GROUPS WITH THE MINIMAL CONDITION ON NON-“NILPOTENT-BY-FINITE” SUBGROUPS

O. D. Artemovych

Communicated by V. Drensky

Abstract. We characterize the groups which do not have non-trivial perfect sections and such that any strictly descending chain of non-“nilpotent-by-finite” subgroups is finite.

0. Let \mathcal{X} be a property pertaining to subgroups. One of approaches to study the structure of groups is to investigate the groups in which the set of non-\mathcal{X}-subgroups is small in some sense (or in other words, the groups which have many \mathcal{X}-subgroups). There is increasing interest in groups with many nilpotent subgroups. Problems of this type have been considered in several papers. For instance, the examples of non-nilpotent groups with nilpotent and subnormal proper subgroups (the so-called groups of Heineken-Mohamed type) were constructed by Heineken and Mohamed [15], Hartley [14], Menegazzo [16] and others. In this way Bruno [6–8], Bruno and Phillips [9] and Asar [4] have studied the minimal non-“nilpotent-by-finite” groups (i.e. non-“nilpotent-by-finite”

2000 Mathematics Subject Classification: 20E16, 20F18, 20F22.
Key words: Nilpotent-by-finite group, minimal non-“nilpotent-by-finite” group, minimal condition.
groups with nilpotent-by-finite proper subgroups). Their results imply that any minimal non-"nilpotent-by-finite" group \(G \) is either a \(p \)-group in which any two proper subgroups generate a proper subgroup or \(G = V \rtimes H \) is a semidirect product of a normal subgroup \(V \) and a quasicyclic \(p \)-subgroup \(H \), where \(V \) is a special \(q \)-group, \(V' \) is centralized by \(H \) and \(V/V' \) is a minimal normal subgroup of \(G/V' \) (\(p \) and \(q \) are distinct primes).

One of the possible interpretations of the requirement that "many subgroups of \(G \) satisfy \(\mathcal{X} \)" is that "the set of subgroups in \(G \) not having \(\mathcal{X} \) satisfies the minimal condition". In this direction the aim of our article is to consider groups with the minimal condition on non-"nilpotent-by-finite" subgroups Min\(-NF\). We say that a group \(G \) satisfies Min\(-NF\) if for every strictly descending chain \(\{G_n \mid n \in \mathbb{N}\} \) of subgroups in \(G \) there exists a number \(n_0 \in \mathbb{N} \) such that \(G_n \) is a nilpotent-by-finite subgroup for any integer \(n \geq n_0 \). For the next we need the concept of an \(HM^*\)-group first introduced by Asar [3] in the class of \(p \)-groups with the normalizer condition. We extend this notion and call \(G \) an \(HM^*\)-group if its commutator subgroup \(G' \) is hypercentral and \(G/G' \) is a divisible Černikov \(p \)-group. Obviously any group of Heineken-Mohamed type and any minimal non-"nilpotent-by-finite" group are \(HM^*\)-groups and satisfy Min\(-NF\).

Notice that Černikov (see e.g. [11]) and Šunkov [20] have studied groups with the minimal condition on non-abelian subgroups; Phillips and Wilson [17] have investigated groups in which the set of non-"locally nilpotent" subgroups satisfies the minimal condition. Recently Dixon, Evans and Smith [12] have shown that a locally graded group with the minimal condition on non-nilpotent subgroups is either nilpotent or locally finite.

In this paper we characterize groups without non-trivial perfect sections and which satisfy Min\(-NF\). Namely, we prove:

Theorem. Let \(G \) be a group without non-trivial perfect sections. Then \(G \) satisfies Min\(-NF\) if and only if it is of one of the following types:

