


Serdica Math. J. 26 (2000), 177-206

PERTURBED PROXIMAL POINT ALGORITHM WITH

NONQUADRATIC KERNEL

M. Brohe, P. Tossings

Communicated by A. L. Dontchev

Abstract. Let H be a real Hilbert space and T be a maximal monotone
operator on H .

A well-known algorithm, developed by R. T. Rockafellar [16], for solving
the problem

(P) ”To find x ∈ H such that 0 ∈ Tx”

is the proximal point algorithm.

Several generalizations have been considered by several authors: intro-
duction of a perturbation, introduction of a variable metric in the perturbed
algorithm, introduction of a pseudo-metric in place of the classical regular-
ization, . . .

We summarize some of these extensions by taking simultaneously into
account a pseudo-metric as regularization and a perturbation in an inexact
version of the algorithm.
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1. Introduction and preliminaries. Let H be a real Hilbert space
with inner product 〈., .〉 and associated norm ‖.‖.

Maximal monotone operators on H have been extensively studied because
of their role in convex analysis. In this context, a fundamental problem consists
in

(P) ”To find x ∈ H such that 0 ∈ Tx.”

A well-known approach for solving problem (P) is to use the proximal

point algorithm developed by R. T. Rockafellar [16]. This algorithm generates,
from any starting point y0 ∈ H, a sequence (yn) in H, by the scheme

yn = JT
λn

yn−1 + en, ∀ n ∈ N
∗,

where (λn) is a sequence of positive real numbers bounded away from zero,
(en) a sequence in H taking into account a possible inexact computation and
JT

λ = (I+λT )−1 the resolvent operator associated with T with parameter λ > 0 1.
This is a single-valued nonexpansive mapping defined everywhere on H:

‖JT
λ x − JT

λ y‖ ≤ ‖x − y‖, ∀ x, y ∈ H,

and such that

JT
λ x = x ⇔ 0 ∈ Tx.

In a first time, B. Lemaire [10] studied the perturbation of this algorithm
for T = ∂f , the subdifferential of a proper closed convex function on H.

Inspired by H. Attouch and R. J. B. Wets’ work [2], P. Tossings [17]
introduced the variational metric between two maximal monotone operators T 1

and T 2 with parameters λ > 0 and ρ ≥ 0:

δλ,ρ(T
1, T 2) = sup

‖x‖≤ρ

∥

∥

∥JT 1

λ x − JT 2

λ x
∥

∥

∥ ,

and an associated notion of convergence.

Thanks to this notion of convergence, P. Tossings [18] studied a perturbed
version of the proximal point algorithm, which generates, from any starting point
x0 ∈ H, a sequence (xn) in H, by the recursive rule

xn = JT n

λn
xn−1 + en, ∀ n ∈ N

∗,

the maximal monotone operators T n approaching T in a certain sense tied to the
variational metric.

Another classical algorithm for solving initial problem (P) is the A. Re-
naud and G. Cohen’s Auxiliary Problem Principle [14]. In the symmetric case,

1We will sometimes call it the “classical” resolvent operator.
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their algorithm generates a sequence (xn) by the iterative scheme

xn = (∇h + λnT )−1∇h(xn−1), ∀ n ∈ N
∗,(1)

where h denotes a real-valued strongly convex function, assumed to be Gateaux
differentiable. Using the nonlinear change of coordinates ∇h(xn) = un (n ∈ N),
the scheme (1) may be rewritten as

un =
(

I + λnT (∇h)−1
)−1

un−1, ∀ n ∈ N
∗.(2)

At this point, scheme (2) is nothing but the proximal point algorithm
applied to the operator T (∇h)−1. However, the composition of monotone opera-
tors fails to be monotone, in general. In consequence, the results obtained in the
context of the proximal point algorithm are not directly applicable.

When T is equal to ∂f , the subdifferential of a lower semicontinuous
convex function f , then iteration (1) can be rewritten in the following equivalent
form, studied by S. Kabbadj [9],

xn = Argmin
x∈H

{

f(x) +
1

λn
Dh(x, xn−1)

}

, ∀ n ∈ N
∗,(3)

where

Dh(x, y) = h(x) − h(y) − 〈∇h(y), x − y〉, ∀ x, y ∈ H.(4)

This equality appears as a generalized proximal rule, based upon a Mo-
reau-Yosida regularization, since

Dh(x, y) =
1

2
‖x − y‖2 if h(x) =

1

2
‖x‖2, ∀ x, y ∈ H.

One calls h a Bregman function if it is defined on a nonempty open convex
subset S of H and if it has certain additional properties. In his original paper [3],
Bregman gave a set of axioms describing D-functions and offered (4) as one mean
of constructing them. The term “Bregman function” was coined by Y. Censor
and A. Lent [5].

The aim of this paper is to introduce, for a strongly convex function h

defined on a nonempty open convex subset S of H, an error term and a pertur-
bation, in the symmetric case of A. Renaud and G. Cohen’s rule, i.e.

xn ∈ S,
∥

∥

∥xn − (∇h + λT n)−1∇h(xn−1)
∥

∥

∥ ≤ εn, ∀ n ∈ N
∗,

where (εn) is a sequence of positive real numbers, introduced to take into account
a possible inexact computation.

This rule is equivalent to

xn ∈ S, xn = (∇h + λT n)−1∇h(xn−1) + en, ∀ n ∈ N
∗,(5)
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where (en) is a sequence of H satisfying

‖en‖ ≤ εn, ∀ n ∈ N
∗.

In the next section, the most important properties of function Dh(x, y)
are presented as well as a definition of the generalized resolvent operator and
his properties. In Section 3, we establish, as a preliminary result, the weak
convergence of the sequence (xn) generated by the nonperturbed rule

xn ∈ S,
∥

∥

∥xn − (∇h + λT )−1∇h(xn−1)
∥

∥

∥ ≤ εn, ∀ n ∈ N
∗,

where (εn) is a sequence of positive real numbers. As in the nonperturbed case,
this rule takes the equivalent form

(PRh) xn = (∇h + λT )−1∇h(xn−1) + en, ∀ n ∈ N
∗.

Finally, Section 4 presents a convergence theory for iterates of the form
(5), analogous to the R. T. Rockafellar’s one for the nonperturbed version.

In Sections 3 and 4, assumptions on the error terms are formulated on
the sequence (en). Obviously, they can be expressed, more restrictively, in terms
of the sequence (εn).

At the end of this paper, Theorem 16 appears as a particular case of
Theorem 19. However, the technic for proving Theorem 19 consists precisely in
generating an auxiliary sequence satisfying assumptions ensuring the convergence
in the nonperturbed case. Therefore, it appears necessary to establish Theorem
16 in a first time.

The convergence of a sequence (xn) generated by the rule (PRh) has
been studied recently by J. Eckstein [8]. He reduces hypothesis on the auxiliary
function h and assumes that h is “only” strictly convex (and satisfies other sub-
ordinated assumptions) on a nonempty open convex subset S. Nevertheless, he
imposes more conditions on the error sequence (en) than us. Our formulation
presents, in addition of the perturbation, the great advantage to assume, on the
error sequence (en), exactly the same hypothesis than in the classical proximal
point algorithm.

