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ABSTRACT. We study the continuity of pseudo-differential operators on
Bessel potential spaces H, (R"), and on the corresponding Besov spaces
By (R™). The modulus of continuity w we use is assumed to satisfy

go[w(2‘j)9(2j)]2 < oo

where () is a suitable positive function.

Introduction. Several authors studied the continuity of pseudo-diffe-
rential operators (¢).d.o0.) on Bessel potential spaces Hp where the modulus of
continuity w (a positive, nondecreasing and concave function on [0, 00)) satisfies

(1) Y 29w (2 )] <00, (0<e=s—[s]<1).

Jj=20
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In the present work, we obtain an improvement by taking a more natural
condition

(2) Y [w(27) Q (2] < oo,
j=0
where Q : [0,00) — [0,00) is a suitable function.
We consider the ¢.d.o. with a symbol satisfying
(3) 08000 (x.€)| < C (L+[g)y" 17
and

(4) 08000 (x + h,€) — 82000 (x,€)| < C (L + )™ Wl u(nl 1¢1) (€19,

where § >0, 0>0,m>0, Ne N, C=C,35>0, (o, ) € N*xN" and [3| < N.
It is well known that if o = 1, then (2) and

(5) Ve>1, 3A. >0, (t/c<u<ct)= Q(u) < AL(L),

imply the LP estimates of such operators (for 6 = 0 see [9] and for 0 < § < 1
see [3]). Also, when 6 = 0, N = [s] and ©Q = 1, the condition (1) implies that
every operator with a symbol satisfying (3) and (4) is bounded from H;*’m into
H, (see [2]).

This paper is organized as follows. In Section 2, we first improve the
result for Hy—continuity of ¢).d.o. with the help of the following condition

02 (1)
v

Q? (u)
s} du < C,

t
(6) (VV>O,E|CZ,>0,V7§>1):>/ d
1

Then, we discuss to which extent condition (2) is optimal. In Section 3, we study
the corresponding continuity on Besov spaces Bj?.

We conclude this section with some examples concerning conditions (5)
and (6).

1
Example 1. (a) Q(t) =t", r > —;V, (we remark that (5) is evi-

dently satisfied for any r > 0), A.=c" and c> 1.
() Q(t) =exp(logt)” if t>co, Q{t)=0 if t<co,0<r<1,

1 1/(r—1)
cp = max 1,exp< ;V> , Ac=-exp(loge)” andc>1.
T
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(©) Q(t) =t (logt)" if t>e, Q)=0 if t<er>0, p>1;”,
A.=2"c ((loge)" +1) and ¢ > 1.

d) Q) =1tP(logt)" ife<t<el, Q@t)=0 ift¢]leel],
?”>1+Ty—p>0,q:2r(1—|—1/—2p)71,AC:Q’”CP((logc)T—I—l) and ¢ > 1.

1. Some notations. The following definitions and notations will be
used throughout this article. We assume that all functions, spaces, etc... are
defined on the Euclidean space R™. We set C*(R") = C*, LP(R") = LP, etc.
Let ¢ and 1, satisfy ¢ € C*, supp¢p C {f eR™ 27 < ¢ < 2}, P € C,
suppy C {€ € R, |¢] <2} and ¢ (0) = 1. We fix a partition of unity

(7) v () + k§1¢<2—’“5> —1, (eRY),

and define the convolution operators A, (k=1,2,...) and Q; (j =0,1,2,...)
with symbols ¢ (2*’“5) and ) (2*7' 5), respectively.

For 0 < p <1and N € N, we denote by Axy = A (0, N,w, Q) the space of
all sequences (m;) with the following properties

(8) (mg@)j c L™, \mgm (@ +h) —m{? ()| < Cw () @ (29) ,

where |3 < N.
The .d.o. with a symbol o is defined by the formula

opof(z) = (2m) / o (r,6) F(6)de,  (fES, zeRM)

n

where fA‘ = Ff denotes the Fourier transform of f and F~!f its inverse. Also,
we denote by Xy = (4, 0,m, N,w, Q) the collection of all ¢.d.o. with symbols
satisfying (3) and (4).

Let us now recall the definition of Bessel potential and Besov spaces. For
more details about equivalent norms, embeddings, etc., see [1], [5], [6] and [8].

