UNIFORMLY GÂTEAUX DIFFERENTIABLE NORMS IN SPACES WITH UNCONDITIONAL BASIS

Jan Rychtář*

Communicated by S. L. Troyanski

ABSTRACT. It is shown that a Banach space X admits an equivalent uniformly Gâteaux differentiable norm if it has an unconditional basis and X^* admits an equivalent norm which is uniformly rotund in every direction.

Let $(X, \| \cdot \|)$ be a Banach space. Let S_X and B_X denote the unit sphere and the unit ball respectively, i.e. $S_X = \{ x \in X ; \| x \| = 1 \}$ and $B_X = \{ x \in X ; \| x \| \leq 1 \}$. Let \mathbb{N}, \mathbb{Q} and \mathbb{R} denote the sets of positive integers, rational numbers and real numbers respectively. Let X^* denote the dual to the Banach space X and let $\| \cdot \|^{**}$ denote the norm on X^* that is dual to the norm $\| \cdot \|$ on X. A biorthogonal system $\{ x_\gamma, f_\gamma \}_{\gamma \in \Gamma} X \times X^*$ is called an unconditional basis for a Banach space X if for each $x \in X$ $x = \sum_{\gamma \in \Gamma} f_\gamma(x)x_\gamma$ and the sum converges unconditionally. The

2000 Mathematics Subject Classification: 46B03, 46B15, 46B20.

Key words: Unconditional basis, uniformly Gâteaux smooth norms, uniform Eberlein compacts, uniform rotundity in every direction.

*Supported in part by GAČR 201-98-1449 and AV 101 9003. This paper is based on a part of the author’s MSc thesis written under the supervision of Professor V. Zizler.
norm \(\| \cdot \| \) on a Banach space \(X \) is said to be **uniformly rotund in every direction** (URED for short), if \(\lim \| x_n - y_n \| = 0 \) whenever \(x_n, y_n \in S_X \) are such that \(\lim \| x_n + y_n \| = 2 \) and \(x_n - y_n = \lambda_n z \) for some \(z \in X \), \(\lambda_n \in \mathbb{R} \). The norm \(\| \cdot \| \) on \(X \) is called **uniformly Gâteaux differentiable** (UG) if

\[
\lim_{t \to 0} \frac{1}{t} \left(\sup_{x \in S_X} \| x + th \| + \| x - th \| - 2 \right) = 0
\]

for every \(h \in S_X \). A compact space \(K \) is called a **uniform Eberlein compact** (UEC) if \(K \) is homeomorphic to a weakly compact subset of a Hilbert space in its weak topology. The space \((\Sigma(\mathbb{R}^\Gamma), \tau) \) is a subspace of a product space \(\mathbb{R}^\Gamma \) with the product topology, such that \(x \in (\Sigma(\mathbb{R}^\Gamma), \tau) \) iff \(x(\gamma) \neq 0 \) for at most countably many \(\gamma \in \Gamma \).

The main result in this paper is the following theorem.

Theorem 1. Let \(X \) be a Banach space with an unconditional basis \(\{x_\gamma, f_\gamma\}_{\gamma \in \Gamma} \). If \(X^* \) admits an equivalent (not necessarily dual) URED norm, then \(B_{X^*} \) in its weak* topology is a UEC.

By putting this implication together with other already known results (we refer to [3], [4], [5, Chap. II], we obtain Theorem 2. Note that, except (i) \(\Rightarrow \) (ii), all the remaining implications hold without the assumption of existence of an unconditional Schauder basis.

Theorem 2. Let \(X \) be a Banach space with an unconditional basis \(\{x_\gamma, f_\gamma\}_{\gamma \in \Gamma} \). Then the following are equivalent

- (i) \(X^* \) admits an equivalent (not necessarily dual) URED norm.
- (ii) \(B_{X^*} \) in its weak* topology is a UEC.
- (iii) \(X \) admits an equivalent UG norm.

In the proof of Theorem 1 we shall use the following statements.

Fact 3. Let \((X, \| \cdot \|) \) be a Banach space and let \(\{x_\gamma, f_\gamma\}_{\gamma \in \Gamma} \) be a normalized unconditional basis for \(X \). For \(x \in X \) put \(\|x\|_1 = \sup_{\alpha_\gamma = \pm 1} \left\| \sum_{\gamma \in \Gamma} \alpha_\gamma f_\gamma(x) x_\gamma \right\| \). Then

- (i) \(\| \cdot \|_1 \) is an equivalent norm on \(X \),
(ii) \[\left\| \sum_{\gamma \in F} a_\gamma x_\gamma \right\|_1 \leq \left\| \sum_{\gamma \in F} b_\gamma x_\gamma \right\|_1, \] and \[\left\| \sum_{\gamma \in F} a_\gamma f_\gamma \right\|_* \leq \left\| \sum_{\gamma \in F} b_\gamma f_\gamma \right\|_* \] whenever \(F \subset \Gamma \) is finite and \(a_\gamma, b_\gamma \in \mathbb{R} \) satisfy \(|a_\gamma| \leq |b_\gamma| \) for every \(\gamma \in F \).