2. Pseudo-metric and resolvent operator with nonquadratic ker-

nel. In this section, h will denote a real-valued strongly convex function on S,
with constant α > 0,

h(θx+(1− θ)y) ≤ θh(x)+ (1− θ)h(y)− α

2
θ(1− θ)‖x−y‖2 , ∀x , y ∈ S, θ ∈ [0, 1],

assumed to be Gateaux differentiable on S, a nonempty open convex subset of H.
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2.1.Pseudo-metric associated with h. Under certain conditions,
Proposition 2.1 below, proved in S. Kabbadj [9, Proposition 1.3.6] shows the
equivalence between the pseudo-metric Dh defined by (4) on S×S and the norm
associated with the inner product.

Proposition 1.

Dh(x, y) ≥ α

2
‖x − y‖2, ∀ (x, y) ∈ S × S.

Furthermore, if ∇h is Lipschitz continuous with constant M > 0, then

Dh(x, y) ≤ M

2
‖x − y‖2, ∀ (x, y) ∈ S × S.

Lemma 2.

Dh(x, b) − Dh(x, a) + Dh(b, a) = 〈∇h(a) −∇h(b), x − b〉, ∀ x ∈ S, ∀a, b ∈ S.

Definition 3. A mapping P is said to be firmly nonexpansive for Dh if

its restriction to S takes its values in S and if

Dh(Px1, Px2) + Dh(Px2, Px1) ≤ Dh(Px1, x2) − Dh(Px1, x1)

+Dh(Px2, x1) − Dh(Px2, x2), ∀ x1, x2 ∈ D(P ) ∩ S.

Remark 4.

• The function Dh defined on H×H, coincides with the half of the square
of the distance associated with the norm when h is the half of the square of the
norm.

• In this case, a firmly nonexpansive mapping for Dh is a 1-firmly nonex-
pansive mapping for the norm.

Proposition 5. Let f be a real-valued convex function on H, Gateaux

differentiable, whose gradient ∇f is Lipschitz continuous with constant M > 0.

For all b ∈
]

0,
2

M

[

,
(

I − b∇f
)

is c-firmly nonexpansive with c =
2

bM
−1.

Moreover, if f is strongly convex with constant α > 0, there is β ∈ ]0, 1[
such that

‖(I − b∇f)(x) − (I − b∇f)(y)‖ ≤ β‖x − y‖, ∀ x, y ∈ H.
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P r o o f. The first part of the result is established in B. Lemaire [12,
Lemma 3.2], and gives us

‖(I − b∇f)(x) − (I − b∇f)(y)‖2 +
( 2

bM
− 1

)

‖b∇f(x) − b∇f(y)‖2

≤ ‖x − y‖2, ∀ x, y ∈ H.

For the second part, it suffices to note that the strong monotonicity of ∇f and
the Cauchy-Schwarz’ inequality lead to

‖(I − b∇f)x − (I − b∇f)y‖2 ≤ ‖x − y‖2 +
(

1 − 2

bM

)

b2α2‖x − y‖2,

that is to say the conclusion for

β =

√

1 +
(

1 − 2

bM

)

b2α2. �

Proposition 6. Let T be a maximal monotone operator on H, S a

nonempty open convex subset of H and h a real-valued convex function on S,

Gateaux differentiable on S, with hemicontinuous gradient. If either

(i) S = H or

(ii) S ∩ D(T ) 6= Ø and R (∇h) = H or

(iii) D(T ) ⊂ S,

then the operator ∇h + T is maximal monotone on S ∩ D(T ).

P r o o f. Let A be a monotone operator enclosing ∇h. Since S is open
and convex, we prove, as H. Brezis [4, Proposition 2.4] that A and ∇h coincide
on S. The conclusion follows immediately for the first hypothesis.

For the second ones, let u ∈ Ax, x 6∈ S. The convex separation theorem
ensures the existence of γ ∈ H satisfying 〈γ, x − y〉 < 0, for all y ∈ S. Since
R (∇h) = H, there is y ∈ S such that 〈u − ∇h(y), x − y〉 < 0. This is not
possible since A is monotone and, so, A = ∇h. We conclude by using H. Brezis
[4, Corollary 2.7].

Finally, for the third hypothesis, assume that A is a maximal monotone
operator. H. Brezis [4, Corollary 2.7] involves that A + T is maximal monotone
too and so is ∇h + T over D(T ). �

Proposition 7. Let T be a maximal monotone operator on H, S a

nonempty open convex subset of H and h a real-valued function on S, Gateaux

differentiable on S, such that the sum ∇h + T is maximal monotone. If either

(i) h is a strictly convex function and S is bounded or
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(ii) h is a strongly convex function,

then the operator (∇h + T )−1 is defined over all H. Moreover, the operator

(∇h + T )−1∇h is a firmly nonexpansive mapping for Dh.

P r o o f. For (i), ∇h + T is a maximal monotone operator, with bounded
domain. The conclusion follows from H. Brezis [4, Corollary 2.2] and the strict
monotonicity of ∇h + T . For (ii), see H. Brezis [4].

For the firm nonexpansivity of the above-mentioned operator, use the
monotonicity of the operator T and the Lemma 2. �

Proposition 8. Let P be a firmly nonexpansive mapping for Dh. If ∇h

is Lipschitz continuous with constant M > 0 then

‖Px1 − Px2‖ ≤ M

α
‖x1 − x2‖, ∀ x1, x2 ∈ D(P ) ∩ S.

P r o o f. Three successive applications of Lemma 2 give us, for x1, x2 ∈
D(P ) ∩ S,

Dh(Px1, x2)− Dh(Px1, x1) = −Dh(x2, x1) + 〈∇h(x1) −∇h(x2), Px1 − x2〉,
Dh(Px2, x1)− Dh(Px2, x2) = −Dh(x1, x2) + 〈∇h(x2) −∇h(x1), Px2 − x1〉

and

Dh(x2, x1) + Dh(x1, x2) = 〈∇h(x2) −∇h(x1), x2 − x1〉.
So, we can rewrite the firm nonexpansivity of the mapping P for Dh as

Dh(Px1, Px2) + Dh(Px2, Px1) ≤ 〈∇h(x1) −∇h(x2), Px1 − Px2〉.
The inequality

2〈a, b〉 ≤ γ‖a‖2 +
1

γ
‖b‖2, ∀ a, b ∈ H, ∀ γ ∈ ]0,+∞[,(6)

written with γ = α−1, joined to Proposition 1, implies

Dh(Px1, Px2) + Dh(Px2, Px1) ≤
M2

α
‖x1 − x2‖2, ∀ x1, x2 ∈ D(P ) ∩ S.

The conclusion arises by applying Proposition 1 again. �

2.2. Resolvent operator with nonquadratic kernel.

Definition 9. Let T be a maximal monotone operator on H and λ a

positive number. If one condition of Proposition 6 is satisfied, we can define the

resolvent operator with nonquadratic kernel associated with T , with parameters

h, λ or, more simply, generalized resolvent operator associated with T , with
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parameters h, λ, by

J
h,T
λ = (∇h + λT )−1∇h,

and

A
h,T
λ x =

∇h(x) −∇h(Jh,T
λ x)

λ
the corresponding Yosida approximation.

Consequently, the immediate following properties state.

Proposition 10.

(i) J
h,T
λ and A

h,T
λ are single-valued operators that satisfy

x ∈ S ∩ T−1(0) ⇔ J
h,T
λ x = x, ∀ λ > 0 ⇔ A

h,T
λ x = 0, ∀ λ > 0

and

A
h,T
λ x ∈ T

(

J
h,T
λ x

)

, ∀ x ∈ S, ∀ λ > 0.