1. \(G \) is a nilpotent-by-finite group;
2. \(G \) contains a normal subgroup \(H \) of finite index such that

 \[
 H = H_0 \cdot H_1 \cdot \ldots \cdot H_n \ (n \geq 1),
 \]

 where \(H_i \) is an \(HM^*\)-group with nilpotent commutator subgroup \(H'_i = H' \leq H_0 \) (\(i = 1, \ldots, n \)), \(H_0 \) is a nilpotent group with divisible Černikov quotient group \(H_0/H' \) (in particular, \(H_0/H' \) is trivial) and, furthermore, if \(k \neq s \) (\(1 \leq k, s \leq n \)), then \(\pi(H_k/H') \cap \pi(H_s/H') = \emptyset \).
Throughout this paper \(p \) is a prime and \(\mathbb{C}_{p^\infty} \) is the quasicyclic \(p \)-group. For a group \(G \), we denote by \(Z(G) \) the centre, by \(G', G'', \ldots, G^{(n)}, \ldots \) the members of the derived series, by \(\pi(G) \) the set of all primes which divide the orders of periodic elements in \(G \) and by \(\mathbb{Z}_{p^n}G \) the group ring of \(G \) over the ring \(\mathbb{Z}_{p^n} \) of integers modulo a prime power \(p^n \). Recall that a section of \(G \) is a group of the form \(S = H/N \) for some subgroups \(N \) and \(H \) of \(G \), where \(N \) is normal in \(H \). The group \(G \) is perfect if \(G' = G \).

We shall also use other standard terminology from [13] and [18].

1. In the sequel we shall need the following lemmas.

Lemma 1. Let \(G \) be a group satisfying Min-\(\overline{NF} \) and let \(A \) be a subgroup of \(G \). Then:

1. \(A \) satisfies Min-\(\overline{NF} \);
2. if \(A \) is normal in \(G \), then the quotient group \(G/A \) satisfies Min-\(\overline{NF} \);
3. if \(A \) is a normal non-“nilpotent-by-finite” subgroup, then \(G/A \) satisfies the minimal condition on subgroups.

The proof of the lemma is immediate.

As usual, \(R \) is called a right \(V \)-ring if each of its right ideals is an intersection of maximal right ideals of \(R \).

Lemma 2. Let \(G = A \rtimes B \) be a semidirect product of an infinite abelian subgroup \(A \) of exponent \(p^n \) \((n \geq 1)\) and a quasicyclic \(q \)-subgroup \(B \) with distinct primes \(p \) and \(q \). If \(G \) satisfies Min-\(\overline{NF} \), then \(G \) is a nilpotent group or, considered as a \(\mathbb{Z}_{p^n}B \)-module, the abelian group \(A = S_0 \oplus S_1 \oplus \cdots \oplus S_m \) \((m \geq 1)\) is a direct sum of simple \(\mathbb{Z}_{p^n}B \)-submodules \(S_1, \ldots, S_m \) and a finite \(\mathbb{Z}_{p^n}B \)-submodule \(S_0 \), where \(S_0 \leq Z(G) \).

Proof. Suppose that \(G \) is a non-“nilpotent-by-finite” group. Since \(A \) is abelian, it becomes a right module over the commutative (von Neuman) regular ring \(R = \mathbb{Z}_{p^n}B \) via the conjugation action on \(A \).

Let \(u \) be any non-zero element of the module \(A \) such that \(u \notin Z(G) \). Then the cyclic submodule \(uR \) is isomorphic to the right \(R \)-module \(R_0 = R/\text{ann}_R(u) \), where \(\text{ann}_R(u) = \{ r \in R \mid ur = 0 \} \). Moreover \(R_0 \) is a commutative (von Neuman) regular ring and each of its ideals is a right \(R \)-module. If \(R_0 \) is a non-simple module, then it contains a non-zero element \(b_1 \) such that \(b_1R_0 \) is a proper ideal in \(R_0 \). By Proposition 19.24 (d) of [13], \(b_1R_0 = e_1R_0 \) for some
idempotent e_1 and, furthermore, $R_0 = e_1 R_0 \oplus R_1$ is a direct sum (of rings) for some finitely generated ideal R_1 of R_0. If R_1 is a non-simple R-module, then it has a proper submodule $e_2 R_1$, where $e_2^2 = e_2$. Hence $R_1 = e_2 R_1 \oplus R_2$ is a direct sum for some finitely generated ideal R_2 of R_0. By a similar argument we obtain a strictly descending chain of R-submodules $R_0 > R_1 > \ldots$. This implies that $u R$ also contains a strictly descending chain of R-submodules $\{D_m \mid m \in \mathbb{N} \cup \{0\}\}$, where $D_0 = u R$ and D_m is isomorphic to R_m. By our hypothesis there exists an integer n such that $D_n B$ is a non-“nilpotent-by-finite” subgroup, while $D_{n+1} B$ is nilpotent-by-finite and, as a consequence, $D_{n+1} \leq Z(G)$.

