Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use.

Serdica

Mathematical Journal

Сердика

Математическо списание

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.
For further information on
Serdica Mathematical Journal
which is the new series of
Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

ANALOG OF FAVARD'S THEOREM FOR POLYNOMIALS CONNECTED WITH DIFFERENCE EQUATION OF 4-TH ORDER.

S. M. Zagorodniuk

Communicated by E. I. Horozov

Abstract. Orthonormal polynomials on the real line $\left\{p_{n}(\lambda)\right\}_{n=0}^{\infty}$ satisfy the recurrent relation of the form: $\lambda_{n-1} p_{n-1}(\lambda)+\alpha_{n} p_{n}(\lambda)+\lambda_{n} p_{n+1}(\lambda)=$ $\lambda p_{n}(\lambda), n=0,1,2, \ldots$, where $\lambda_{n}>0, \alpha_{n} \in R, n=0,1, \ldots ; \lambda_{-1}=p_{-1}=$ $0, \lambda \in C$.

In this paper we study systems of polynomials $\left\{p_{n}(\lambda)\right\}_{n=0}^{\infty}$ which satisfy the equation: $\alpha_{n-2} p_{n-2}(\lambda)+\overline{\beta_{n-1}} p_{n-1}(\lambda)+\gamma_{n} p_{n}(\lambda)+\beta_{n} p_{n+1}(\lambda)+$ $\alpha_{n} p_{n+2}(\lambda)=\lambda^{2} p_{n}(\lambda), n=0,1,2, \ldots$, where $\alpha_{n}>0, \beta_{n} \in C, \gamma_{n} \in R$, $n=0,1,2, \ldots, \alpha_{-1}=\alpha_{-2}=\beta_{-1}=0, p_{-1}=p_{-2}=0, p_{0}(\lambda)=1$, $p_{1}(\lambda)=c \lambda+b, c>0, b \in C, \lambda \in C$.

It is shown that they are orthonormal on the real and the imaginary axes in the complex plane: $\int_{R \cup T}\left(p_{n}(\lambda), p_{n}(-\lambda)\right) d \sigma(\lambda) \overline{\binom{p_{m}(\lambda)}{p_{m}(-\lambda)}}=\delta_{n, m}$, $n, m=\overline{0, \infty} ; T=(-\infty, \infty)$ with respect to some matrix measure $\sigma(\lambda)=$ $\left(\begin{array}{ll}\sigma_{1}(\lambda) & \sigma_{2}(\lambda) \\ \sigma_{3}(\lambda) & \sigma_{4}(\lambda)\end{array}\right)$.

Also the Green formula for difference equation of 4-th order is built.

[^0]Key words: orthogonal polynomials, difference equation.

Let us consider the recurrent relation for the system of polynomials $\left\{p_{n}(\lambda)\right\}_{n=0}^{\infty}$ of the form:

$$
\begin{array}{r}
\alpha_{n-2} p_{n-2}(\lambda)+\overline{\beta_{n-1}} p_{n-1}(\lambda)+\gamma_{n} p_{n}(\lambda)+\beta_{n} p_{n+1}(\lambda)+\alpha_{n} p_{n+2}(\lambda)=\lambda^{2} p_{n}(\lambda) \tag{1}\\
n=0,1,2, \ldots
\end{array}
$$

where $\alpha_{n}>0, \beta_{n} \in C, \gamma_{n} \in R, n=0,1,2, \ldots, \alpha_{-1}=\alpha_{-2}=\beta_{-1}=0, p_{-1}=$ $p_{-2}=0, p_{0}(\lambda)=1, p_{1}(\lambda)=c \lambda+b, c>0, b \in C, \lambda \in C$.

This relation can be written in the matrix form:

$$
\left(\begin{array}{ccccccc}
\frac{\gamma_{0}}{\beta_{0}} & \beta_{0} & \alpha_{0} & 0 & 0 & 0 & . \\
\alpha_{0} & \frac{\beta_{1}}{\beta_{1}} & \beta_{1} & \alpha_{1} & 0 & 0 & . \\
0 & \alpha_{2} & \frac{\beta_{2}}{\beta_{2}} & \alpha_{2} & 0 & \beta_{3} & \alpha_{3} \\
. \\
. & \cdot & \cdot & \cdot & \cdot & . & .
\end{array}\right)\left(\begin{array}{c}
p_{0} \\
p_{1} \\
p_{2} \\
p_{3} \\
\cdot
\end{array}\right)=\lambda^{2}\left(\begin{array}{c}
p_{0} \\
p_{1} \\
p_{2} \\
p_{3} \\
\cdot
\end{array}\right)
$$

or

$$
J_{5} p=\lambda^{2} p
$$

where J_{5} is five-diagonal, symmetric, semi-infinite matrix and p is vector of polynomials.

Let us study the properties of these systems of polynomials. Note, that orthonormal polynomials on the real line belong to this class of polynomials. For them the following equation is fulfilled: $J_{3} p=\lambda p$ with three-diagonal, symmetric, semi-infinite matrix and from this immediately it follows, that $J_{3}^{2} p=\lambda^{2} p$ and J_{3}^{2} - is five-diagonal, symmetric, semi-infinite matrix (Question: how larger is the considered class than the class of real polynomials? For the answer see [1, Theorem 5, p. 272]).