(ii)

∇h(x) −∇h(Jh,T
λ x) ∈

(

I + ∇h T−1 1

λ

)−1

∇h(x), ∀ x ∈ S, ∀ λ > 0.

(iii)

J
h,T
λ x = JT

µ

[

µ

λ
∇h(x) + J

h,T
λ x − µ

λ
∇h
(

J
h,T
λ x

)

]

, ∀ x ∈ S, ∀ λ, µ > 0.

2.3. Variational metric associated with h

Convention. From now on, S denotes a nonempty open convex subset

of H and h a real valued strongly convex function, with positive constant α on S,

Gateaux differentiable on S, with Lispchitz and weakly continuous gradient ∇h,

with positive constant M > 0.
Moreover, T and T n (n ∈ N

∗) denote maximal monotone operators on H,

satisfying T−1(0) 6= Ø, D(T ) ⊂ S and one of the following conditions:

(i) S = H,

(ii) S ∩ D(T n) 6= Ø and R(∇h) = H,

(iii) D(T n) ⊂ S.
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Remark 11.

• In finite dimension, the weak continuity of the gradient ∇h is ensured
by the Lipschitz property.

• The hypothesis imposed on h are apparently more restrictive than those
imposed by Bregman, for example. Nevertheless, an appropriate choice of the
function h and the associated parameters allows us to work over any bounded
domain and so to cover the optimal set of any practical problem.

Compared with those realized with the classical proximal point algorithm,
our numerical tests show clearly a significant improvement both in the number
of iterations and in the precision on the obtained solution.

Moreover, in some cases, optimal point, lying on the boundary of the
domain of h, are attained with a surprising facility. This fact recalls us that the
given theoretical conditions are sufficient but not necessary and open the door to
future researches.

Definition 12. Let T 1 and T 2 be two maximal monotone operators on

H, λ > 0 and ρ ≥ 0. The variational metric between T 1 and T 2, associated with
h, with parameters λ, ρ is the semi-distance 2

δh
λ,ρ(T

1, T 2) = sup
x∈S,‖x‖≤ρ

∥

∥

∥J
h,T 1

λ x − J
h,T 2

λ x
∥

∥

∥ .

Proposition 10 (iii), allows us to compare this new metric to the classical
one.

Proposition 13. Let T 1 and T 2 be two maximal monotone operators

on H and ρ ≥ 0. If λ∗, µ > 0 satisfy
µ

λ∗
<

2

M
, then there is a constant C > 0

such that, for all λ ≥ λ∗,

δh
λ,ρ(T

1, T 2) ≤ C λ δµ,ρ0
(T 1, T 2),

for all

ρ0 ≥
[

µ

λ
M +

(µ

λ
M + 1

)M

α

]

ρ +
(µ

λ
M + 1

)(M

α
‖x∗‖ +

∥

∥

∥J
h,T 1

λ x∗
∥

∥

∥

)

,

where x∗ is some point of S.

Moreover, if T 1 has at least one zero x∗, then the minimal value imposed

on ρ0 can be replaced by

(µ

λ
M +

M

α
+

µ

λ

M2

α

)

ρ +
(

1 +
µ

λ
M
)(M

α
+ 1

)

‖x∗‖.

2We simply say generalized variational metric.
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P r o o f. Proposition 10 (iii), involves

δh
λ,ρ(T

1, T 2) ≤ sup
x∈S,‖x‖≤ρ

∥

∥

∥

∥

JT 1

µ

[µ

λ
∇h(x) + J

h,T 1

λ x − µ

λ
∇h(Jh,T 1

λ x)
]

− JT 2

µ

[µ

λ
∇h(x) + J

h,T 1

λ x − µ

λ
∇h(Jh,T 1

λ x)
]

∥

∥

∥

∥

+ sup
x∈S,‖x‖≤ρ

∥

∥

∥

∥

JT 2

µ

[µ

λ
∇h(x) + J

h,T 1

λ x − µ

λ
∇h(Jh,T 1

λ x)
]

− JT 2

µ

[µ

λ
∇h(x) + J

h,T 2

λ x − µ

λ
∇h(Jh,T 2

λ x)
]

∥

∥

∥

∥

.

For the first term of the overestimation, we have, by Proposition 8,
∥

∥

∥

∥

µ

λ
∇h(x) + J

h,T 1

λ x − µ

λ
∇h(Jh,T 1

λ x)

∥

∥

∥

∥

≤
[

µ

λ
M +

(µ

λ
M + 1

)M

α

]

‖x‖ +
(µ

λ
M + 1

)(M

α
‖x∗‖ +

∥

∥

∥J
h,T 1

λ x∗
∥

∥

∥

)

,

so

sup
x∈S,‖x‖≤ρ

∥

∥

∥

∥

JT 1

µ

[µ

λ
∇h(x) + J

h,T 1

λ x − µ

λ
∇h(Jh,T 1

λ x)
]

−JT 2

µ

[µ

λ
∇h(x) + J

h,T 1

λ x − µ

λ
∇h(Jh,T 1

λ x)
]

∥

∥

∥

∥

(7)

≤ δµ,ρ0
(T 1, T 2),

for all ρ0 such that

ρ0 ≥
[

µ

λ
M +

(µ

λ
M + 1

)M

α

]

ρ +
(µ

λ
M + 1

)(M

α
‖x∗‖ +

∥

∥

∥J
h,T 1

λ x∗
∥

∥

∥

)

.

For the second term, the resolvent operator’s nonexpansivity and Propo-
sition 5 imply
∥

∥

∥

∥

JT 2

µ

[µ

λ
∇h(x)+J

h,T 1

λ x−µ

λ
∇h(Jh,T 1

λ x)
]

−JT 2

µ

[µ

λ
∇h(x)+J

h,T 2

λ x−µ

λ
∇h(Jh,T 2

λ x)
]

∥

∥

∥

∥

≤ β
∥

∥

∥J
h,T 1

λ x − J
h,T 2

λ x
∥

∥

∥

(8)
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for

β =

√

1 +
(

1 − 2λ

Mµ

)µ2

λ2
α2.

Consequently, inequalities (7) and (8) give

δh
λ,ρ(T

1, T 2) ≤ 1

1 − β
δµ,ρ0

(T 1, T 2),

for all ρ0 such that

ρ0 ≥
[

µ

λ
M +

(µ

λ
M + 1

)M

α

]

ρ +
(µ

λ
M + 1

)(M

α
‖x∗‖ +

∥

∥

∥J
h,T 1

λ x∗
∥

∥

∥

)

,

where the definition of β allows us to write

1

1 − β
=

1 + β

1 −
(

1 +
(

2 − 2λ

Mµ

)µ2

λ2
α2

) ≤ C λ

for

C =
2

µα2

( 2

M
− µ

λ∗

)

.

For the particular case, since x∗ ∈ (T 1)−1(0) ∩ S if and only if J
h,T 1

λ x∗ =
x∗, we get, from Proposition 8,

∥

∥

∥x∗ − J
h,T 1

λ x
∥

∥

∥ ≤ M

α
‖x∗ − x‖

and, finally,
∥

∥

∥J
h,T 1

λ x
∥

∥

∥ ≤ M

α
‖x‖ +

(

M

α
+ 1

)

‖x∗‖,

for all x ∈ S.
The conclusion follows immediately. �

Proposition 14. Let T n (n ∈ N
∗) and T be maximal monotone opera-

tors on H. If 0 < λ ≤ λn, ∀ n ∈ N
∗ and

lim
n→+∞

δh
λn,ρ(T

n, T ) = 0, ∀ ρ ≥ 0,

then

(P) lim
n→+∞

∥

∥

∥A
h,T n

λn
x − A

h,T
λn

x
∥

∥

∥ = 0, ∀ x ∈ S.

