a uniformly bounded sequence of real-

valued functions defined on a set X, § > 0 such that for every & < wy there
exists M € [N] such that for every N € [M] there exvists H € M¢[N] with
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laS((fr); H)||oo > 0. Then there exists a strictly increasing sequence (my) of
positive integers such that for every k € N there evists x € X with |fm,(x)| > g
for every j=1,... k.

Proof. For every £ < w; there exists M € [N] such that for every

8
N € [M] there exist H € M¢[N] and € X such that a% (H) > ———,
: 2supy [ frlloo

where F, = {k eN:|fi(x)] > g}
Therefore, by Theorem 2.3, for every & < wp there exists a strictly in-
creasing sequence (mi) of positive integers such that for every F' € S there
exists z € X with ‘fmi (x)| > g for every k € F.
Consider the tree

o
T<(fk.),§> = {(MIu{(l,ky,...,ky) N1 < Ky < ... <k, and
o
there exists z € X so that |fg, (z)| > 3 foralli=1,...,n}.

5\
Therefore, by Lemma 2.6 of [10], we have (T((fk), §)> # () for every

)
¢ < wi. So, by Proposition 1.12, the tree T ((fk), 5) is not well-founded, i.e.,
there exists a strictly increasing sequence m; < ... < my < ... of positive

]
integers such that for every k € N there exists x € X with | fy,, (z)| > 3 for every
j=1,..., k. This finishes the proof of Proposition. 0O

The next Proposition is a result stronger than Mazur’s theorem in [13].

Proposition 2.12. If X is a pseudocompact topological space (i.e., if
(Uy) is a decreasing sequence of non-empty open subsets of X then (\o— clU, #
D) then for every uniformly bounded sequence (fi) C C(X) pointwise converging
to zero with infy, || fxl|lco > 0 there exists 1 < & < wy such that for every M € [N]
there exists N € [M] such that for every strictly increasing sequence (Hy,) of
members of M¢[N] the sequence g, = as((fx); Hy), n € N converges uniformly
to zero.

Proof. Let (fx) € C(X) uniformly bounded and pointwise converging

to zero.

Claim 1. For every § > 0 there exists £ < wy such that for every M €
[N] there exists N € [M] such that ||a®((fr); H)|leo < & for every H € M¢[N].
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Proof of Claim 1. Assume the contrary. Then there exists § > 0
such that for every & < w; there exists M € [N] such that for every N € [M]
there exists H € M¢[N] with ||a®((fx); H)|lo > 0. So, by Proposition 2.11, there
exists a strictly increasing sequence (my) of positive integers such that for every
k € N there exists x;, € X with |f, (21)] > 3 for every j = 1,...,k. For every
k € N we set

Uk:{1‘6X:|fmj(ac)\>é for jzl,...,k}.

2
For every k € N the set Uy is open and non-empty because fy,; is continuous
for 1 < j<kandaxp € Ug. AlsoU; DUy D ... O U D .... Therefore, by

the hypothesis, there exists g € (), clUx. By the continuity of f,,,’s we have

| fny, (x0)| > = for every k € N, a contradiction because (f;) converges pointwise

to zero. This finishes the proof of Claim 1. O
For every n € N we choose [,,, m,, € N with n < m,, <[, such that

1. 1 1
—inf [ filloo = —sup || fulloc > 7~
n k My ke ln

1
Applying Claim 1 for § = e N we find a sequence (§,,) of countable
n

ordinals such that for every n € N and M € [N] there exists N,, € [M] such
1
that || ((fx); H)|loo < T for every H € Mg, [N,]. We set & = sup,, &,. Clearly

& < wy.

If € = 0 then &, = 0 for every n € N and so, by using Lemma 2.5.1,
for every M € [N] there exists N € [M], N = (nj) such that the sequence (f,,)
converges uniformly to zero, a contradiction because infy, || fx|lcoc > 0. Hence & > 1.

Claim 2. For everyn € N and M € |N] there exists L,, € [M] such that

[a€(CFe): H)low < 2 sup il
k

for every H € M¢[Ly)].
Proof of Claim 2. Assume the contrary. Then there exists n € N
and M € [N] such that for every L € [M] there exists H € M;¢[L] such

3
that ||a((fx); H)|lso > —sup||fxlloo- By Proposition 2.4, there exists L € [M]
n g

3
such that [|a®((fi); H)|loo > —sup || felleo for every H € M¢[L]. Then for ev-
n g
2
ery H € Mg¢[L] there exists x € X such that a%I(H) > —, where F, =

3
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1
{k; eN:|fi(z)] > —supr)\Hoo}. By using Lemma 2.3.1 and Theorem 2.1,
Mp A

there exists N € [L] such that for every H € Mg, [N] there exists € X with

1
a (H) > ~.

Since for every x € X and H € Mg, [N] we have
. 1
o ((fi); H)(@)| = a, (H) inf || felloo — —— sup | filc
My k
it follows that for every H € Mg, [N] there exists € X such that

1 1 1
6 ()i )@ 2 - inf [ full = 2 sup | ullc > -

1
Hence [|a® ((fx); H)|| > T for every H € Mg, [N], a contradiction. This

finishes the proof of Claim 2. O
By using Claim 2 and Lemma 2.5.1 we get the desired conclusion. O
Remark 2.13. The conclusion of Proposition 2.12 fails if X is an
arbitrary topological space. For example, let X = N with the discrete topology.
For every k € N we consider the function f; : N — {0,1} where fx(n) = 1 if
n > k and fr(n) = 0 if n < k. Then (f;) converges pointwise to zero, but
|a®((fx); H)|loo = 1 for every ¢ < wy and H € M¢[N].

Acknowledgement. I am grateful to referee for his (her) kind correc-
tions and helpful comments.
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