It is also clear that R_n is a cyclic R-module. Using the same idea, as above, we deduce that D_n contains a strictly descending chain of R-submodules $\{D_{nm} \mid m \in \mathbb{N} \cup \{0\}\}$ (where $D_{n0} = D_n$) such that $D_{nk} B$ is not a nilpotent-by-finite subgroup for some integer k, while $D_{n,k+1} B$ is nilpotent-by-finite. Continuing in this manner we conclude that A contains a simple R-submodule S. By the theorem of Kaplansky [13, Corollary 19.53], R is a V-ring and S is an injective R-module. Therefore $A = S \oplus A_1$ is a direct sum of S and some submodule A_1. Repeating this argument we deduce that there exists an integer l such that

$$A = A_1 \oplus \cdots \oplus A_l \oplus A_0$$

is a direct sum of simple R-submodules A_1, \ldots, A_l and some R-submodule A_0, where $A_0 B$ is a nilpotent-by-finite subgroup. It is easily verified that $A_0 \leq Z(G)$ and so A_0 is finite. The result follows. \(\square\)

Lemma 3. Let G be a non-perfect group with nilpotent-by-finite proper normal subgroups. Then G satisfies Min-\mathbf{NF} if and only if it is of one of the following types:

1. G is a nilpotent-by-finite group;
2. G is a minimal non-“nilpotent-by-finite” group;
3. $G = G' \times S$, $S \cong \mathbb{C}_p^\infty$, $G' = S_1 \times \cdots \times S_n$ $(n \geq 1)$ is a p'-subgroup and a direct product of finitely many Sylow p_i-subgroups S_1, \ldots, S_n, where S_i is a nilpotent subgroup of exponent $p_i^{m_i}$ and of derived length d_i. Furthermore, for any i there is an integer k_i $(1 \leq k_i \leq d_i)$ such that S acts trivially on $S_i^{(k_i)}$ and $S_i^{(l-1)}/S_i^{(l)} = A_0 \oplus A_1 \oplus \cdots \oplus A_m$ is a finite direct sum of simple $\mathbb{Z}_{p_i^{m_i}} S$-submodules A_1, \ldots, A_m $(m \geq 1)$ and a finite $\mathbb{Z}_{p_i^{m_i}} S$-submodule A_0 under the conjugation action on S_i, where $A_0 \leq Z(S_i^{(l-1)} \times S_i^{(l)})$ $(i = 1, \ldots, n; l = 1, \ldots, k_i; k_i, m_i, d_i \in \mathbb{N}$ and $S_i^{(0)} = S_i)$;
(4) \(G = A \times S \), where \(S \) is a minimal non-“nilpotent-by-finite” \(p \)-group, \(A \) is a normal nilpotent \(p' \)-subgroup and \(G/S' \) is a group of type (3).

Proof. (\(\Rightarrow \)) This part of the proof is evident.

(\(\Leftarrow \)) First, if the quotient group \(G/G' \) contains two proper subgroups which generate it, then \(G = AB \) is a product of two nilpotent-by-finite proper normal subgroups \(A \) and \(B \). Since \(A \) (respectively \(B \)) contains an abelian \(G \)-invariant subgroup \(A_0 \) (respectively \(B_0 \)) of finite index, we conclude that \(A_0B_0 \) is a nilpotent normal subgroup of finite index in \(G \).