In particular

lim
n→+∞

∥

∥

∥A
h,T n

λn
x
∥

∥

∥ = 0, ∀ x ∈ H such that 0 ∈ Tx.
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P r o o f. The assumption made on δh
λn,ρ and the Lipschitz continuity of

∇h lead us to

lim
n→+∞

∥

∥

∥∇h(Jh,T n

λn
x) −∇h(Jh,T

λn
x)
∥

∥

∥ = 0, ∀ x ∈ S,

and so to the first part of the result, thanks to hypothesis 0 < λ ≤ λn and
Definition 9.

The particular case results from Proposition 10 (i). �

3. Proximal point algorithm with nonquadratic kernel. For prov-
ing weak convergence of the sequence (xn) generated by the rule (PRh), we recall
the following technical lemma proved by B. Polyak [13].

Lemma 15. Let (zn), (εn) and (Cn), n ∈ N
∗, be three sequences of

nonnegative numbers such that

+∞
∑

n=1

εn < +∞ and

+∞
∑

n=1

Cn < +∞.

If there is a range M ∈ N
∗ from which

zn ≤ (1 + Cn)zn−1 + εn,(9)

then (zn) is convergent.

Theorem 16. Assume that problem (P) has at least one solution and

(i) 0 < λ ≤ λn, ∀ n ∈ N
∗,

(ii)
+∞
∑

n=1

‖en‖ < +∞.

Then the sequence (xn) generated by the rule (PRh) weakly converges to some

solution of (P) and satisfies

lim
n→+∞

‖xn − xn−1‖ = 0.

P r o o f. Let x ∈ S be a zero of T . We know that

x = J
h,T
λn

x, ∀ n ∈ N
∗.

By another way, we can write

xn = un + en, ∀ n ∈ N
∗,
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where

un = J
h,T
λn

xn−1, ∀ n ∈ N
∗.

From this, the proof will be separated into four parts.

1 The sequence (xn) is bounded.

The firm nonexpansivity of J
h,T
λn

for Dh, Lemma 2 and the positivity of
Dh imply

Dh(x, xn) ≤ Dh(x, xn−1) + 〈∇h(un) −∇h(xn), x − xn〉, ∀ n ∈ N
∗.(10)

The inequality (6), written with

γ =
α‖en‖

1 + ‖en‖
,3

and Proposition 1 lead us to

Dh(x, xn) ≤ (1 + ‖en‖)Dh(x, xn−1) +
M2

α
‖en‖, ∀ n ≥ N,(11)

where N ∈ N
∗ is chosen to have

‖en‖ ≤
√

2 − 1, ∀ n ≥ N.

Lemma 15 ensures therefore the convergence of (Dh(x, xn)) and so the
boundedness of (xn).

Subsequently, we will denote, for x solution of (P),

l(x) = lim
n→+∞

Dh(x, xn).

2 The sequence (xn) satisfies

lim
n→+∞

‖xn − xn−1‖ = 0.

Lemma 2, the positivity of Dh and formula (10) involve

Dh(x, xn) + Dh(xn, xn−1) ≤ Dh(x, xn−1)

+〈∇h(un) −∇h(xn), x − xn〉 + 〈∇h(xn−1) −∇h(xn), un − xn〉,
where, from assumption (ii) and the Lipschitz continuity of ∇h, the two inner
products and the positive sequence Dh(xn, xn−1) converge to zero.

3Remark that, if ‖en‖ = 0, then the inner product is also equal to zero and inequality (11)
stays true.
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3 Every weak cluster point of (xn) is a solution of (P) and so is a point
of S.

Let x∗ be such a point and (xnk
) a subsequence of (xn) weakly convergent

to x∗. For all w, z ∈ H such that z ∈ T (w), the monotonicity of T implies
〈

w − xnk
+ enk

, z − ∇h(xnk−1) −∇h(unk
)

λnk

〉

≥ 0, ∀ k ∈ N.

Assumption (i), joined to 2 and the Lipschitz continuity of ∇h, provides

∇h(xnk−1) −∇h(xnk
)

λnk

s→ 0 when k → +∞,

and, passing to the limit for k → +∞,

〈w − x∗, z〉 ≥ 0.

The maximality of T leads in turn to 0 ∈ T (x∗).

4 The sequence (xn) is weakly convergent to a solution of (P).

Assume that (xn) has two weak cluster points x∗
1 and x∗

2 and write, ac-
cording to the convention taken in 1 ,

l(x∗
1) = lim

n→+∞
Dh(x∗

1, xn) and l(x∗
2) = lim

n→+∞
Dh(x∗

2, xn).

If (xnl
) is a subsequence of (xn) weakly convergent to x∗

2, we get, from
the definition of Dh,

l(x∗
1) − l(x∗

2) = lim
l→+∞

[

h(x∗
1) − h(x∗

2) − 〈∇h(xnl
), x∗

1 − x∗
2〉
]

= Dh(x∗
1, x

∗
2),

the last equality following from the weak continuity of ∇h.

Reversing the roles of x∗
1 and x∗

2, we obtain

Dh(x∗
1, x

∗
2) + Dh(x∗

2, x
∗
1) = 0

and so the conclusion, by using Proposition 1.

Remark 17. Under assumptions (i) and (ii) of Theorem 16, the follow-
ing assertions are equivalent:

(a) problem (P) has at least one solution;

(b) the sequence (xn) generated by the rule (PRh) is bounded.

Remark 18. In the exact algorithm, we can weaken assumptions on
∇h, supposing it Lipschitz continuous on bounded sets only.
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4. Perturbed proximal point algorithm with nonquadratic ker-

nel. Now, we can establish convergence theorems for the sequence generated by
the scheme

xn ∈ S,
∥

∥

∥xn − J
h,T n

λn
xn−1

∥

∥

∥ ≤ εn, ∀ n ∈ N
∗,

where (εn) is a sequence of positive real numbers.

This rule takes the equivalent form

(PPRh) xn ∈ S, xn = J
h,T n

λn
xn−1 + en, ∀ n ∈ N

∗.

The proofs of these theorems being rather technical, we give, in this section, their
main ideas and, in the appendix, the complete one’s.

Theorem 19. Assume that problem (P) has at least one solution and

(i) 0 <
M

2
λ < λ∗ ≤ λn, ∀ n ∈ N

∗,

(ii)
+∞
∑

n=1

‖en‖ < +∞,

(iii)
+∞
∑

n=1

λnδλ,ρ(T
n, T ) < +∞, ∀ ρ ≥ 0.

Then the sequence (xn) generated by the rule (PPRh) weakly converges to some

solution of (P) and satisfies

lim
n→+∞

‖xn − xn−1‖ = 0.

P r o o f. In a first time, we prove that (Dh(x, xn)) is a convergent sequence
and so that the sequence (xn) is bounded.