Definition ([1, p. 265-266]). Find matrix measure $\tilde{\sigma}(\lambda)=\left(\begin{array}{ll}\tilde{\sigma}_{1}(\lambda) & \tilde{\sigma}_{2}(\lambda) \\ \tilde{\sigma}_{3}(\lambda) & \tilde{\sigma}_{4}(\lambda)\end{array}\right)$, $\lambda \in C ; \tilde{\sigma}_{i}(\lambda): C \rightarrow C$ is piecewise continuous mapping on the real and the imaginary axis, $i=\overline{1,4}$, such that

1) $\tilde{\sigma}(\lambda)$ is symmetric, monotonically increasing matrix function:

$$
\begin{gathered}
\tilde{\sigma}_{1}(\lambda)=\overline{\tilde{\sigma}_{1}(\lambda)}, \tilde{\sigma}_{4}(\lambda)=\overline{\tilde{\sigma}_{4}(\lambda)}, \tilde{\sigma}_{2}(\lambda)=\overline{\tilde{\sigma}_{3}(\lambda)} \\
\tilde{\sigma}\left(\lambda_{2}\right) \geq \tilde{\sigma}\left(\lambda_{1}\right), \lambda_{2} \geq \lambda_{1}, \lambda_{1}, \lambda_{2} \in R \\
\tilde{\sigma}\left(\lambda_{2}\right) \geq \tilde{\sigma}\left(\lambda_{1}\right), \frac{\lambda_{2}}{i} \geq \frac{\lambda_{1}}{i}, \lambda_{1}, \lambda_{2} \in(-i \infty, i \infty) \\
\text { 2) } \int_{R \cup T}\left(\lambda^{k},(-\lambda)^{k}\right) d \tilde{\sigma}(\lambda)\binom{1}{1}=s_{k}, k=\overline{0, \infty}
\end{gathered}
$$

$$
\int_{R \cup T}\left(\lambda^{k-1},(-\lambda)^{k-1}\right) d \tilde{\sigma}(\lambda) \overline{\binom{\lambda}{-\lambda}}=m_{k}, k=\overline{1, \infty}
$$

where $\left\{s_{k}\right\}_{k=0}^{\infty},\left\{m_{k}\right\}_{k=1}^{\infty}$ are fixed sequences of complex numbers;
We'll call this problem generalized symmetric moments problem.
Definition ([1, p. 266]). We call a pair of sequences $\left\{s_{k}, m_{k+1}\right\}_{k=0}^{\infty}$, $s_{k} \in C, m_{k+1} \in C, k=\overline{0, \infty}$ symmetric if

$$
\begin{gathered}
\overline{s_{2 k+1}}=m_{2 k+1} \\
\overline{s_{2 k}}=s_{2 k}, \overline{m_{2 k+2}}=m_{2 k+2}, \quad k=\overline{0, \infty}
\end{gathered}
$$

We call a pair of sequences $\left\{s_{k}, m_{k+1}\right\}_{k=0}^{\infty}, s_{k} \in C, m_{k+1} \in C, k=\overline{0, \infty}$ positive one if

$$
\begin{gathered}
{\left[\begin{array}{cccc}
s_{0} & s_{1} & . & s_{k} \\
m_{1} & m_{2} & \cdot & m_{k+1} \\
s_{2} & s_{3} & \cdot & s_{k+2} \\
\cdot & \cdot & \cdot & \cdot \\
m_{k} & m_{k+1} & \cdot & m_{2 k}
\end{array}\right]>0, k=2 l+1 ;\left[\begin{array}{cccc}
s_{0} & s_{1} & . & s_{k} \\
m_{1} & m_{2} & . & . \\
s_{k+1} & s_{3} & . & s_{k+2} \\
\cdot & \cdot & . & \cdot \\
s_{k} & s_{k+1} & \cdot & \cdot \\
s_{2 k}
\end{array}\right]>0, k=2 l} \\
l=\overline{0, \infty} .
\end{gathered}
$$

The following theorem holds true:
Theorem 1 ([1, Theorem 6, p. 274]). Let moments problem in general form be given. For the existance of a problem's solution $\sigma(\lambda)$ (with an infinite number of increasing points) it is necessary and sufficient the pair of sequences $\left\{s_{k}, m_{k+1}\right\}_{k=0}^{\infty}$ to be symmetric and positive.

Zolotarev suggested to investigate systems of polynomials, which satisfy (1). He also gave the usefull notes. The next theorem is an analog of Favard's theorem [2, Theorem 1.5, p. 60]. It gives the orthonormality properties for the systems from (1).