Now assume that any two proper subgroups of \(G/G' \) generate a proper subgroup in \(G/G' \). Hence \(G/G' \) is either a cyclic \(p \)-group (and in this case \(G \) is a nilpotent-by-finite group) or the quasicyclic \(p \)-group for some prime \(p \). Let \(G/G' \cong \mathbb{C}_{p^\infty} \). If \(D \) is a proper nilpotent \(G \)-invariant subgroup of finite index in \(G' \), then \(G/DG'' \) is an abelian group, which is a contradiction. Thus \(G' \) is a nilpotent subgroup. Inasmuch as \(G \) satisfies \(\text{Min-NF} \), it contains a subgroup \(S \) which is a non-perfect minimal non-“nilpotent-by-finite” group.

If \(S = G \), then \(G \) is of type (2). Therefore we may suppose that \(S \neq G \). Then \(G = G'/S \) and, by Theorem 2.5 of [9], \(S \) is a torsion subgroup. Let \(\overline{G} = G/G''(G' \cap S) = \overline{G'} \times \overline{S} \). It is easy to see that \(\overline{G} \) satisfies the minimal condition on normal subgroups \(\text{Min-n} \) and so, by the theorem of Baer [18, Theorem 5.25] and Theorem 2.1 of [9], \(G \) is a locally finite group. If \(\overline{G} \) is a \(p \)-group, then it is \(\tilde{\text{Černikov}} \) (see [18, p.156, Corollary 2]). From this it follows that \(\overline{G} \) is a nilpotent group and we reach a contradiction. Hence \(\overline{G} \) is a \(p' \)-subgroup. Our hypothesis and Theorem B of [5] give that \(G' \) is a \(\pi \)-subgroup for some finite set of primes \(\pi \) and, as a consequence, \(G = A \times Q \), where \(Q = S \) is either a minimal non-“nilpotent-by-finite” \(p \)-group or \(Q \cong \mathbb{C}_{p^\infty} \) and \(A \) is a \(p' \)-subgroup of \(G' \).

Assume that \(Q \) is a quasicyclic \(p \)-subgroup and \(A = S_1 \times \ldots \times S_n \) is a group direct product of the Sylow \(p_i \)-subgroups \(S_1, \ldots, S_n \). Obviously \(\exp(S_i) = p_i^{m_i} \) for some \(m_i \in \mathbb{N} \) \((i = 1, \ldots, n)\). Let \(d_i \) be the derived length of \(S_i \).

We have seen that there exists an integer \(m \) \((1 \leq m \leq d_i)\) such that \(S_i^{(m-1)}/Q \) is a non-“nilpotent-by-finite” subgroup, while \(S_i^{(m)} \) is a nilpotent-by-finite. Then \([S_i^{(m)}, Q] = 1\). By Lemma 2, \(S_i^{(l-1)}/S_i^{(l)} = A_0 \oplus A_1 \oplus \cdots \oplus A_k \) is a direct sum of simple \(\mathbb{Z}_{p_i^{m_i}} \)-submodules \(A_1, \ldots, A_k \) \((k \geq 1)\) and a finite \(\mathbb{Z}_{p_i^{m_i}} \)-submodule \(A_0 \) under the conjugation action on \(S_i \), where \(A_0 \leq Z(S_i^{(l-1)}Q/S_i^{(l)}) \) \((1 \leq l \leq m)\). Thus \(G \) is a group of type (3).

Finally, if \(Q \) is a minimal non-“nilpotent-by-finite” group, then it is not difficult to see that \(G/S' \) is a group of type (3). The lemma is proved. □
Corollary 4. Let G be a group without non-trivial perfect sections. If G satisfies Min-NF, then it is countable and locally finite.

Lemma 5. Let G be an HM^*-group. Then G satisfies Min-NF if and only if G' is a nilpotent subgroup.

Proof. (\Leftarrow) Let $\{K_n \mid n \in \mathbb{N}\}$ be any strictly descending chain of subgroups in G. Since G/G' is Černikov, there is an integer m such that $K_n \leq G'$ and so G satisfies Min-NF.