Then, we define the auxiliary sequence
{

x̃0 = x0

x̃n = J
h,T
λn

xn−1

and show that this sequence is generated by a rule (PRh) and satisfies assump-
tions of Theorem 16. �

Remark 20. Once more, under assumptions of Theorem 19, the two
following assertions are equivalent:

(a) problem (P) has at least one solution;

(b) the sequence (xn) generated by the rule (PPRh) is bounded.

Lemma 21. Under the assumptions of Theorem 19, the sequence (xn)
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generated by the rule (PPRh) satisfies

lim
n→+∞

∥

∥

∥A
h,T n

λn
xn−1

∥

∥

∥ = 0.

P r o o f. The definitions of A
h,T n

λn
and (xn) imply

A
h,T n

λn
xn−1 =

∇h(xn−1) −∇h(Jh,T n

λn
xn−1)

λn

=
∇h(xn−1) −∇h(xn − en)

λn
, ∀ n ∈ N

∗,

and, since ∇h is Lipschitz continuous and λn ≥ M

2
λ, ∀ n ∈ N

∗,

∥

∥

∥A
h,T n

λn
xn−1

∥

∥

∥ ≤ 2

λ
(‖xn−1 − xn‖ + ‖en‖).

We can conclude immediately, thanks to theorem 19 and assumption (ii). �

Theorem 22. Assume that

(i) 0 <
M

2
λ < λ∗ ≤ λn, ∀ n ∈ N

∗,

(ii) the sequence (xn) generated by the rule (PPRh) is bounded,

(iii) ‖en‖ ≤ θn‖xn − xn−1‖, ∀ n ∈ N
∗, with

+∞
∑

n=1

θn < +∞,

(iv)
+∞
∑

n=1

λnδλ,ρ(T
n, T ) < +∞, ∀ ρ ≥ 0,

(v) the operators (T n)−1 are uniformly locally Lipschitz continuous at 0, i.e.

there are two constants a ≥ 0 and τ > 0 such that, for all n ∈ N
∗,

‖w1‖, ‖w2‖≤τ ⇒ ‖z1 − z2‖≤a‖w1 − w2‖,

∀ z1 ∈ (T n)−1(w1), ∀ z2 ∈ (T n)−1(w2).

Then problem (P) has a unique solution x and the sequence (xn) generated by

the rule (PPRh) strongly converges to x. More precisely, there are two constants

η ∈ ]0, 1[, C > 0 and a range N ∈ N
∗ from which

Dh(x, xn) +
αλ2

8a2
‖xn − x‖2
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≤ η

[

Dh(x, xn−1) +
αλ2

8a2
‖xn−1 − x‖2

]

+ Cδh
λn,‖x‖(T

n, T ).(12)

P r o o f. The uniqueness of the solution of problem (P) results from Theo-
rem 19 and P. Tossings [18, proof of Theorem 3.7]. The idea of the proof consists
in showing that the sequence

Dh(x, xn) +
αλ2

8a2
‖xn − x‖2

is decreasing by using, notably, the firm nonexpansivity of the mapping J
h,T n

λn
for

Dh, Lemma 2 and Proposition 1. �

Remark 23. The Lipschitz condition imposed in the previous theorem
is satisfied if the operators (T n)−1 (n ∈ N

∗) are uniformly globally Lipschitz
continuous, what holds when the operators (T n) (n ∈ N

∗) are uniformly strongly
monotone.

Remark 24. Property (12) could be rewritten more weakly (see Propo-
sition 13): there are a range N ∈ N

∗ and a real ρ∗ ≥ 0 such that

‖xn − x‖ ≤ η‖xn−1 − x‖ + Cλnδλ,ρ∗(T
n, T ), ∀ n ≥ N,

where 0 ≤ η < 1 and C > 0.

This formulation has the advantage to present the well-known variational
metrics δλ,ρ∗(T

n, T ) with a fixed parameter λ in place of λn.

The following theorem gives us, in the nonperturbed exact context, a
finite convergence result similar to R.T. Rockafellar’s one [16].

Theorem 25. Assume that

(i) 0 <
M

2
λ < λ∗ ≤ λn, ∀ n ∈ N

∗,

(ii)
+∞
∑

n=1

‖en‖ < +∞,

(iii)
+∞
∑

n=1

λnδλ,ρ(T
n, T ) < +∞, ∀ ρ ≥ 0,

(iv) there is x ∈ H such that 0 ∈ int Tx.

Then problem (P) has a unique solution x, the sequence (xn) generated by the
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rule (PPRh) is bounded and there is a range N ∈ N
∗ from which

‖xn − x‖ ≤ δh
λn,ρ(T

n, T ) + ‖en‖,
where ρ = supn∈N ‖xn‖.

P r o o f. The assumptions of theorem 19 being satisfied, the sequence (xn)
is bounded and such that

lim
n→+∞

‖xn − xn−1‖ = 0.(13)

Set

ρ = sup
n∈N

‖xn‖

and define (x̃n) by
{

x̃0 = x0,

x̃n = J
h,T
λn

xn−1, ∀ n ∈ N
∗.

We get

‖xn − x̃n‖ ≤ δh
λn,ρ(T

n, T ) + ‖en‖, ∀ n ∈ N
∗.(14)

Since ∇h is Lipschitz continuous, (13) and (14) lead us to

lim
n→+∞

∥

∥

∥

∥

∇h(xn−1) −∇h(x̃n)

λn

∥

∥

∥

∥

= 0.

Moreover, the definition of (x̃n) implies

∇h(xn−1) −∇h(x̃n)

λn
∈ T x̃n, ∀ n ∈ N

∗,

and assumption (iv) ensures the existence of a neighbourhood of the origin where
T−1 takes the unique value x (see R.T. Rockafellar [16, Theorem 3]).

So the conclusion arises. �

Remark 26. In the optimization context, an estimation of the varia-
tional metric for the most useful penalty functions, i.e. classical or exact exterior
one or yet exponential one, is well known. In this context, assumption (iii) may
be expressed in terms of conditions on the penalty parameters.

Remark 27. Like in Theorem 22, the thesis of Theorem 25 can be
rewritten more weakly, with only the metrics δλ,ρ(T

n, T ) (ρ ≥ 0), i.e. (xn) is
bounded and there are a range N ∈ N

∗, a real ρ∗ and a constant C > 0 such that

‖xn − x‖ ≤ Cλnδλ,ρ∗(T
n, T ) + ‖en‖, ∀ n ≥ N.

Like in R. T. Rockafellar’s [16] and P. Alexandre’s [1], we achieve with a
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super-linear convergence result.

Theorem 28. Assume that

(i) 1 ≤ λn, ∀ n ∈ N
∗, with lim

n→+∞
λn = +∞,

(ii) the sequence (xn) generated by the rule (PPRh) is bounded,

(iii) ‖en‖ ≤ θn‖xn − xn−1‖, ∀ n ∈ N
∗, with

+∞
∑

n=1

θn < +∞,

(iv)
+∞
∑

n=1

λnδλ,ρ(T
n, T ) < +∞, ∀ ρ ≥ 0,

(v) the operators (T n)−1 are uniformly differentiable at the origin, i.e. there are

a point x of H, a real τ > 0 and a sequence of linear applications (An) such

that


































(T n)−1(0) = {x}, ∀ n ∈ N
∗,

‖w‖ ≤ τ ⇒
[

(T n)−1(w) − x − Anw
]

⊂ o(‖w‖)B, ∀ n ∈ N
∗,

sup
n∈N∗

‖An‖ < +∞.