Theorem 2. Let the system of polynomials $\left\{p_{n}(\lambda)\right\}_{n=0}^{\infty}$ satisfy (1). Then these polynomials are orthonormal on the real and the imaginary axes in the complex plane:

$$
\int_{R \cup T}\left(p_{n}(\lambda), p_{n}(-\lambda)\right) d \sigma(\lambda) \overline{\binom{p_{m}(\lambda)}{p_{m}(-\lambda)}}=\delta_{n, m}, n, m=\overline{0, \infty} ; T=(-\infty, \infty),
$$

where $\sigma(\lambda)=\left(\begin{array}{cc}\sigma_{1}(\lambda) & \sigma_{2}(\lambda) \\ \sigma_{3}(\lambda) & \sigma_{4}(\lambda)\end{array}\right)$ is symmetric, non-decreasing matrix-function with infinite number of points of increasing: $\overline{\sigma_{1}(\lambda)}=\sigma_{1}(\lambda), \overline{\sigma_{4}(\lambda)}=\sigma_{4}(\lambda)$, $\overline{\sigma_{2}(\lambda)}=\sigma_{3}(\lambda) ; \sigma\left(\lambda_{2}\right) \geq \sigma\left(\lambda_{1}\right), \lambda_{2} \geq \lambda_{1}, \lambda_{1}, \lambda_{2} \in R, \sigma\left(\lambda_{2}\right) \geq \sigma\left(\lambda_{1}\right), \frac{\lambda_{2}}{i} \geq \frac{\lambda_{1}}{i}$, $\lambda_{1}, \lambda_{2} \in T, T=(-i \infty, i \infty)$.

Proof. Let $\left\{p_{n}(\lambda)\right\}_{n=0}^{\infty}$ be given system of polynomials. We define a functional $\sigma(u, v)$, where $u, v \in P, P$ is a space of all polynomials. If $u(\lambda), v(\lambda) \in P$, than we can write: $u(\lambda)=\sum_{i=0}^{n} a_{i} p_{i}(\lambda), v(\lambda)=\sum_{j=0}^{m} b_{j} p_{j}(\lambda), a_{i} \in C, i=\overline{0, n}$, $b_{j} \in C, j=\overline{0, m},\left(a_{n} \neq 0, b_{m} \neq 0\right), n, m \in N$. Note, that for arbitrary polynomials $u(\lambda), v(\lambda)$ such decomposition is always possible because the polynomials $p_{n}(\lambda)$ have positive leading coefficients. Also, for arbitrary $u(\lambda), v(\lambda)$ such representation is unique. By definition

$$
\sigma(u, v)=\sum_{i=0}^{k} a_{i} \overline{b_{i}}, k=\min \{n, m\}
$$

This functional is bilinear. Also, it satisfies the relation:

$$
\overline{\sigma(u, v)}=\sigma(v, u) .
$$

Note, that for the polynomials $\left\{p_{n}(\lambda)\right\}_{n=0}^{\infty}$ we have:

$$
\begin{equation*}
\sigma\left(p_{n}(\lambda), p_{m}(\lambda)\right)=\delta_{n, m}, n, m=0,1, \ldots \tag{2}
\end{equation*}
$$

Let us show that this functional has the property:

$$
\begin{equation*}
\sigma\left(\lambda^{2} u, v\right)=\sigma\left(u, \lambda^{2} v\right), u, v \in P . \tag{3}
\end{equation*}
$$

Really, if $u(\lambda)=\sum_{i=0}^{n} a_{i} p_{i}(\lambda), v(\lambda)=\sum_{j=0}^{m} b_{j} p_{j}(\lambda), a_{i} \in C, i=\overline{0, n}, b_{j} \in C, j=\overline{0, m}$, $\left(a_{n} \neq 0, b_{m} \neq 0\right), n, m \in N$, then

$$
\begin{gathered}
\sigma\left(\lambda^{2} u, v\right)=\sigma\left(\lambda^{2} \sum_{i=0}^{n} a_{i} p_{i}(\lambda), \sum_{j=0}^{m} b_{j} p_{j}(\lambda)\right)=\sigma\left(\sum_{i=0}^{n} \lambda^{2} a_{i} p_{i}(\lambda), \sum_{j=0}^{m} b_{j} p_{j}(\lambda)\right)= \\
=\sum_{i=0}^{n} \sum_{j=0}^{m} a_{i} \overline{b_{j}} \sigma\left(\lambda^{2} p_{i}(\lambda), p_{j}(\lambda)\right)
\end{gathered}
$$

If we prove that

$$
\begin{equation*}
\sigma\left(\lambda^{2} p_{i}(\lambda), p_{j}(\lambda)\right)=\sigma\left(p_{i}(\lambda), \lambda^{2} p_{j}(\lambda)\right), i, j=0,1, \ldots, \tag{4}
\end{equation*}
$$

then

$$
\begin{gathered}
\sigma\left(\lambda^{2} u, v\right)=\sum_{i=0}^{n} \sum_{j=0}^{m} a_{i} \overline{b_{j}} \sigma\left(p_{i}(\lambda), \lambda^{2} p_{j}(\lambda)\right)=\sigma\left(\sum_{i=0}^{n} a_{i} p_{i}(\lambda), \sum_{j=0}^{m} \lambda^{2} b_{j} p_{j}(\lambda)\right)= \\
=\sigma\left(u, \lambda^{2} v\right)
\end{gathered}
$$