(iii) \(\|P_A\|_1 = 1 \) for \(A \subset \Gamma \) finite, where \(P_A(x) = \sum_{\gamma \in A} f_\gamma(x)x_\gamma \).

(iv) \(\|x_\gamma\|_1 = \|f_\gamma\|_*^1 = 1 \).

Proof. The proof is based on the similar ideas as [9, p. 499–505], where analogous statements for a countable set \(\Gamma \) are proved. \(\square \)

The following lemma is due to Troyanski [10].

Lemma 4. Let \(X \) be a Banach space and let \(\|\cdot\| \) be an equivalent URED norm on \(X \). Then for any \(\varepsilon > 0 \) there exists a decomposition \(\{S_i^{(\varepsilon)}\}_{i=1}^{\infty} \) of the unit sphere \(S_X \) such that for distinct \(\{x_j\}_{j=1}^{i} \subset S_i^{(\varepsilon)} \) we have \(\max_{a_j = \pm 1} \left| \sum_{j=1}^{i} a_j x_j \right| > \varepsilon^{-1} \).

We shall use the following topological characterization of uniform Eberlein compacts which can be found in [3].

Lemma 5. A compact space \(K \) is UEC iff there exists a family \(\{V_\delta, \delta \in \Delta\} \) of open \(F_\sigma \) subsets of \(K \) such that

(i) The family \(\{V_\delta, \delta \in \Delta\} \) separates points of \(K \), i.e. for \(x \neq y \in K \) there exists \(\delta \in \Delta \) such that \(x \in V_\delta \) and \(y \notin V_\delta \), or \(x \notin V_\delta \) and \(y \in V_\delta \).

(ii) There exists a decomposition of \(\Delta \) into a sequence \(\{\Delta_n\}_{n=1}^{\infty} \) and natural numbers \(\{k(n)\}_{n=1}^{\infty} \) such that \(\{V_\delta, \delta \in \Delta_n\} \) is \(k(n) \)-finite, i.e. any \(x \in K \) belongs to at most \(k(n) \) sets of the family \(\{V_\delta, \delta \in \Delta_n\} \).

The core of our note is the following lemma.

Lemma 6. Let \((X, \|\cdot\|_1) \) be a Banach space, \(\{x_\gamma, f_\gamma\}_{\gamma \in \Gamma} \) be a normalized unconditional basis, \(\|\cdot\|_1 \) be a norm as in Fact 3, \(\|\cdot\|_2 \) be an equivalent URED norm on \(X^* \). Then there is a bounded linear, weak* to pointwise continuous, and one-to-one operator \(T : (X^*, w^*) \to (\Sigma(\mathbb{R}^\Gamma), \tau) \) such that for any \(\varepsilon > 0 \) there exists a decomposition \(\{\Gamma_i^{(\varepsilon)}\}_{i=1}^{\infty} \) of \(\Gamma \) such that

\[\text{card} \{\gamma \in \Gamma_i^{(\varepsilon)}, |T(x^*)(\gamma)| > \varepsilon\} < i. \]

for all \(x^* \in S_{(X^*, \|\cdot\|_1^1)} \) and \(i \in \mathbb{N} \).
Proof. Let \(k > 1 \) be such that \(k\|x^*\|_2 \geq \|x^*\|_1^* \geq k^{-1}\|x^*\|_2 \). Let
\[f_\gamma = \frac{f_\gamma}{\|f_\gamma\|_2} \]
for all \(\gamma \in \Gamma \). Put \(\Gamma_i^{(e)} = \{ \gamma \in \Gamma; f_\gamma \in S_i^{(e/k^2)} \} \), where according to Lemma 4, \(\{ S_i^{(e/k^2)} \}_{i=1}^\infty \) is the decomposition of \(S(X^*,\|\cdot\|_2) \) such that for all distinct \(\{ x_j^{(i)} \}_{j=1}^i \subset S_i^{(e/k^2)} \) we have
\[\max_{a_j=\pm 1} \left| \sum_{j=1}^i a_j x_j^{(i)} \right| > k^2/\varepsilon. \]
Let \(T(X^*,w^*) \rightarrow (\Sigma(\mathbb{R}^k),\tau) \) be defined for \(x^* \in X^* \) by \((x^*)_{\gamma,\epsilon} = \{ x^*(x_\gamma) \}_{\gamma \in \Gamma} \). Clearly, the operator \(T \) is weak*-pointwise continuous and one-to-one. Put \(U_{x^*,i}^{(e)} = \{ \gamma \in \Gamma_i^{(e)}; |T(x^*)_\gamma| > \varepsilon \} \)
and let us suppose that there is \(\varepsilon > 0, x^* \in B_{X^*} \) and \(i \in \mathbb{N} \) such that \(|T_{x^*,i}^{(e)}| \geq i \). Let
\(A \subset U_{x^*,i}^{(e)} \) be such that \(\text{card } A = i \). Then