Then x is the unique solution of problem (P) and the sequence (xn) generated by

the rule (PPRh) strongly converges to this solution.

Furthermore, there is a sequence (ηn) converging to zero and a range

N ∈ N
∗ such that

‖xn − x‖ ≤ ηn‖xn−1 − x‖, ∀ n ≥ N.

P r o o f. We first remark that assumptions of Theorem 19 are satisfied
and so we get

lim
n→+∞

‖xn − xn−1‖ = 0.

We deduce then the existence of a sequence (βn) going to zero such that

‖∇h(x̃n) −∇h(x)‖ ≤ βn‖xn−1 − xn‖, ∀ n ≥ N0,

where the auxiliary sequence (x̃n) is defined by

x̃n = J
h,T n

λn
xn−1, ∀ n ∈ N

∗.
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The conclusion follows for

ηn =
Mθn + βn

α − (Mθn + βn)
. �

A. Appendix.

P r o o f o f T h e o r e m 19. Let x be a solution of (P) and choose n ∈ N
∗.

On the one hand, two applications of Lemma 2 and the positivity of Dh

lead to

Dh(x, xn) + Dh(xn, x) ≤ Dh(Jh,T n

λn
x, J

h,T n

λn
xn−1) + Dh(Jh,T n

λn
xn−1, J

h,T n

λn
x)

+
〈

∇h(Jh,T n

λn
xn−1) −∇h(x), Jh,T n

λn
x − x

〉

+
〈

∇h(Jh,T n

λn
xn−1) −∇h(xn), x − xn

〉

+
〈

∇h(Jh,T n

λn
x) −∇h(x), Jh,T n

λn
xn−1 − x

〉

+
〈

∇h(x) −∇h(xn), Jh,T n

λn
xn−1 − xn

〉

.

On the other hand, the firm nonexpansivity of J
h,T n

λn
for Dh and Lemma 2,

applied a last time to

Dh(Jh,T n

λn
xn−1, x) − Dh(xn, x) and Dh(Jh,T n

λn
x, xn−1) − Dh(x, xn−1)

give

Dh(x, xn) ≤ Dh(x, xn−1)

+
〈

x−xn,∇h(Jh,T n

λn
xn−1)−∇h(xn)

〉

+
〈

∇h(x)−∇h(xn), Jh,T n

λn
xn−1−xn

〉

+
〈

∇h(Jh,T n

λn
xn−1)−∇h(xn), Jh,T n

λn
x−x

〉

+
〈

∇h(xn)−∇h(x), Jh,T n

λn
x−x

〉

+
〈

J
h,T n

λn
xn−1−xn,∇h(Jh,T n

λn
x)−∇h(x)

〉

+
〈

xn−x,∇h(Jh,T n

λn
x)−∇h(x)

〉

(15)

+
〈

∇h(x)−∇h(xn), xn−J
h,T n

λn
xn−1

〉

+
〈

∇h(xn)−∇h(Jh,T n

λn
xn−1), xn−J

h,T n

λn
xn−1

〉
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+
〈

∇h(xn−1)−∇h(x), x−J
h,T n

λn
x
〉

+
〈

∇h(x)−∇h(Jh,T n

λn
x), x−J

h,T n

λn
x
〉

.

Applying now the inequality (6) to the ten inner products of (15) and
taking for γ the following values

γ1
n =

α

6

‖en‖
1 + ‖en‖ + ‖x − J

h,T n

λn
x‖

, γ2
n =

1

M2
γ1

n,

γ3
n =

1

M2

‖x − J
h,T n

λn
x‖

‖en‖
, γ4

n =
α

4M2

‖x − J
h,T n

λn
x‖

1 + ‖en‖ + ‖x − J
h,T n

λn
x‖

,

γ5
n = M2γ3

n, γ6
n = M2γ4

n,

γ7
n = γ2

n, γ8
n = ‖en‖,

γ9
n =

α

2M2
(‖en‖ + ‖x − J

h,T n

λn
x‖), γ10

n = M2‖en‖γ3
n,

we get, thanks to the Lipschitz continuity of ∇h and Proposition 1,
[

1 − 1

α

[

3γ1
n + 2γ6

n

]

]

Dh(x, xn) ≤
[

1 +
M2γ9

n

α

]

Dh(x, xn−1)

+
1

2

[

3

γ2
n

+ 2γ5
n + M2γ8

n +
1

γ8
n

]

‖en‖2(16)

+
1

2

[

1

γ3
n

+
2

γ4
n

+
M2

γ5
n

+
1

γ9
n

+ M2γ10
n +

1

γ10
n

]

‖x − J
h,T n

λn
x‖2.

The coefficients of Dh(x, xn) and Dh(x, xn−1) are respectively equal to

2 + ‖en‖ + ‖x − J
h,T n

λn
x‖

2(1 + ‖en‖ + ‖x − J
h,T n

λn
x‖)

and
1

2

[

2 + ‖en‖ + ‖x − J
h,T n

λn
x‖
]

,

and so, formula (16) can be rewritten as

Dh(x, xn) ≤
[

1 + ‖en‖ + ‖x − J
h,T n

λn
x‖
]

Dh(x, xn−1)

+
1 + ‖en‖ + ‖x − J

h,T n

λn
x‖

2 + ‖en‖ + ‖x − J
h,T n

λn
x‖

[

3

γ2
n

+ 2γ5
n + M2γ8

n +
1

γ8
n

]

‖en‖2(17)

+
1 + ‖en‖ + ‖x − J

h,T n

λn
x‖

2 + ‖en‖ + ‖x − J
h,T n

λn
x‖

[

1

γ3
n

+
2

γ4
n

+
M2

γ5
n
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+
1

γ9
n

+ M2γ10
n +

1

γ10
n

]

‖x − J
h,T n

λn
x‖2.

Now, there is a range N ∈ N
∗ from which

‖en‖ ≤ 1, ‖x − J
h,T n

λn
x‖ ≤ 1 and

1 + ‖en‖ + ‖x − J
h,T n

λn
x‖

2 + ‖en‖ + ‖x − J
h,T n

λn
x‖

< 1

and two constants C1 and C2 > 0, depending only on α and M , such that

1 + ‖en‖ + ‖x − J
h,T n

λn
x‖

2 + ‖en‖ + ‖x − J
h,T n

λn
x‖

[

3

γ2
n

+ 2γ5
n + M2γ8

n +
1

γ8
n

]

‖en‖2 < C1‖en‖,

and

1 + ‖en‖ + ‖x − J
h,T n

λn
x‖

2 + ‖en‖ + ‖x − J
h,T n

λn
x‖

[

1

γ3
n

+
2

γ4
n

+
M2

γ5
n

+
1

γ9
n

+M2γ10
n +

1

γ10
n

]

‖x − J
h,T n

λn
x‖2 < C2‖x − J

h,T n

λn
x‖,

for all n ≥ N .

That leads finally, by using Proposition 13, to rewrite formula (17) in the
form

Dh(x, xn) ≤
[

1 + ‖en‖ + ‖x − J
h,T n

λn
x‖
]

Dh(x, xn−1) + C1‖en‖
+C ′

2λnδλ,ρ0
(T n, T ), ∀ n ≥ N,

where C ′
2 > 0 and

ρ0 ≥
[

5 + 6
M

α

]

‖x‖.

So, taking into account assumptions and Lemma 15, the sequence
(Dh(x, xn)) appears to be convergent.

