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ABSTRACT. Orthonormal polynomials on the real line {p,(A\)}5%, satisfy
the recurrent relation of the form: A\,_1pn—1(A) + anpn(A) + Anpnt1(A) =
Apn(A), n=0,1,2,..., where A\, > 0,0, € R, n =0,1,...5A 1 =p_1 =
0, eC.

In this paper we study systems of polynomials {p,(A)}5>, which sat-
iSfy the equatlon an72pn72( ) + 5n71pn71( ) + Iann()\) + ﬂnanrl()\) +
UnPnt2(A) = X2p,(A),n = 0,1,2,..., where a,, > 0, ﬂ € C, v, € R,
n:O,l,Z,..., a_1 = O_2 :6_1 ZO7 P—-1 = DP-2 0 ()\) = 1
p1(A)=cA+b,c>0,beC, NeC.

It is shown that they are orthonormal on the real and the imaginary axes

in the complex plane: / (pn(/\),pn(—/\))da()\)( Pm(A) ) = 6n,m;
RUT Pm(=A) ’
n,m = 0,00;T = (—o00,00) with respect to some matrix measure o(\) =

(20 200,

Also the Green formula for difference equation of 4-th order is built.

2000 Mathematics Subject Classification: 42C05, 39A05.
Key words: orthogonal polynomials, difference equation.



194 S. M. Zagorodniuk

Let us consider the recurrent relation for the system of polynomials
{Pn(N)}5°, of the form:

(1) an72pn72()\) + ﬂnflpnfl()\) + ’ann()\) + ﬂnanrl()\) + anpn+2(/\) = /\2pn(/\)a
n=20,12,...,

where o, > 0, 3, €C, v, € R, n=0,1,2,..., a1 =a_9=0_1=0,p_1 =
p—2=0,po(N) =1, pt(A\) =cA+b,c>0,be C, Ne C.

This relation can be written in the matrix form:

Y% Bo aw O 0 0 . Po Po
foomn B oar 0 0 . p1 p1
a P12 P oa 0 . p2 | =N p
0 ou B2 3 fB3 a3 . P3 P3
or
J5p = A’p,

where Jj is five-diagonal, symmetric, semi-infinite matrix and p is vector of poly-
nomials.

Let us study the properties of these systems of polynomials. Note, that
orthonormal polynomials on the real line belong to this class of polynomials. For
them the following equation is fulfilled: J3p = Ap with three-diagonal, symmetric,
semi-infinite matrix and from this immediately it follows, that J32p = \?p and
J2 — is five-diagonal, symmetric, semi-infinite matrix (Question: how larger is
the considered class than the class of real polynomials? For the answer see [1,
Theorem 5, p. 272]).

Definition ([1, p. 265-266]). Find matriz measure &(\)= (?1()\) ?2()\) ),

a3(A) Ga(A)
A€ C;6i(N\) : C — C is piecewise continuous mapping on the real and the imag-
inary axis, i = 1,4, such that

1) 6(\) is symmetric, monotonically increasing matriz function:

G4(A) = G4(N),52(A) = d3(N);

d(A2) 2 (A1), 2> A1, A, €R

500) 2 5(0), 222 20 xy € (i, ico)

a1(A) = 51(N)
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N “”“WMW — . k=T,

where {51172, {mr}ic, are fized sequences of complex numbers;
We’ll call this problem generalized symmetric moments problem.

Definition ([1, p. 266]). We call a pair of sequences {sk, My4+1}3g,
s € Cymygy1 € C, k = 0,00 symmetric if

S2k4+1 = M2k+1;

5ok = Sok, Moky2 = Makt+2, Kk =0,00.

We call a pair of sequences {si, my11}52g, Sk € C, mpy1 € C, k =0, 00 positive
one if

S0 S1 .o Sk S0 51 .o Sk
mip Mm2 . . Mgyl mip m2 . . Mgyl
Sg 83 .. Sgy2 | >0, E=21+1; Sg 83 . . Sgq2 | >0,k=2]
Mg ME41 - - M2k Sk Sk+1 - - S2
[ =0,00.