(\Rightarrow) If the commutator subgroup G' is not nilpotent-by-finite, then, in view of Lemma 2, it has a subnormal non-“nilpotent-by-finite” subgroup S with all proper normal subgroups nilpotent-by-finite. Then Lemma 3 yields that S is a non-hypercentral subgroup and we obtain a contradiction. This implies that G' is a nilpotent-by-finite subgroup and consequently it is nilpotent, as desired. □

Now we give some examples of HM^*-groups.

Examples. (i) First we recall one construction from [5]. Let p and q be distinct primes and let \mathbb{F}_q be the field with q elements. We denote by $\mathbb{F}_q(\alpha)$ the subfield of the algebraic closure of \mathbb{F}_q generated by α. If ε_i is a primitive p^i-th root of 1 ($i = 0, 1, 2, \ldots$), put $F_i = \mathbb{F}_q(\varepsilon_i)$ and $F = \bigcup_{i=0}^{\infty} F_i$. Let A be the additive group of \mathbb{F}, and let B be the multiplicative group which contains the p^i-th roots of 1, where $i = 0, 1, 2, \ldots$. The rule

$$bab^{-1} = b^{p^m} \cdot a,$$

where $a \in A$, $b \in B$ and $b^{p^m} \cdot a$ is the product of the elements b^{p^m} and a in the field F, m is some non-negative integer, defines an action of B on A. The group $G_m = A \times B$ constructed in this manner is called a Čarín group [5]. The groups G_0 were first considered by Čarín [10].

Since $A = G'_m$, G_m is an HM^*-group. Moreover it is a minimal non-“nilpotent-by-finite” group.

(ii) Let F be a field defined as in (i) and J a non-trivial F-F-bialgebra (it is well known that such a bialgebra J exists). We denote by A and I the subalgebra

$$
\begin{pmatrix}
F & J & \cdots & J \\
0 & F & \cdots & J \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & F
\end{pmatrix}
$$

of the algebra of $n \times n$ matrices with the identity element 1 ($n \geq 2$) and the
nilpotent ideal
\[
\begin{pmatrix}
0 & J & \ldots & J \\
0 & 0 & \ldots & J \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{pmatrix}
\]
of nilpotency index \(n\), respectively. Then the ring \(A/I \cong F \oplus \cdots \oplus F\) is a direct sum of \(n\) copies of \(F\). It is known that a nilpotent ring \(I\) with two operations "+" and "," forms a group under the operation \(a \circ b = a + b + a \cdot b\) for all \(a, b \in I\).

This group is called the adjoint group of \(I\) and denoted by \(I^\circ\). By Lemma 2.4 of [2] \(I^\circ\) is a \(q\)-group. Moreover, by the lemma from [21, p. 27], see also [1], \(I^\circ\) is a nilpotent group of class \(n\). Since the unipotent subgroup \(1 + I\) is isomorphic to \(I^\circ\) and the multiplicative group \(F^*\) of \(F\) is a \(q'\)-group, we see that the unit group

\[U(A) = (1 + I) \rtimes (F^* \times \cdots \times F^*)\]
of \(A\) is a semidirect product of the normal subgroup \(1 + I\) and the direct product of \(n\) copies of \(F^*\). It is clear that \(U(A)\) contains the subgroup

\[G = (1 + I) \rtimes (B \times \cdots \times B)\]
of finite index, where \(B\) is a quasicyclic \(p\)-subgroup of \(F^*\).

We want to prove that \(G\) is an \(HM^*\)-group. First we consider the case \(n = 2\). The commutator

\[\left[\begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} x_1 & 0 \\ 0 & x_2 \end{pmatrix} \right] = \begin{pmatrix} 1 & -i \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 & 0 \\ 0 & x_2 \end{pmatrix} \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1^{-1} & 0 \\ 0 & x_2^{-1} \end{pmatrix} = \begin{pmatrix} 1 & x_1ix_2^{-1} - i \\ 0 & 1 \end{pmatrix} \in 1 + I\]
for all elements \(i \in J\) and \(x_1, x_2 \in B\) and, as a consequence,

\[\left[1 + I, B \times B\right] = 1 + I.\]