Definition 1. For s € R, 1 < p < 0o, the Bessel potential spaces are

1/2
Hy=4 feS": <|Qof|2+ ;zﬁjmjf\Q) < 00
1=

p
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For s e R, 1 <p, q < o0, the Besov spaces are

1/q
Bi1={ fe S (HQOpr + gl 209 HAJ’f”Z) <0
i>

By C, we will denote a constant which can change value at each occur-
rence. If 1 < p < oo, p’ is the conjugate exponent, given by p’ = p (p — 1)_1. As
usual, the expression [y] denotes the greatest integer less than or equal to 7.

2. H ;-continuity. The following theorem is the principal result of this
work. In it, we prove that the condition (2) is sufficient for the continuity.

Theorem 1. Let 0<6<1—-9p<1,seRT\N,m>0,1<p< oo and
N € N. Suppose that (2), (5) and (6) hold. Ifs > 6N, then every ip.d.o. of Xy
is bounded from Hy™™ into Hy.

The lemmas we use in proving this result are the following.

Lemma 1. Let 0 <0 <1, 0> 0 and N € N. If (x;) € An, then we have
R

where C' is independent of j and k.
Proof. By Taylor’s development one has
(=" )

xj(x—y) = |ﬁ\§NT X, (z) +

+N X — /01 (1 =)\ (@~ ty) dt =

s=n B! g
_\8
R SR

where

_ (=»)” [ () ®)
Rj(z,y) = N\mZ:N 3l /0 (1—t)N ! (Xjﬁ (x —ty) — Xjﬁ (x)) dt.
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By (8) and the concavity of w we get
IR; (z,y)] < Cly|N w(ly]) @ (29) .
Since 0 ¢ supp ¢ one has
2 / (~)" FH &)@y = (227)761 (0) = 0.

Therefore
A0 (270) ()] =

= ' / F7H (@) (v) Rj<2j%,2j5"“y>dy' <

IN

020595 (22) [ |71 (0) ()] 1" o Hlyhay <

< OUIRIN (215K (29j)/|F‘1(¢) )] [y (1 + ly]) dy.

Hence we obtain the result. O

Lemma 2. Letn >0,0<d<1—-p<1, NeN ands > IN. Suppose
that (2), (5) and (6) hold. Then there ezists a constant C > 0, such that for all
sequences (x;j) € An and (fj) with supp f; C {€ € R", [£] <027}, we have

1/2
<C (Z 4% |ij2>
P

Proof. Let us recall the following property of Hj: For s > 0, we have

1/2
<Ol 47 |g,l? :
1 >0

p

> x;i(2%) f

720

p

9) > 9j

720

where suppg; C {£ € R™,[¢] < b2}, with b > 0 (see [1], [6] or [7]).

. [o.¢]
Now, by using (7) with 277¢, we obtain x; = Q;x; + > Agx;, thus
k=j+1

(10) SxG(29) fj = wi + us,
Jj=0
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where
k—1
ur = f; Qix; and us= 33 > fj Agx;.
7>0 k>1 j=0
To estimate ||u1 ||, we take into account that the function F~1(f;Q; x;)
p .
has a support in the ball |{| < (n+ 2) 2 and apply (9) and the inequality

(11) Qixj (@) < C||F 1|, sup Xl -
j=0

k—1
To estimate ||uz|| 7., we use that the support of F~! i Apx; | isin
H e J
]:

the ball < n +2) 2%, Then (9) and Lemma 1 imply that ||us], sina_s is
2 Hy

bounded by

o\ 1/2
k=1 . . .

(12) O | Tt { > 207 HNu(2 ) (2%) \fj\}
]:

k>1
p

The monotonicity of w, Schwarz’s inequality and (6) (since s > dN) imply that
(12) is bounded by

- 1/2 1/2
¢ (32 4=k 2 (6= 0y S oV -0 g2 (907 At fif? =
k>1 j=0 =0
P

- C (24(3—6N)kw2 (2(6—1)k) %

E>1

1

. 1/2 1/2

xS (29)23'(51\7—8)/@ 0?2 (293') Z4Sl \fl\Q <

) >0 N
p

1/2 1/2
w2(2(61)k)92(2gk)> <Z4sl |fl|2)

>0

IN

Q
TN

(]

p
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The condition 0 < 6 <1 — p < 1 allows one to apply (2) which implies

1/2 1/2
||U2HH;+N(1—6) < C/<Zw2(2gk)Q2(29k)> (Z4Sl|fl|2> <

k>1 >0
P
1/2
< C// 2431 |fl|2
1>0
P
and it remains to use the inclusion H;+N(1_5) C H; . g

Proof of Theorem 1.