\[
1 \geq \|x^*\|_1^* \geq \|P_A^*(x^*)\|_1^* = \left\| \sum_{\gamma \in A} x^*(x_\gamma)f_\gamma \right\|_1^*
\geq \min_{\gamma \in A} |x^*(x_\gamma)| \left\| \sum_{\gamma \in A} f_\gamma \right\|_1 > \varepsilon \left\| \sum_{\gamma \in A} f_\gamma \right\|_1^* = \varepsilon \max_{a_{\gamma} = \pm 1} \left\| \sum_{\gamma \in A} a_\gamma f_\gamma \right\|_1^*
\geq \varepsilon k^{-1} \max_{a_{\gamma} = \pm 1} \left\| \sum_{\gamma \in A} a_\gamma f_\gamma \right\|_1^* \geq \varepsilon k^{-2} \max_{a_{\gamma} = \pm 1} \left\| \sum_{\gamma \in A} a_\gamma f_\gamma \right\|_2 > 1,
\]
which is a contradiction. Hence, in particular, \(T(X^*,w^*) \rightarrow (\Sigma(\mathbb{R}^k),\tau) \). \(\square \)

Proof of the Theorem 1. We shall use the notation of Lemma 6. According to Lemma 5, in order to prove that \((B_{X^*},w^*) \) is UEC, we put
\(\Delta = \{ (\gamma, r); \gamma \in \Gamma, r \in \mathbb{Q} \setminus \{0\} \} \). We put \(V_{(\gamma,r)} = \{ f \in B_{X^*}; T(f)(\gamma) > r \} \)
for \(r > 0 \) and \(V_{(\gamma,r)} = \{ f \in B_{X^*}; T(f)(\gamma) < r \} \) for \(r < 0 \). Clearly, each \(V_{(\gamma,r)} \)
is weak*-open and \(F_\sigma \)-set. If \(f, g \in B_{X^*}, f \neq g \) then there is \(\gamma \in \Gamma \) such that
\(f(x_\gamma) \neq g(x_\gamma) \). Assume that \(f(x_\gamma) < g(x_\gamma) \). We choose \(0 \neq r \in \mathbb{Q} \) such that
\(f(x_\gamma) < r < g(x_\gamma) \). If \(r > 0 \), then \(g \in V_{(\gamma,r)} \) and \(f \notin V_{(\gamma,r)} \). If \(r < 0 \), then
\(f \in V_{(\gamma,r)} \) and \(g \notin V_{(\gamma,r)} \). The case when \(f(x_\gamma) > g(x_\gamma) \) can be treated similarly.
Hence the family \(\{ V_{(\gamma,r)}; (\gamma, r) \in \Delta \} \) separates points of \((B_{X^*},w^*) \). Let \(\{ \Gamma_i^{(e)} \}_{i=1}^\infty \)
be the decomposition of \(\Gamma \) by Lemma 6. For \(r \in \mathbb{Q} \setminus \{0\} \) and \(i \in \mathbb{N} \) put
\[\Delta_{(r,i)} = \Gamma_i^{(e)} \times \{ r \}. \]

Now fix one such \((r, i) \) and consider any \(f \in B_{X^*} \). If \((\gamma, r) \in \Delta_{(r,i)} \) and \(f \in V_{(\gamma,r)} \),
then \(|T(f)(\gamma)| > |r| \). Therefore, by Lemma 6,
\[
\text{card } \{ V_{(\gamma,r)}; (\gamma, r) \in \Delta_{(i,r)}, V_{(\gamma,r)} \ni f \} \leq \text{card } \{ \gamma \in \Gamma_i^{(e)}; |T(f)(\gamma)| > |r| \} < i.
\]
It means that the family \(\{ V(\gamma, r); (\gamma, r) \in \Delta_{(r, i)} \} \) is \((i - 1)\)–finite. Hence \((B_{X^*}, w^*)\) is UEC by Lemma 5. □

Remarks.

1) The condition of the existence of an unconditional basis can not be dropped. Indeed, consider the space \(X = C[0, \omega_1] \) of all continuous functions on the ordinal segment \([0, \omega_1]\). The space \(X^* \) is isometric to \(l_1([0, \omega_1]) \) and hence admits an equivalent URED norm (see e.g. [5], Proposition II.7.7 and II.6.7). However, due to Talagrand’s result (see e.g. [5], Theorem VII.5.2 and Theorem 2.6.7), \(X^* \) admits no dual strictly convex norm, hence \(X \) admits no equivalent UG norm.

2) There is a Banach space \(X \) with an unconditional basis such that the dual space \(X^* \) admits an equivalent (non dual) strictly convex norm and \(X \) admits no equivalent Gâteaux smooth norm. See [2].

3) There is a Banach space \(X \) with no equivalent UG norm such that the dual space \(X^* \) admits an equivalent dual URED norm. See [7].

REFERENCES

Jan Rychtář
Department of Mathematical Analysis
Charles University, Prague
Sokolovká 83, 186 75 Praha 8,
Czech Republic
e-mail: rychtarkarlin.mff.cuni.cz

Received November 17, 2000