and relation (3) will be proved. But

$$
\begin{gathered}
\sigma\left(\lambda^{2} p_{i}(\lambda), p_{j}(\lambda)\right)=\sigma\left(\alpha_{i-2} p_{i-2}(\lambda)+\overline{\beta_{i-1}} p_{i-1}(\lambda)+\gamma_{i} p_{i}(\lambda)+\beta_{i} p_{i+1}(\lambda)+\alpha_{i} p_{i+2}(\lambda)\right. \\
\left.p_{j}(\lambda)\right)=\alpha_{i-2} \delta_{i-2, j}+\overline{\beta_{i-1}} \delta_{i-1, j}+\gamma_{i} \delta_{i, j}+\beta_{i} \delta_{i+1, j}+\alpha_{i} \delta_{i+2, j}, i, j=0,1,2, \ldots \\
\sigma\left(p_{i}(\lambda), \lambda^{2} p_{j}(\lambda)\right)=\sigma\left(p_{i}(\lambda), \alpha_{j-2} p_{j-2}(\lambda)+\overline{\beta_{j-1}} p_{j-1}(\lambda)+\gamma_{j} p_{j}(\lambda)+\beta_{j} p_{j+1}(\lambda)+\right. \\
\left.+\alpha_{j} p_{j+2}(\lambda)\right)=\alpha_{j-2} \delta_{i, j-2}+\beta_{j-1} \delta_{i, j-1}+\gamma_{j} \delta_{i, j}+\overline{\beta_{j}} \delta_{i, j+1}+\alpha_{j} \delta_{i, j+2}= \\
=\alpha_{i} \delta_{i, j-2}+\beta_{i} \delta_{i, j-1}+\gamma_{i} \delta_{i, j}+\overline{\beta_{i-1}} \delta_{i, j+1}+\alpha_{i-2} \delta_{i, j+2}=\alpha_{i} \delta_{i+2, j}+\beta_{i} \delta_{i+1, j}+ \\
+\gamma_{i} \delta_{i, j}+\overline{\beta_{i-1}} \delta_{i-1, j}+\alpha_{i-2} \delta_{i-2, j}, \quad i, j=0,1,2, \ldots
\end{gathered}
$$

This implies the correctness of (3).
Let

$$
\begin{gathered}
s_{k}=\sigma\left(\lambda^{k}, 1\right), k=0,1, \ldots \\
m_{k}=\sigma\left(\lambda^{k-1}, \lambda\right), k=1,2, \ldots
\end{gathered}
$$

Then

$$
\begin{gathered}
\overline{s_{2 k}}=\overline{\sigma\left(\lambda^{2 k}, 1\right)}=\sigma\left(1, \lambda^{2 k}\right)=\sigma\left(\lambda^{2 k}, 1\right)=s_{2 k} \\
\overline{s_{2 k+1}}=\overline{\sigma\left(\lambda^{2 k+1}, 1\right)}=\sigma\left(1, \lambda^{2 k+1}\right)=\sigma\left(\lambda^{2 k}, \lambda\right)=m_{2 k+1}, k=0,1, \ldots \\
\overline{m_{2 k}}=\overline{\sigma\left(\lambda^{2 k-1}, \lambda\right)}=\sigma\left(\lambda, \lambda^{2 k-1}\right)=\sigma\left(\lambda^{2 k-1}, \lambda\right)=m_{2 k}, k=1,2, \ldots
\end{gathered}
$$

Hence, the pair of sequences $\left\{s_{k}, m_{k+1}\right\}_{k=0}^{\infty}, s_{k} \in C, m_{k+1} \in C, k=\overline{0, \infty}$ is symmetric.

Note that

$$
\sigma(u, u)>0, u \in P, u \neq 0
$$

Using this we have

$$
0<\sigma\left(\sum_{k=0}^{n} a_{k} \lambda^{k}, \sum_{i=0}^{n} a_{i} \lambda^{i}\right)=\sum_{k, i=0}^{n} a_{k} \overline{a_{i}} \sigma\left(\lambda^{k}, \lambda^{i}\right)=
$$

$$
=\left\{\begin{array}{c}
\sum_{k=0}^{n}\left[\sum_{j=0}^{n / 2} a_{k} \overline{a_{2 j}} s_{k+2 j}+\sum_{j=0}^{n / 2-1} a_{k} \overline{a_{2 j+1}} m_{k+2 j+1}\right], \quad \text { if } n \text { is even } \\
\sum_{k=0}^{n}\left[\sum_{j=0}^{(n-1) / 2} a_{k} \overline{a_{2 j}} s_{k+2 j}+\sum_{j=0}^{(n-1) / 2} a_{k} \overline{a_{2 j+1}} m_{k+2 j+1}\right], \text { if } n \text { is odd } \\
a_{i} \in C, i=\overline{0, n}, a_{n} \neq 0, n \in N
\end{array}\right.
$$

It follows that the pair of sequences $\left\{s_{k}, m_{k+1}\right\}_{k=0}^{\infty}$ is positive.
Let $\sigma(\lambda)=\left(\begin{array}{ll}\sigma_{1}(\lambda) & \sigma_{2}(\lambda) \\ \sigma_{3}(\lambda) & \sigma_{4}(\lambda)\end{array}\right)$ be a solution of corresponding generalized symmetric problem of moments. Let us consider a functional:

$$
\hat{\sigma}(u, v)=\int_{R \cup T}(u(\lambda), u(-\lambda)) d \sigma(\lambda) \overline{\binom{v(\lambda)}{v(-\lambda)}}, u, v \in P
$$