Now we turn to the general case and, by using a similar argument, obtain that

\[\left[1 + I, B \times \cdots \times B\right] = 1 + I,\]

\(n\) times

i.e. \(G\) is an \(HM^*\)-group with nilpotent commutator subgroup \(G' = 1 + I\).
(iii) Let \(J \) be a left \(T \)-nilpotent \(F \)-\(F \)-bialgebra with \(F \) and \(B \) as before. An example of a left \(T \)-nilpotent bialgebra is contained, for instance, in [19, Example 1]. We denote by \(J^1 \) the bialgebra obtained by adjoining an identity element to \(J \). Writing \(A \) for the subalgebra

\[
\begin{pmatrix}
J^1 & J \\
0 & F
\end{pmatrix}
\]

of the \(2 \times 2 \) matrix algebra with the identity element 1 and \(I \) for the left \(T \)-nilpotent ideal

\[
\begin{pmatrix}
J & J \\
0 & 0
\end{pmatrix},
\]

we have that \(1 + I \) is a hypercentral \(q \)-subgroup by Lemma 2.4 of [2] and the lemma from [21, p. 27]. By the same argument, as in (ii), we can prove that the condition \((*)\) holds, i.e. \(G = (1 + I) \rtimes (B \times B) \) is an \(HM^* \)-group.

2. Proof of Theorem. \((\Leftarrow)\) This direction of the proof is immediate.
\((\Rightarrow)\) Assume that \(G \) is a non-“nilpotent-by-finite” group. Then \(G \) has a strictly descending subnormal series

\[
G = G_0 \triangleright G_1 \triangleright \cdots \triangleright G_m = S,
\]

where \(S \) is a non-“nilpotent-by-finite” group with all proper normal subgroups nilpotent-by-finite. By Lemma 1, \(G_j/G_{j+1} \) is a \(Černikov \) group \((j = 0, 1, \ldots, m - 1)\).

Let \(z \in G_{m-1} \). Then \(S^z \triangleleft G_{m-1} \) and hence \(S' \triangleleft G_{n-1} \). We denote by \(D_{m-1} \) the subgroup of finite index in \(G_{m-1} \) such that \(D_{m-1}/S' \) is the divisible part of \(G_{m-1}/S' \). Then \(D'_{m-1} = S' \). Since \(D_{m-1} D^{y}_{m-1}/S' \) is a \(Černikov \) group for every \(y \in G_{m-2} \) and \(S' \) does not contain a proper \(S \)-invariant subgroup of finite index, we conclude that \(D_{m-1} \triangleleft G_{m-2} \). Continuing this process, after a finite number steps we obtain that \(G \) has a normal subgroup \(D \) of finite index with divisible \(Černikov \) group \(D/D' \) and \(D' = S' \). Consequently

\[
D = D_1 \cdot \ldots \cdot D_n (n \geq 1),
\]

where \(D_s/D' \) is a divisible \(Černikov \) Sylow \(p_s \)-subgroup of \(D/D' \) \((s = 1, \ldots, n)\) and \(p_s \neq p_l \) if \(s \neq l \) \((1 \leq s, l \leq n)\). If \(D_k \) is a nilpotent-by-finite subgroup for some integer \(k \) \((1 \leq k \leq n)\), then it is nilpotent. This yields that \(D_m \) is not nilpotent-by-finite for some integer \(m \), where \(1 \leq m \leq n \). Then it contains a
subnormal subgroup T with all proper normal subgroups nilpotent-by-finite. As above we can prove that $T' = D'_m = S'$. Hence D_m is an HM^*-group with nilpotent commutator subgroup D'_m. The theorem is proved. □

REFERENCES

Department of Algebra and Topology
Faculty of Mechanics and Mathematics
Ivan Franko National University of Lviv
1, University Str.
Lviv 79000
Ukraine

e-mail: artemovych@franko.lviv.ua

Received October 18, 2001
Revised March 21, 2002