The following theorem holds true:

Theorem 1 ([1, Theorem 6, p. 274]). Let moments problem in general
form be given. For the existance of a problem’s solution o(\) (with an infinite
number of increasing points) it is necessary and sufficient the pair of sequences
{8k, mpt1}32, to be symmetric and positive.

Zolotarev suggested to investigate systems of polynomials, which satisfy
(1). He also gave the usefull notes. The next theorem is an analog of Favard’s
theorem [2, Theorem 1.5, p. 60]. It gives the orthonormality properties for the
systems from (1).

Theorem 2. Let the system of polynomials {pn(\)}o2, satisfy (1). Then
these polynomials are orthonormal on the real and the imaginary azes in the
complex plane:

Pm(A) _ — L
[ ot ( 27O ) = 6 = 05T = (-50,50),
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01(A) oa(N)
a3(A) 04(A)
with infinite number of points of increasing: o1(\) = o1(A), o4(A)
o2(A) = 03(N); 0(A2) = 0(A1), A2 > A1, A, A2 € R, 0(A2) > o(M),
A, A eT, T = (—’iOO,’iOO).

where o(\) = ( > is symmetric, non-decreasing matriz-function

a4(N),
1
i

b
1

7

Proof. Let {p,(A)}2, be given system of polynomials. We define a func-
tional o(u,v), where u,v € P, P is a space of all polynomials. If u(\),v(\) € P,

than we can write: u(A) = > a;ipi(A), v(A) = > bjpj(N), a; € C, i = 0,n,
i=0 =0

bj € C,j =0,m, (an # 0, by, #0), n,m € N. Note, that for arbitrary polyno-
mials u(\),v(\) such decomposition is always possible because the polynomials
pn(A) have positive leading coefficients. Also, for arbitrary u(X),v(\) such repre-
sentation is unique. By definition

o(u,v) = éaib_i, k = min{n,m}
i=
This functional is bilinear. Also, it satisfies the relation:
o(u,v) = o(v,u).
Note, that for the polynomials {py,()\)}52, we have:
(2) o(Pn(A);Pm(X)) = 6pym, n,m =0,1,...
Let us show that this functional has the property:

(3) o(XNu,v) = o(u, \*v), u,v € P.

n m
Really, lfu()‘) = Z azpz()\)> ’U()\) = Z bjpj()‘)v a; € C,i=0,n, b] € C>] =0,m,
i=0 7=0
(an # 0, by, #0), n,m € N, then
) . m no, m
o(XNu,v) =0 [ A3 aipi(N), 2o0pi(A) | =0 | oA aipi(A), Dobipi(A) | =
i=0 =0 i=0 =0
= 35 S a0 (N5 (V)
1=0j=

If we prove that

(4) a(Api(A), pi(N) = a(pi(A), Np;(N), 4,5 =0,1,...,
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then
n m

o(Nu,v) = 3 Y aibjo(pi(A), Np;(N) =0 <§:Oaipi()‘)v f:OAijpj()\)) =

i=04=0

= o(u, \?)

and relation (3) will be proved. But
c(A?pi(N), pj(N) = o(ai—api—a(N) + Bic1pi—1(N) +7ipi(A\) + Bipir1 (N) + aipis2 (),

Pi(N) = ai—20i—2j + Bi—10i—1,; + Vidij + Bidit1; + 2idizay, 4,5 =0,1,2,. ..
a(pi(N), Apj(N) = o (pi(A), aj—apj—a(A) + Bi—1pj—1(A) + v (A) + Bjpjt1(A)+

+a;pji2(N) = @j-2dij—2 + Bj-18ij-1 + 70 j + Bjdi 41 + ;b0 =
= ;02 + Bidij—1+ Vidij + Bi—10ij41 + qi—20i jy2 = @iy j + Bidiy1j+
+7:0i 5 + Bi—16i—1,j + i—20;—2 4, 1,5 =10,1,2,...

This implies the correctness of (3).
Let
sp=0\ 1), k=0,1,...

mp=c(MF1N), k=1,2,...

Then
Sk = o(A2F,1) = 0 (1,2\%%) = o (A%, 1) = sy,

S2k+1 = U()‘2k+17 1) = 0(17 )‘2k+1) = U()‘2k¢ )‘) = M2k+1, k=0,1,...;
Tgr = oA=L X)) = oA\ D) =oAL N = mgy, k=1,2,...