Step 1. We begin with some preparation. Take ¢ € C% such that
suppp C{£ €R™, |¢] <1} and ¢ (&) =1 for [¢] < 1/2.

We decompose o into

o(x,8) = ¢)o@&+1-p())o(z,f)
= 7(2,8) + A(z,§).

Let 0 be a real function in C* such that suppd C {¢ € R?, 27! < |¢| < 2}
and Y (0 (2_j§))2 =1. We set

j=>0
(13) o (z,€) = 277™0 (£) A (2*%, 235)
and write L2
(14) 7@ = 0 [ e (1 ul?) " ) du
where

mu@=/‘ e E (1= AP o) (2,€) de
2-1<|g1<2

and L is a natural number satisfying L > n + 1.

Now, for || < N, since (1 — Ag)L/2 Ogaj (x,€) is a linear combination of
terms of the form

2/ (lal=0lB=mlg() (¢) og A2~ 2, 27¢), (L =lal+ 7)),
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we obtain from (3) that

wj<e v o) @ i) e < o
L=|a|+|| / 1 <[é1<2

Similarly, (4) yields

%) G) ™) 5
O (1 h) — < C 0 w(|h
(x],u (z+h) = X (fc)‘ < LZ%)HV/%S'EQ\ ©)| (I ||§|)X

< Q(|27€[e) (279 + [¢) " e,

Next, using (5), the monotonicity and concavity of w, we obtain that the right-
hand side of the last inequality is bounded by C7w (|h|) © (27¢). The constants C,
and CJ are independent of j and u. Therefore (x;,) is bounded in Ay uniformly
with respect to j and wu.

We continue our construction of A (z,¢). Equations (13) and (14) imply

Az, &) = Y270 (279¢) 0;(2%,279¢) =

720
— (2m) / (1 + [u2)~ D20, (2, €) du

where

Ao (2,€) = 32200, (277€) xju(2V )

>0

and
0 (€) = (20) (1 + uf?) D2 (¢)

It is easy to verify that

sup (Ilﬁff"\loo) <G, (la]<L-n-1).
ueR™

Step 2. For every f € S we have the decomposition

)—(714-1)/2

(15) opof = op-f + /Rn (1 + |U‘2 opx, (f) du.

We shall estimate, in Hy-norm, each of the two terms in the right-hand side
of (15).
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We begin with the following observation. If g; = v (277.) g, where v € C*®
and suppv C {f eER™ b7l <] < b} with b > 1, then there exists a constant
Cy > 0 such that

1/2
(16) <Z4Sj |9j\2) < Cy gl -
Jj=0

p

(See [1)).
It follows immediately from Lemma 2 and (16) that

sup (Jlopx, ;) < €l g
We now set
9 —2n
Opr (1‘) = /R (1-1— |U| ) Ay, (l‘)f(x—i—u) du

where the family (a,),cgn of continuous functions is defined by the formula

ay (z) = (27)" / eE (T — A 7 (, €) de.

n

By (3), one obtains

sup (108, () ) <€, (18] <N,

u€R”
and this leads to
(17) fowe 7l <€ (sup faul.e ) 171,

ueR”

On the other hand, since ¢ (2‘j§) ¢ (&) = 0 one has
(18) Aj(oprf)(§) =0, ifj>1.
Using this equality and Young’s inequality we obtain
(19) llop=fll gy < (|7~ 4]l llop-£1I, -

Since s > 0, we can apply Schwarz’s inequality:

1/2
< (zw) 11

Jj=0

j>1

1£1l, = H<Q0+ ZAj> f'p
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Finally, we combine the last inequality, the inclusion Hy*™ C Hy and (17) to
verify that (19) is majorized by C' ||fHH;+m7 as desired. O

In the following theorem, we demonstrate that condition (2) is necessary
as well. We remark that for § = m = s =0 and ¢ = 1 such a result was proved
by Bourdaud [3].