Therefore, the sequence (xn) is bounded and we can write

ρ = sup
n∈N

‖xn‖.

Let us define the auxiliary sequence
{

x̃0 = x0,

x̃n = J
h,T
λn

xn−1, ∀ n ∈ N
∗.

We have, on the one hand,

‖xn − x̃n‖ ≤ δh
λn,ρ(T

n, T ) + ‖en‖, ∀ n ∈ N,(18)
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and, on the other hand,

x̃n = J
h,T
λn

x̃n−1 + ẽn, ∀ n ∈ N
∗,

where, from Proposition 8,

‖ẽn‖ = ‖Jh,T
λn

xn−1 − J
h,T
λn

x̃n−1‖ ≤ M

α
‖xn−1 − x̃n−1‖, ∀ n ∈ N

∗.(19)

Inequalities (18) and (19) and Proposition 13 imply that the sequence
(x̃n) is generated by a rule (PRh) and satisfies assumptions of Theorem 16: it
weakly converges to a solution of (P) with

lim
n→+∞

‖x̃n − x̃n−1‖ = 0.

The conclusion follows immediately thanks to assumptions (ii), (iii) and
inequality (18). �

P r o o f o f T h e o r e m 22. The uniqueness of the solution of problem
(P) results from Theorem 19 and P. Tossings [18, proof of Theorem 3.7].

Let x be this unique solution. Proposition 14 and Lemma 21 ensure the
existence of a range N1 ∈ N

∗ from which
∥

∥

∥A
h,T n

λn
x
∥

∥

∥ < τ and
∥

∥

∥A
h,T n

λn
xn−1

∥

∥

∥ < τ.

Since

A
h,T n

λn
x ∈ T n

(

J
h,T n

λn
x
)

and A
h,T n

λn
xn−1 ∈ T n

(

J
h,T n

λn
xn−1

)

,

assumption (v) and Definition 9 involve
∥

∥

∥J
h,T n

λn
x − J

h,T n

λn
xn−1

∥

∥

∥

2

≤ 2a2M2

λ2
n

(

∥

∥

∥x − J
h,T n

λn
x
∥

∥

∥

2

+
∥

∥

∥xn−1 − J
h,T n

λn
xn−1

∥

∥

∥

2
)

,

for all n ≥ N1, and finally, using assumption (i),

α

2

λ2

8a2

∥

∥

∥J
h,T n

λn
x−J

h,T n

λn
xn−1

∥

∥

∥

2

≤ α

2

∥

∥

∥x−J
h,T n

λn
x
∥

∥

∥

2

+
α

2

∥

∥

∥xn−1−J
h,T n

λn
xn−1

∥

∥

∥

2

.(20)

for all n ≥ N1.

Moreover, Proposition 1 and the firm nonexpansivity of J
h,T n

λn
for Dh lead

us to

Dh(Jh,T n

λn
xn−1, J

h,T n

λn
x) + Dh(Jh,T n

λn
x, J

h,T n

λn
xn−1) ≤ Dh(Jh,T n

λn
xn−1, x)

+Dh(Jh,T n

λn
x, xn−1) −

α

2

∥

∥

∥J
h,T n

λn
xn−1 − xn−1

∥

∥

∥

2

− α

2

∥

∥

∥J
h,T n

λn
x − x

∥

∥

∥

2

.(21)

Working as in the proof of Theorem 19 for obtaining inequality (15), we
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get

Dh(x, xn) ≤ Dh(x, xn−1)

+
〈

x − xn,∇h(Jh,T n

λn
xn−1) −∇h(xn)

〉

+
〈

∇h(x) −∇h(xn), Jh,T n

λn
xn−1 − xn

〉

+
〈

∇h(Jh,T n

λn
xn−1) −∇h(xn), Jh,T n

λn
x − x

〉

+
〈

∇h(xn) −∇h(x), Jh,T n

λn
x − x

〉

+
〈

J
h,T n

λn
xn−1 − xn,∇h(Jh,T n

λn
x) −∇h(x)

〉

+
〈

xn − x,∇h(Jh,T n

λn
x) −∇h(x)

〉

+
〈

∇h(x) −∇h(xn), xn − J
h,T n

λn
xn−1

〉

+
〈

∇h(xn) −∇h(Jh,T n

λn
xn−1), xn − J

h,T n

λn
xn−1

〉

+
〈

∇h(xn−1) −∇h(x), x − J
h,T n

λn
x
〉

+
〈

∇h(x) −∇h(Jh,T n

λn
x), x − J

h,T n

λn
x
〉

−α

2

∥

∥

∥J
h,T n

λn
xn−1 − xn−1

∥

∥

∥

2

− α

2

∥

∥

∥J
h,T n

λn
x − x

∥

∥

∥

2

.(22)

Using the well-known formula

‖x − b‖2 − ‖x − a‖2 + ‖b − a‖2 = 2〈a − b, x − b〉, ∀ x, a, b ∈ H,

inequalities (21) and (22) involve

Φx(xn) ≤ Φx(xn−1) −
αλ2

8a2
‖xn−1 − x‖2

+
〈

x − xn,∇h(Jh,T n

λn
xn−1) −∇h(xn)

〉

+
〈

∇h(x) −∇h(xn), Jh,T n

λn
xn−1 − xn

〉

+
〈

∇h(Jh,T n

λn
xn−1) −∇h(xn), Jh,T n

λn
x − x

〉

+
〈

∇h(xn) −∇h(x), Jh,T n

λn
x − x

〉

+
〈

∇h(Jh,T n

λn
x) −∇h(x), Jh,T n

λn
xn−1 − xn

〉

+
〈

xn − x,∇h(Jh,T n

λn
x) −∇h(x)

〉

+
〈

∇h(xn−1) −∇h(x), x − J
h,T n

λn
x
〉

+
〈

∇h(x) −∇h(Jh,T n

λn
x), x − J

h,T n

λn
x
〉

+
〈

∇h(x) −∇h(xn), xn − J
h,T n

λn
xn−1

〉
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+
〈

∇h(xn) −∇h(Jh,T n

λn
xn−1), xn − J

h,T n

λn
xn−1

〉

+
αλ2

4a2

〈

x − xn, J
h,T n

λn
xn−1 − xn

〉

+
αλ2

4a2

〈

x − xn, x − J
h,T n

λn
x
〉

+
αλ2

4a2

〈

J
h,T n

λn
xn−1 − xn, J

h,T n

λn
x − x

〉

,(23)

where the auxiliary function Φx is defined by

Φx(x) = Dh(x, x) +
αλ2

8a2
‖x − x‖2, ∀ x ∈ S.