Let $u(\lambda)=\sum_{k=0}^{n} a_{k} \lambda^{k}, v(\lambda)=\sum_{i=0}^{m} b_{i} \lambda^{i}, a_{k} \in C, k=\overline{0, n}, b_{i} \in C, i=\overline{0, m}$. Then

$$
\hat{\sigma}(u, v)=\hat{\sigma}\left(\sum_{k=0}^{n} a_{k} \lambda^{k}, \sum_{i=0}^{m} b_{i} \lambda^{i}\right)=\sum_{k=0}^{n} \sum_{i=0}^{m} a_{k} \overline{b_{i}} \hat{\sigma}\left(\lambda^{k}, \lambda^{i}\right) .
$$

The following equality holds true:

$$
\hat{\sigma}\left(\lambda^{k}, \lambda^{i}\right)=\sigma\left(\lambda^{k}, \lambda^{i}\right), k, i=0,1, \ldots
$$

Actually,

$$
\begin{gathered}
\hat{\sigma}\left(\lambda^{k}, \lambda^{2 j}\right)=\hat{\sigma}\left(\lambda^{k+2 j}, 1\right)=s_{k+2 j}=\sigma\left(\lambda^{k+2 j}, 1\right)=\sigma\left(\lambda^{k}, \lambda^{2 j}\right) \\
\hat{\sigma}\left(\lambda^{k}, \lambda^{2 j+1}\right)=\hat{\sigma}\left(\lambda^{k+2 j}, \lambda\right)=m_{k+2 j+1}=\sigma\left(\lambda^{k+2 j}, \lambda\right)=\sigma\left(\lambda^{k}, \lambda^{2 j+1}\right) \\
k, j=0,1,2, \ldots
\end{gathered}
$$

This implies that

$$
\hat{\sigma}(u, v)=\sum_{k=0}^{n} \sum_{i=0}^{m} a_{k} \overline{b_{i}} \sigma\left(\lambda^{k}, \lambda^{i}\right)=\sigma(u, v), u, v \in P
$$

Using the orthonormality relation (2) we obtain that polynomials $\left\{p_{n}(\lambda)\right\}_{n=0}^{\infty}$ satisfy the required property of orthonormality and this completes the proof.

We now turn to the difference equation of the type:

$$
\begin{equation*}
\alpha_{n-2} y_{n-2}+\overline{\beta_{n-1}} y_{n-1}+\gamma_{n} y_{n}+\beta_{n} y_{n+1}+\alpha_{n} y_{n+2}=\lambda^{2} y_{n}(\lambda), n=2,3, \ldots \tag{5}
\end{equation*}
$$

where $\alpha_{n}>0, \beta_{n} \in C, \gamma_{n} \in R, n=0,1,2, \ldots ; \lambda \in C$ is a parameter, $y=\left(\begin{array}{c}y_{0} \\ y_{1} \\ \cdot \\ \cdot \\ y_{n} \\ \cdot\end{array}\right)$ is solution vector.

Let $\left\{p_{n}(\lambda)\right\}_{n=0}^{\infty}$ be the system of polynomials such that: $p_{0}(\lambda)=1$, $p_{1}(\lambda)=c \lambda+b, c>0, b \in C, \lambda \in C$, the polynomials $p_{2}(\lambda), p_{3}(\lambda)$ can be found from equalities:

$$
\gamma_{0} p_{0}(\lambda)+\beta_{0} p_{1}(\lambda)+\alpha_{0} p_{2}(\lambda)=\lambda^{2} p_{0}(\lambda)
$$

$$
\overline{\beta_{0}} p_{0}(\lambda)+\gamma_{1} p_{1}(\lambda)+\beta_{1} p_{2}(\lambda)+\alpha_{1} p_{3}(\lambda)=\lambda^{2} p_{1}(\lambda), \gamma_{0}, \gamma_{1} \in R, \beta_{0} \in C
$$

and $\left\{p_{n}(\lambda)\right\}_{n=0}^{\infty}$ is solution of (5).
This system of polynomials satisfy (1). Let $\sigma(u, v), u, v \in P$ be a functional defined as in the proof of Theorem 2. Let us write the first 4 polynomials in the sequence $\left\{p_{n}(\lambda)\right\}_{n=0}^{\infty}$:
$p_{0}(\lambda)=1, p_{1}(\lambda)=\mu_{1} \lambda+\nu_{1}, p_{2}(\lambda)=\mu_{2} \lambda^{2}+\nu_{2} \lambda+\eta_{2}, p_{3}(\lambda)=\mu_{3} \lambda^{3}+\nu_{3} \lambda^{2}+\eta_{3} \lambda+\xi_{3}$, where $\mu_{k}>0, \nu_{k} \in C, k=\overline{1,3}, \eta_{2}, \eta_{3}, \xi_{3} \in C$.