Hence, the pair of sequences {sy, mi4+1}7,, sk € C, mpy1 € C, k = 0,00 is
symmetric.
Note that
o(u,u) >0, ue€ P, u#0.

Using this we have
n

0<o <Eak)\k, Zai)\i> = 3 ap@io(\F, N =
k=0 1=0

k,i=0
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n |n/2 n/2—1
Yo | D0 arGogskyo; + D akGoj1Mk42541 | if n is even
k=0 |j=0 Jj=0
n [(n=1)/2 (n=1)/2
Z Z akG2;Sk+25 + Z k025 +1Mk42+1 | 5 if n is odd
[ k=0 | =0 §=0

a; €C,i=0,n,a,#0, n€ N
It follows that the pair of sequences {sy, myt1}52, is positive.
Let o(\) = <Z;8; Zigi; > be a solution of corresponding generalized

symmetric problem of moments. Let us consider a functional:

6 (u,0) = /RUT(U()\),U(—)\))CZU()\)< o ) uve P

Let u(\) = X apAf, v(\) = YA ar, € C,k=0,n, b; € C, i =0,m. Then
k=0 i=0

6(u,v) =6 <§:ak)\k, ibi)\i) = fj iakb_i&(Ak,Ai).
k=0 i=0 k=0i=0
The following equality holds true:
GO N =W N, ki=0,1,...
Actually,
GO NT) = (N2 1) = 53405 = o(WFTH 1) = o (AP, M%),
GO NI = 6N X) = myygin = o (AT, 0) = o (AP, AP,
k,j=0,1,2,...

This implies that

o(u,v) = 3 S apbio(W,X) = o(u,v), u,v e P.
k=01:=0

Using the orthonormality relation (2) we obtain that polynomials {p,(\)}°,
satisfy the required property of orthonormality and this completes the proof. O
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We now turn to the difference equation of the type:

(5) Qp—9Yn—2 + ﬁn—lyn—l + YnYn + ﬁnyn-I—l + anYnto = )\2yn()\)> n=23,...,

where a,, >0, 6, € C, v, € R,n=0,1,2,...; A € C is a parameter, y =

is solution vector.

Let {pn(N)}52, be the system of polynomials such that: po(A) = 1,
p1(A) = cA+0b,¢>0,be C, N\ € C, the polynomials pa(\), p3(A) can be
found from equalities:

Yopo(A) + Bop1(N) + cop2(X) = Apo(A),

Bopo(A) +71p1(A) + Bip2(A) + aips(A) = Api1(N), 70,71 € R, Bo € C,

and {pn(\)}>2, is solution of (5).

This system of polynomials satisfy (1). Let o(u,v),u,v € P be a func-
tional defined as in the proof of Theorem 2. Let us write the first 4 polynomials
in the sequence {py,(\)}5:

po(A) = 1,p1(\) = i A v, pa(A) = pa A2 +ve 41, p3(\) = s\ +us A2+ A+,

where py, > 0,1, € Cok =1,3, n2,n3,&3 € C.
Consider the following systems of polynomials:

Pn(A) +pn(=X) _ Pa(A) = pa(=A)

pry = e TN n ),
£.0) = 00 (pn(U) - Zz;n_(i); () 1) ’
w0 = o, (LB ()
(6) n=01,....

The f(\), gn(N) can also be written in the form:

= (BULZEO) ) (a0 500 )
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o) = o (PRI ) 1, (SR ),

uZ — \2 uZ — \

n =0, 00.
Now we can construct the fundamental system of solutions of (5) (see [3]):

Theorem 3. Let us consider the difference equation (5). The systems

of polynomials {py; (\)}5Zo, {pn (M}5Z0, {fn(N)}nZ0, {gn(N)}3Zo form the fun-
damental system of solutions of (5). The initial conditions are as follows:

(pg (N) =1 (pg (A) =0
pr(N)=un pr (N =m .
pg(N) = X2+ T ) py(N) =1 ’
L p3 (A) =302 + & [ p3 (A) = pusA? + 13
(7)
fo(A) =0 go(A) =0
fi(A) =0 g1(\) =0
fo(A) = pa 7y 92(A) =0
=B | e =5
M1 H1

Proof. The systems {p;(\)}2, are solutions of (5) because they are
linear combination of solutions of this equation. The conditions (7) are easily
verified.