Theorem 2. Let 0<§<1,seRT\N,m>0,1<p<ooand N €N
be such that s > N . Suppose that

2

S [w(g—k)a(zk)] — o0

k>0

Then there exists an operator op, of ¥n and a function g € H5+m such that
oprg & Hy.
Proof. Consider the symbol

(2,8 = (14 |g)™ X277V w(20-19)Q (29) exp (21 |
j=0

where (z1,2') € R x R*"!. It is easy to see that op, is in Xy. Indeed, we
x 1

multiply 7 by a partition of unity > 6 (2"%) =1 for [¢| > 37 where 6 € C*®
k=1

with supp 6 C {5 eR?, 27l < ¢ < 2}, SO

7(2,6) = (1+ €)™ 3 my(2)0(27%¢)
k>1
k=1 , . :
with my(z) = S 277%Nw (2(5*1)3) Q (29) exp (i2721). We suppose furthermore
j=0
that

(20) iw (2_j) < Cow(27%) and supw (Q_j) Q (2j) < 0.
J=0 Jj=0

These inequalities and (4) give necessary estimates of my, i.e. (my) € An.

Assume now that w does not satisfy (20). It is sufficient to replace
w (2(5_1)j) by w (2(5_1)j) in the expression of 7, where @ is a modulus of conti-
nuity such that

w(277) < Cow(27%), sup@ (277) 0 (27) <
J=0

-
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and ' '
5 B0 @) -
Jj=0
Now, let g = F~1 ((1+[.])”™R), where x € S be such that x|, # 0 and

1
suppk C {§ eR” [£ < Z} Since

F (kexp (i2ja:1)) - {§ e R", ZQj <l < 223}
then by (16) we obtain

1/2
lop=gll g = C lI5ll, { >4 w (27) @ (2j)]2} = oo, B
720

3. B;’q-continuity. We establish now the corresponding result for

By,
We use the two following conditions. Let 1 < g < oo
(21) Z [w(Qik)Q(Qk)}q < o0,
k>0
t Oq q
(22) (Vv>0,3C, >0, vt > 1) = / ) gy < Cth,,(t)'
1 U

Theorem 3. Let 0 < <1—-9p<1,seRT\N, m>0,1<p,q<o0
and N € N. Suppose that (5), (21) and (22) hold. If s > 6N, then every 1.d.o.
ops of X is bounded from B;+m’q into Bp'?.

The crucial step in the proof of Theorem 3 is the following lemma.

Lemma 3. Letn >0,0<d<1-p<1, N €N and s> IN. Suppose
that (5), (21) and (22) hold. Then there exists a constant C' > 0, such that for
all sequences (x;) € An and (f;) with supp f; C {€ € R™, |¢| < 127}, we have

1/q
> xi(2Y) fi <C (Z 2°4 ||fj||§> :
B3 j=0
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Proof. We use decomposition (10) and the fact that the inequality

1/q
(23) 1 <c (z %0 ngng)
B3

Jj=0

holds for all s > 0 and any sequence (g;) such that suppg; C {¢€ € R", |¢| < b27},
with b > 1. (See [1] or [6]).

Estimate of u;. It is sufficient to apply (23) and (11).

Estimate of us. Owing to (23) and Lemma 1 we can obtain

(24) ||u2‘|73;+N(1—5),q§

k=1 . . I
< C Z 2(8+N(176))kq (%2(j6k)Nw (26]7k> 0 (2@]) HfJHp) )
J:

E>1
By using the monotonicity of w and Holder’s inequality in £9, we get that the
right-hand side of (24) is bounded by

/

1 o ' a/q
Z 2(3—5N)kqwq(2(6—l)k) (Z 2(5N—s)yq 04 (2QJ)> Z 954l Hle;g'
>0

k>1 j=0

Now, since 0 < § < 1 — p < 1 and taking into account (22), we get that
(24) is bounded by the needed expression. It remains to use the embedding

B;+N(1_5)’q C Bqu' 0

Proof of Theorem 3. As in Step 2 of proof of Theorem 1, we will
use (15). We first get

S < S m .
s (Jlopr, fllgge) < C 1l goma

This estimate is obtained by applying the following observation. For all s > 0 we
have

1/q
<Z 2% ng\|§> < Cllgllgga

Jj=0

where the sequence (g;) is the same as in (16). (See [1]).
Also, by (18) we have

llopr fll gza < [|F~ 40|, llopr £1l, -
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We finish the proof by using (17), the embeddings By? ¢ LP and Byt™? c
Byt O

The proof of the next result is based on an argument similar to the one

of Theorem 2. For this reason we do not go into detail.

Theorem 4. Let0<d<1,s e RT\N, m>0,1<p,gq<ooand N €N
be such that s > N . Suppose that

Sl )] ==

Then there exists an operator op, of ¥n and a function g € B;er’q such that
5,
oprg ¢ Bp*.

Remark 1. In the case § =0, N = [s] and © = 1 the proof of Theorems
3 and 4 is given in [4].
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