Consider the following systems of polynomials:

$$
\begin{gather*}
p_{n}^{+}(\lambda)=\frac{p_{n}(\lambda)+p_{n}(-\lambda)}{2}, p_{n}^{-}(\lambda)=\frac{p_{n}(\lambda)-p_{n}(-\lambda)}{2 \lambda} \\
f_{n}(\lambda)=\sigma_{u}\left(\frac{p_{n}(u)-u p_{n}^{-}(\lambda)-p_{n}^{+}(\lambda)}{u^{2}-\lambda^{2}}, 1\right) \\
g_{k}(\lambda)=\sigma_{u}\left(\frac{p_{n}(u)-u p_{n}^{-}(\lambda)-p_{n}^{+}(\lambda)}{u^{2}-\lambda^{2}}, p_{1}(u)\right) \\
n=0,1, \ldots \tag{6}
\end{gather*}
$$

The $f_{n}(\lambda), g_{n}(\lambda)$ can also be written in the form:

$$
f_{n}(\lambda)=\sigma_{u}\left(\frac{p_{n}^{+}(u)-p_{n}^{+}(\lambda)}{u^{2}-\lambda^{2}}, 1\right)+\sigma_{u}\left(u \frac{p_{n}^{-}(u)-p_{n}^{-}(\lambda)}{u^{2}-\lambda^{2}}, 1\right)
$$

$$
\begin{gathered}
g_{n}(\lambda)=\sigma_{u}\left(\frac{p_{n}^{+}(u)-p_{n}^{+}(\lambda)}{u^{2}-\lambda^{2}}, p_{1}(u)\right)+\sigma_{u}\left(u \frac{p_{n}^{-}(u)-p_{n}^{-}(\lambda)}{u^{2}-\lambda^{2}}, p_{1}(u)\right) \\
n=\overline{0, \infty}
\end{gathered}
$$

Now we can construct the fundamental system of solutions of (5) (see [3]):
Theorem 3. Let us consider the difference equation (5). The systems of polynomials $\left\{p_{n}^{+}(\lambda)\right\}_{n=0}^{\infty},\left\{p_{n}^{-}(\lambda)\right\}_{n=0}^{\infty},\left\{f_{n}(\lambda)\right\}_{n=0}^{\infty},\left\{g_{n}(\lambda)\right\}_{n=0}^{\infty}$ form the fundamental system of solutions of (5). The initial conditions are as follows:

$$
\left\{\begin{array}{l}
p_{0}^{+}(\lambda)=1 \\
p_{1}^{+}(\lambda)=\nu_{1} \\
p_{2}^{+}(\lambda)=\mu_{2} \lambda^{2}+\eta_{2} \\
p_{3}^{+}(\lambda)=\nu_{3} \lambda^{2}+\xi_{3}
\end{array} ;\left\{\begin{array}{l}
p_{0}^{-}(\lambda)=0 \\
p_{1}^{-}(\lambda)=\mu_{1} \\
p_{2}^{-}(\lambda)=\nu_{2} \\
p_{3}^{-}(\lambda)=\mu_{3} \lambda^{2}+\eta_{3}
\end{array}\right.\right.
$$

$$
\left\{\begin{array}{l}
f_{0}(\lambda)=0 \tag{7}\\
f_{1}(\lambda)=0 \\
f_{2}(\lambda)=\mu_{2} \\
f_{3}(\lambda)=-\frac{\mu_{3} \nu_{1}}{\mu_{1}}+\nu_{3}
\end{array} ;\left\{\begin{array}{l}
g_{0}(\lambda)=0 \\
g_{1}(\lambda)=0 \\
g_{2}(\lambda)=0 \\
g_{3}(\lambda)=\frac{\mu_{3}}{\mu_{1}}
\end{array} .\right.\right.
$$

Proof. The systems $\left\{p_{n}^{ \pm}(\lambda)\right\}_{n=0}^{\infty}$ are solutions of (5) because they are linear combination of solutions of this equation. The conditions (7) are easily verified.

Substituting $f_{n}(\lambda)$ in the left-hand side of (5) we have:

$$
\begin{array}{r}
\sigma_{u}\left(\frac{u^{2} p_{n}^{+}(u)-\lambda^{2} p_{n}^{+}(\lambda)}{u^{2}-\lambda^{2}}, 1\right)+\sigma_{u}\left(u \frac{u^{2} p_{n}^{-}(u)-\lambda^{2} p_{n}^{-}(\lambda)}{u^{2}-\lambda^{2}}, 1\right)=\sigma_{u}\left(p_{n}^{+}(u), 1\right)+ \\
+\lambda^{2} \sigma_{u}\left(\frac{p_{n}^{+}(u)-p_{n}^{+}(\lambda)}{u^{2}-\lambda^{2}}, 1\right)+\sigma_{u}\left(u p_{n}^{-}(u), 1\right)+\lambda^{2} \sigma_{u}\left(u \frac{p_{n}^{-}(u)-p_{n}^{-}(\lambda)}{u^{2}-\lambda^{2}}, 1\right)= \\
=\lambda^{2} f_{n}(\lambda)+\sigma_{u}\left(p_{n}^{+}(u)+u p_{n}^{-}(u), 1\right)=\lambda^{2} f_{n}(\lambda)+\sigma_{u}\left(p_{n}(u), 1\right)=\lambda^{2} f_{n}(\lambda) \\
n=1,2, \ldots
\end{array}
$$