Substituting f,,(A) in the left-hand side of (5) we have:

u’pit (u) — Xpir (N) u?py () — Xy (N)
Ouy ( W2 — N2 71> + 0Oy (u W2 — N2 71> = Uu(pr—t(u)a 1)+

W2 — N2
= )\an()\) + Uu(p:(u) + up;(u), 1) = )‘an()‘) + Uu(pn(u)> 1) = )\an()‘)v
n=12,...

2o, (M, 1) +ou(upy (u),1) + Noy (“%’ 1) -

Analogously for polynomials gx(\) we have:

Wt (w) — A2+ u?py; (u) — N2p
o (SO Y (K )

= A2, (\) + ou(pn(u), p1(u) = N2ga(N), n=2,3,....
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It follows that the systems {f,(A)}5%, {gn(A)}5%, are solutions of (5).

o) = oulp2, 1) = pa, g2(A) = oulpz, p1(u)) = peoy(1,p1(u)) =0,
p1(u) — V1’1> _

f3()\) = Ju(V3a 1) + Uu(u,u?n 1) =v3+ #30—u(u7 1) = V3 + 130y ( m

= vs + P (ou(pr(u), 1) — ou(vi, 1)) = vy — 22
M1 H1

50 = o 1) + o, pa () = para (P ) = 2

The linear independence of solutions {p:X(A\)}2%q, {fn(N)}0s {gn(N)}22, is ev-
ident from (7). The proof is complete. O

Let {yn}>2 o, {vn}re be solutions of equation (5) corresponding to para-
meter values \ and & respectively:

/\2yn()\) = an72yn72()\) + ﬁynfl(/\) + 'Ynyn()\) + ﬂnynJrl(/\) + anyn+2()\)7

§2Un(§) = ap—2vp—2(§) + mvnfl(g) + Ynn(§) + Bavni1(§) + anvnya(§),
n=23,...

Then

N2y (N on(€) = an—2yn—2(N)vn(€) + Ba—1Yn—1(A)vn(€) + nyn(\)vn (€)+

+Butnt1 (N (€) + sz (V) va (),
EYn (N n(€) = n-29n (N vn—2(€) + Br-19n(N)0n-1(€) + nYn(N)va(€)+
+Eyn(/\)vn+1(§) + anyn(/\)anrQ(g)v n=23...

Subtracting the second equality from the first one we have:

(02 = )yn(N)1a (&) = an-2Un—2(N)0(E) = yn(N)n—2(8)) + B 1¥n-1(\)vn(€)—

~Bn-1Yn(N)0n—1(8) + Buyn+1(N)vn (&) = Butn(Nva41(8) + o (Yn+2(N)va(€) -
“Yn(MNvnt2(§)) = =An-2(A ) = Ba1(X,§) + Bn(A, ) + An(A,6),
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where A (A, §) = an(Yn+2(A)vn(€) = yn(N)vns2(8)); Bn(A,€) = Brynt1(A)vn(§) —
Bnyn()‘)anrl(g)'

Summing up over n we obtain:

(42 =) 3 ya(N)0n(8) = Bon(h ) + An(1.8) + Ana (4,6) ~ Ara(1,6)

—Bp-1(A\8) = Ap—1(N,§), 2 <k <m.
So, we have proved the following theorem:

Theorem 4. Let {y,}52,{vn}r>y be solutions of equation (5) corre-
sponding to parameters \ and & respectively. Then the following formula holds:

(02— ikynu)vn(s) — o (Ym 1200 (€) — Y (N om12(6)+

+0m -1 (Ym+1(N) V1 (€)= Ym—1(A) Vi1 (€)) B m-1 (A U (€)= B ym (N o1, (6) -
—ap—2 Yk (N ve-2(6) = Yb-2(N vk (&) — k1 (W41 (N vk-1(E) = Yr—1(N)vrr1(€))—
—(Br-1yk (N vr—1(E) = Br—1ub-1 (N (€)),
2<k<m.
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