Applying the inequality (6) to the thirteen inner products of (23) and
taking for γ the following values

γ1
n =

θn

2
, γ2

n =
1

M2
γ1

n,

γ3
n =

1

M2

∥

∥

∥x − J
h,T n

λn
x
∥

∥

∥

θn
, γ4

n =
2θn

3
γ3

n,

γ5
n =

1

M2

θn
∥

∥

∥x − J
h,T n

λn
x
∥

∥

∥

, γ6
n = M2γ4

n,

γ7
n = 2θnγ3

n, γ8
n =

∥

∥

∥x − J
h,T n

λn
x
∥

∥

∥ ,

γ9
n =

1

M2
γ1

n, γ10
n = θn,

γ11
n =

4a2

αλ2
γ1

n, γ12
n =

4a2M2

αλ2
γ4

n,

γ13
n = γ3

n,

we get, thanks to the Lipschitz continuity of ∇h, Proposition 1 and relations
between γn,

Φx(xn) ≤ Φx(xn−1) −
αλ2

8a2
‖xn−1 − x‖2
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+
M2γ7

n

2
‖xn−1 − x‖2 +

[

2γ1
n + θnγ3

n

]

‖xn − x‖2(24)

+

[

3M2

2γ1
n

+
α2λ4

32a4γ1
n

+
M2γ3

n

2
+

αλ2γ3
n

8a2
+

1

2γ5
n

+
M2γ10

n

2
+

1

2γ10
n

]

‖en‖2

+

[

1

2γ3
n

+
αλ2

8a2γ3
n

+
7M2

4θnγ3
n

+
3α2λ4

64a4M2θnγ3
n

+
M2γ5

n

2
+

M2γ8
n

2
+

1

2γ8
n

]

∥

∥

∥x − J
h,T n

λn
x
∥

∥

∥

2

.

Now, there is a range N2 ≥ N1 from which

0 ≤ θn ≤ 1 and 0 ≤
∥

∥

∥J
h,T n

λn
x − x

∥

∥

∥ ≤ 1

and so, the explicit values of constants γn and assumption (iii) ensure the exis-
tence of three constants C1, C2 and C3 > 0 such that

Φx(xn) ≤ Φx(xn−1) −
αλ2

8a2
‖xn−1 − x‖2 +

[

C2θn +
∥

∥

∥x − J
h,T n

λn
x
∥

∥

∥

]

‖xn − x‖2

+
[

C1θn +
∥

∥

∥x − J
h,T n

λn
x
∥

∥

∥

]

‖xn−1 − x‖2 + C3

∥

∥

∥x − J
h,T n

λn
x
∥

∥

∥ , ∀ n ≥ N2.(25)

Moreover, assumptions (ii) and (iv) ensure the existence of a range N3 ≥
N2 such that

0 ≤ θn <
α

8C2

et 0 ≤
∥

∥

∥J
h,T n

λn
x − x

∥

∥

∥ <
α

8
,

and so, Proposition 1 and the definition of function Φx lead us to

Φx(xn) ≤
[

1 + Cθθn + CJ

∥

∥

∥J
h,T n

λn
x − x

∥

∥

∥

]

Φx(xn−1)

−αλ2

8a2
‖xn−1 − x‖2 + 2C3

∥

∥

∥J
h,T n

λn
x − x

∥

∥

∥ , ∀ n ≥ N3,

where Cθ and CJ are two positive constants.

On the one hand, Proposition 1 and the definition of function Φx imply

Φx(xn−1) ≤
[

M

2
+

αλ2

8a2

]

‖x − xn−1‖2.(26)

On the other hand, choosing finally a range N4 ≥ N3 from which

0 ≤ θn <

[

M

2
+

αλ2

8a2

]−1
1

Cθ

αλ2

32a2
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and

0 ≤
∥

∥

∥J
h,T n

λn
x − x

∥

∥

∥ <

[

M

2
+

αλ2

8a2

]−1
1

CJ

αλ2

32a2
,

it follows that

Φx(xn) ≤ Φx(xn−1) −
αλ2

8a2
‖xn−1 − x‖2 + 2C3

∥

∥

∥J
h,T n

λn
x − x

∥

∥

∥

and so the announced result using inequality (26), assumption (iv) and Proposi-
tion 13.

This establishes the announced result. �

P r o o f o f t h e o r em 28. First, remark that assumption (v) and the
Lipschitz continuity of ∇h ensure the existence of a constant C > 0 such that

∥

∥

∥∇h
(

(T n)−1(w)
)

−∇h(x) − Anw
∥

∥

∥ ≤ C‖w‖, ∀ w ∈ H, ‖w‖ ≤ τ.

Then, note that assumption (iv) involving the graph-convergence of (T n)
to T , the hypothesis (T n)−1(0) = {x}, ∀ n ∈ N

∗, leads to 0 ∈ Tx.

Applying Theorem 19, we get therefore

lim
n→+∞

‖xn − xn−1‖ = 0.(27)

Now, define the auxiliary sequence

x̃n = J
h,T n

λn
xn−1, ∀ n ∈ N

∗.

Proposition 10 (ii) implies

∇h(x̃n) ∈
(

∇h(T n)−1 1

λn

)

[

∇h(xn−1) −∇h(x̃n)
]

, ∀ n ∈ N
∗,

and, consequently, the mappings An being linear,

∇h(x̃n) −∇h(x)∈
(

∇h(T n)−1 1

λn

)[

∇h(xn−1) −∇h(x̃n)
]

−∇h(x) − An
1

λn

[

∇h(xn−1) −∇h(x̃n)
]

+
1

λn
An

[

∇h(xn−1) −∇h(xn)
]

+
1

λn
An

[

∇h(xn) −∇h(x̃n)
]

.

One the one hand, assumption (iii), relation (27) and the Lipschitz con-
tinuity of ∇h ensure the existence of a range N0 ∈ N

∗ from which

θn ≤ 1, ‖xn − xn−1‖ ≤ τ

2M
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and

‖∇h(xn−1) −∇h(x̃n)‖ ≤ M(1 + θn)‖xn − xn−1‖,
giving in turn

∥

∥

∥

∥

1

λn

(

∇h(xn−1) −∇h(x̃n)
)

∥

∥

∥

∥

≤ ‖∇h(xn−1) −∇h(x̃n)‖ , ∀ n ∈ N
∗.

It results from assumption (v) that
[

∇h(T n)−1
[ 1

λn

(

∇h(xn−1)−∇h(x̃n)
)]

−∇h(x)−An

[ 1

λn

(

∇h(xn−1)−∇h(x̃n)
)]

]

⊂ o

(

1

λn
‖∇h(xn−1) −∇h(x̃n)‖

)

B

⊂ o (‖xn − xn−1‖) B, ∀ n ≥ N0.

On the other hand, set

ν = sup
n∈N∗

‖An‖ and εn =
ν

λn
M, ∀ n ∈ N

∗.

Obviously εn goes to zero and
∥

∥

∥

∥

1

λn

An

[

∇h(xn−1) −∇h(xn)
]

∥

∥

∥

∥

≤ εn‖xn−1 − xn‖, ∀ n ∈ N
∗,

∥

∥

∥

∥

1

λn

An

[

∇h(xn) −∇h(x̃n)
]

∥

∥

∥

∥

≤ εnθn‖xn−1 − xn‖, ∀ n ∈ N
∗,

what implies

∇h(x̃n) −∇h(x) ∈ o(‖xn−1 − xn‖ + 2εn‖xn−1 − xn‖)B.

In other words, there is a sequence (βn) going to zero for which

‖∇h(x̃n) −∇h(x)‖ ≤ βn‖xn−1 − xn‖, ∀ n ≥ N0.

Finally, since ∇h is strongly monotone, we get

α‖xn − x‖ ≤ ‖∇h(xn) −∇h(x)‖
≤ Mθn‖xn−1 − xn‖ + βn‖xn−1 − xn‖
≤ (Mθn + βn)(‖xn−1 − x‖ + ‖x − xn‖),

where

lim
n→+∞

(Mθn + βn) = 0

and the conclusion arises for

ηn =
Mθn + βn

α − (Mθn + βn)
. �
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