Analogously for polynomials $g_{k}(\lambda)$ we have:

$$
\begin{gathered}
\sigma_{u}\left(\frac{u^{2} p_{n}^{+}(u)-\lambda^{2} p_{n}^{+}(\lambda)}{u^{2}-\lambda^{2}}, p_{1}(u)\right)+\sigma_{u}\left(u \frac{u^{2} p_{n}^{-}(u)-\lambda^{2} p_{n}^{-}(\lambda)}{u^{2}-\lambda^{2}}, p_{1}(u)\right)= \\
=\lambda^{2} g_{n}(\lambda)+\sigma_{u}\left(p_{n}(u), p_{1}(u)\right)=\lambda^{2} g_{n}(\lambda), \quad n=2,3, \ldots
\end{gathered}
$$

It follows that the systems $\left\{f_{n}(\lambda)\right\}_{n=0}^{\infty},\left\{g_{n}(\lambda)\right\}_{n=0}^{\infty}$ are solutions of (5).
Using formula (6) and conditions (7) for $p_{n}^{ \pm}(\lambda), n=\overline{0,3}$ we obtain:

$$
\begin{gathered}
f_{0}(\lambda)=g_{0}(\lambda)=0, \\
f_{1}(\lambda)=g_{1}(\lambda)=0, \\
f_{2}(\lambda)=\sigma_{u}\left(\mu_{2}, 1\right)=\mu_{2}, g_{2}(\lambda)=\sigma_{u}\left(\mu_{2}, p_{1}(u)\right)=\mu_{2} \sigma_{u}\left(1, p_{1}(u)\right)=0, \\
f_{3}(\lambda)=\sigma_{u}\left(\nu_{3}, 1\right)+\sigma_{u}\left(u \mu_{3}, 1\right)=\nu_{3}+\mu_{3} \sigma_{u}(u, 1)=\nu_{3}+\mu_{3} \sigma_{u}\left(\frac{p_{1}(u)-\nu_{1}}{\mu_{1}}, 1\right)= \\
=\nu_{3}+\frac{\mu_{3}}{\mu_{1}}\left(\sigma_{u}\left(p_{1}(u), 1\right)-\sigma_{u}\left(\nu_{1}, 1\right)\right)=\nu_{3}-\frac{\mu_{3} \nu_{1}}{\mu_{1}} \\
g_{3}(\lambda)=\sigma_{u}\left(\nu_{3}, p_{1}(u)\right)+\sigma_{u}\left(u \mu_{3}, p_{1}(u)\right)=\mu_{3} \sigma_{u}\left(\frac{p_{1}(u)-\nu_{1}}{\mu_{1}}, p_{1}(u)\right)=\frac{\mu_{3}}{\mu_{1}} .
\end{gathered}
$$

The linear independence of solutions $\left\{p_{n}^{ \pm}(\lambda)\right\}_{n=0}^{\infty},\left\{f_{n}(\lambda)\right\}_{n=0}^{\infty},\left\{g_{n}(\lambda)\right\}_{n=0}^{\infty}$ is evident from (7). The proof is complete.

Let $\left\{y_{n}\right\}_{n=0}^{\infty},\left\{v_{n}\right\}_{n=0}^{\infty}$ be solutions of equation (5) corresponding to parameter values λ and ξ respectively:

$$
\begin{array}{r}
\lambda^{2} y_{n}(\lambda)=\alpha_{n-2} y_{n-2}(\lambda)+\overline{\beta_{n-1}} y_{n-1}(\lambda)+\gamma_{n} y_{n}(\lambda)+\beta_{n} y_{n+1}(\lambda)+\alpha_{n} y_{n+2}(\lambda) \\
\xi^{2} v_{n}(\xi)=\alpha_{n-2} v_{n-2}(\xi)+\overline{\beta_{n-1}} v_{n-1}(\xi)+\gamma_{n} v_{n}(\xi)+\beta_{n} v_{n+1}(\xi)+\alpha_{n} v_{n+2}(\xi) \\
n=2,3, \ldots
\end{array}
$$

Then

$$
\begin{aligned}
& \lambda^{2} y_{n}(\lambda) \overline{v_{n}(\xi)}= \alpha_{n-2} y_{n-2}(\lambda) \overline{v_{n}(\xi)}+\overline{\beta_{n-1}} y_{n-1}(\lambda) \overline{v_{n}(\xi)}+\gamma_{n} y_{n}(\lambda) \overline{v_{n}(\xi)}+ \\
& \quad+\beta_{n} y_{n+1}(\lambda) \overline{v_{n}(\xi)}+\alpha_{n} y_{n+2}(\lambda) \overline{v_{n}(\xi)} \\
& \bar{\xi}^{2} y_{n}(\lambda) \overline{v_{n}(\xi)}= \alpha_{n-2} y_{n}(\lambda) \overline{v_{n-2}(\xi)}+\beta_{n-1} y_{n}(\lambda) \overline{v_{n-1}(\xi)}+\gamma_{n} y_{n}(\lambda) \overline{v_{n}(\xi)}+ \\
&+\overline{\beta_{n}} y_{n}(\lambda) \overline{v_{n+1}(\xi)}+\alpha_{n} y_{n}(\lambda) \overline{v_{n+2}(\xi)}, n=2,3, \ldots
\end{aligned}
$$

Subtracting the second equality from the first one we have:

$$
\begin{gathered}
\left(\lambda^{2}-\bar{\xi}^{2}\right) y_{n}(\lambda) \overline{v_{n}(\xi)}=\alpha_{n-2}\left(y_{n-2}(\lambda) \overline{v_{n}(\xi)}-y_{n}(\lambda) \overline{v_{n-2}(\xi)}\right)+\overline{\beta_{n-1}} y_{n-1}(\lambda) \overline{v_{n}(\xi)}- \\
-\beta_{n-1} y_{n}(\lambda) \overline{v_{n-1}(\xi)}+\beta_{n} y_{n+1}(\lambda) \overline{v_{n}(\xi)}-\overline{\beta_{n}} y_{n}(\lambda) \overline{v_{n+1}(\xi)}+\alpha_{n}\left(y_{n+2}(\lambda) \overline{v_{n}(\xi)}-\right. \\
\left.-y_{n}(\lambda) \overline{v_{n+2}(\xi)}\right)=-A_{n-2}(\lambda, \xi)-B_{n-1}(\lambda, \xi)+B_{n}(\lambda, \xi)+A_{n}(\lambda, \xi)
\end{gathered}
$$

where $A_{n}(\lambda, \xi)=\alpha_{n}\left(y_{n+2}(\lambda) \overline{v_{n}(\xi)}-y_{n}(\lambda) \overline{v_{n+2}(\xi)}\right), B_{n}(\lambda, \xi)=\beta_{n} y_{n+1}(\lambda) \overline{v_{n}(\xi)}-$ $\overline{\beta_{n}} y_{n}(\lambda) \overline{v_{n+1}(\xi)}$.

Summing up over n we obtain:

$$
\begin{aligned}
\left(\lambda^{2}-\bar{\xi}^{2}\right) \sum_{n=k}^{m} y_{n}(\lambda) \overline{v_{n}(\xi)}= & B_{m}(\lambda, \xi)+A_{m}(\lambda, \xi)+A_{m-1}(\lambda, \xi)-A_{k-2}(\lambda, \xi)- \\
& -B_{k-1}(\lambda, \xi)-A_{k-1}(\lambda, \xi), 2 \leq k \leq m
\end{aligned}
$$

So, we have proved the following theorem:
Theorem 4. Let $\left\{y_{n}\right\}_{n=0}^{\infty},\left\{v_{n}\right\}_{n=0}^{\infty}$ be solutions of equation (5) corresponding to parameters λ and ξ respectively. Then the following formula holds:

$$
\begin{gathered}
\left(\lambda^{2}-\bar{\xi}^{2}\right) \sum_{n=k}^{m} y_{n}(\lambda) \overline{v_{n}(\xi)}=\alpha_{m}\left(y_{m+2}(\lambda) \overline{v_{m}(\xi)}-y_{m}(\lambda) \overline{v_{m+2}(\xi)}\right)+ \\
+\alpha_{m-1}\left(y_{m+1}(\lambda) \overline{v_{m-1}(\xi)}-y_{m-1}(\lambda) \overline{v_{m+1}(\xi)}\right)+\beta_{m} y_{m+1}(\lambda) \overline{v_{m}(\xi)}-\overline{\beta_{m}} y_{m}(\lambda) \overline{v_{m+1}(\xi)}- \\
-\alpha_{k-2}\left(y_{k}(\lambda) \overline{v_{k-2}(\xi)}-y_{k-2}(\lambda) \overline{v_{k}(\xi)}\right)-\alpha_{k-1}\left(y_{k+1}(\lambda) \overline{v_{k-1}(\xi)}-y_{k-1}(\lambda) \overline{v_{k+1}(\xi)}\right)- \\
-\left(\beta_{k-1} y_{k}(\lambda) \overline{v_{k-1}(\xi)}-\overline{\beta_{k-1}} y_{k-1}(\lambda) \overline{v_{k}(\xi)}\right) \\
2 \leq k \leq m .
\end{gathered}
$$

REFERENCES

[1] S. Zagorodniuk. On a five-diagonal Jacobi matrices and orthogonal polynomials on rays in the complex plane. Serdica Math. J. 24 (1998), 257-282.
[2] G. Freud. Orthogonal polynomials. Academia Kiado, Budapest, 1971.
[3] D. I. Martyniuk. Lectures on qualitative theory of difference equations. Kiev, Naukova dumka, 1972 (in Russian).

Faculty of Mathematics and Informatics
Kharkov University
310077 Kharkov 77
Received August 25, 2000
Ukraine
Revised July 30, 2001

[^0]: 2000 Mathematics Subject Classification: 42C05, 39A05.

