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ABSTRACT. This article provides necessary and sufficient conditions for
both of the Diophantine equations X2 — DY? = m; and z? — Dy? = mao
to have primitive solutions when mi,ms € Z, and D € N is not a perfect
square. This is given in terms of the ideal theory of the underlying real
quadratic order Z[v/D].

1. Introduction. In [4], criteria for the existence of primitive solutions
of both equations in the title were given for the case where m; = —mo. It
is the purpose of this article to generalize this to arbitrary mi,ms € Z. The
problem was inspired by work done in [3] as well as by correspondence with
Keith Matthews (see Example 3.5 below). Moreover, the initial inspiration for
looking at this problem was the criterion given by Lagrange for the existence of a
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solution to the negative Pell equation 2 — Dy? = —1, namely that such a solution
exists if and only if the period length of the simple continued fraction expansion
of v/D is odd. One may naively ask if this holds true for 22 — Dy? = —m, i. e. is
it true that both X2 — DY? = —m and 22 — Dy? = m have primitive solutions if
and only if the period length of the simple continued fraction expansion of v/ D
is odd. The answer is no and we gave a criterion in [4] for when both do have
primitive solutions. It turns out, nevertheless, that one can generalize this to the
arbitrary case given in the title by using ideal theory to give a simpler proof with
more far-reaching applications and consequences such as the classical results of
Lagrange, mentioned above, and that of Eisenstein (see Remark 3.1 below).

2. Notation and preliminaries. We will be studying solutions of
quadratic Diophantine equations of the general shape
(2.1) 2 — Dy? = m,

where D € N is not a perfect square and m € Z. If x,y € Z is a solution of (2.1),
then it is called positive if x,y € N and it is called primitive if ged(z,y) = 1.
Among the primitive solutions of (2.1), if such a solution exists, there is one
in which both x and y have their least values. Such a solution is called the
fundamental solution. We will use the notation

o=+ y\/ﬁ
to denote a solution of (2.1), and we let
N(a) = 2% — Dy?

denote the norm of «a.
Recall that a quadratic irrational is a number of the form

(P+VD)/Q

where P,Q, D € Z with D > 1 not a perfect square, P2 = D (mod Q), and Q # 0.
Now we set:

Py =P, Qo = Q, and recursively for j > 0,

22 0= rg—@J ,
J

(2.3) Pjy1=¢;Q; — Fj,

and

(2.4) D = P}y + QjQj1.
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Hence, we have the simple continued fraction expansion:

P++vD Py++vD
a = = :<QO§Q17~'an7~-~>a
Q Qo

where the ¢; for j > 0 are called the partial quotients of a.

To further develop the link with continued fractions, we make the initial
(well known) observation that a real number has a periodic continued fraction
expansion if and only if it is a quadratic irrational (see [6, Theorem 5.3.1, p.
240]). Furthermore a quadratic irrational may have a purely periodic continued
fraction expansion which we denote by

a=(90;q1, 92, -, dr—1)

meaning that g, = ¢,1¢ or all n > 0, where £ = {(«) is the period length of the
simple continued fraction expansion. It is known that a quadratic irrational «
has such a purely periodic expansion if and only if @« > 1 and —1 < o/ < 0, where
o’ is the algebraic conjugate of . Any quadratic irrational which satisfies these
two conditions is called reduced (see [6, Theorem 5.3.2, p. 241]).

We need the following basic notation for discriminants and ideals. Let
Dy > 1 be a square-free positive integer and set:

UOI{ 2 if Dy =1 ( mod 4),
1 otherwise.

Define:
wo = (JO — 1+ Do)/Uo, and Ag = (wo - w6)2 = 4D0/U(2).
The value Ag is called a fundamental discriminant or field discriminant with

associated radicand Dg, and wy is called the principal fundamental surd associated
with Ag. Let A = fiAo for some fa € N and set

g= ng(fA,O'O)7O' = 00/97 and D = (fA/g)2D07

then A is called a discriminant with associated radicand D. Furthermore, if we
let

wAI(U—l—I—\/E)/U:waO—I—h

for some h € Z, then wa is called the principal surd associated with the discrim-
inant

A = (wa —wh)?
This will provide the canonical basis element for certain rings that we now define.

Let |o, B] = aZ + Z denote a Z-module. Then Oa = [1,wa], is an order
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in K = Q(vAp) = Q(v/Dy) with conductor fa. If fao = 1, then Op is called
the mazximal order in K. The units of O form a group which we denote by Ua.
The positive units in Ua have a generator which is the smallest unit that exceeds
1. This selection is unique and is called the fundamental unit of K, denoted by
ENg-

It may be shown that any Z-module I # (0) of Oa has a representation
of the form [a,b 4+ cwal], where a,¢c € N with 0 < b < a. We will only be
concerned with primitive ones, namely those for which ¢ = 1. In other words,
I is a primitive Z-submodule of Oa if whenever I = (z)J for some z € Z and
some Z-submodule J of Oa, then |z| = 1. Thus, a canonical representation of a
primitive Z-submodule of Oa is obtained by setting ca = @ and b = (P — 1)/2
if c =2, while b= P if 0 =1 for P,Q € Z, namely
(2.5) I=(Q/o,(P+VD)/o].

A nonzero Z-module I as given in (2.5) is called a primitive Oa-ideal if
and only if P2 = D (mod Q) (see [6, Theorem 3.5.1, p. 173]). Also, the value Q/o
is called the norm of I, denoted by N(I). Hence, we see that [ is an Oa-ideal if

and only if @ = (P 4+ v/D)/Q is a quadratic irrational. Also, the conjugate ideal
of T given in (2.5) is I’ = [Q/o, (P — v/D)/o]. We define a reduced ideal I to be

one which contains an element
B=(P+vD)/o
such that
I'=[N(I), 5],

where 3 > N(I) and —N(I) < ' < 0, since this corresponds exactly to the
reduced quadratic irrational « = /N (I) > 1 with —1 < &/ < 0.

We will have need of the following, which may be traced back to Lagrange.

Theorem 2.1. Let A > 0 be a discriminant,
[=[Q/o,(P+VD)/d]

a reduced ideal in O, and o = (P+vD)/Q. If Pj and Qj forj =1,2,... l(a) =
¢ are defined by Equations (2.2)—(2.4) in the simple continued fraction expansion
of a, then

V4
2 =[P+ VD)/Q.

=1
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and

Proof. See [5, Theorems 2.1.3-2.1.4, pp. 51-53]. O
In the next section, we will need the following (see [6, pp. 178-181]).

¢ Multiplication Formulas for Ideals

Let A be a discriminant, and let I; = [a;, (b; + VA)/2] for i = 1,2 be
primitive ideals in Oa. Then the following formulae hold.

(2.6) LI, = (d)]as, (bs + VA)/2,

where

(2.7) as = ayas/d’,

with

(2.8) d = ged(ar, az, (b1 + b2)/2)

and

(2.9) by = %(5(1261 + parbs + g(blbg + A)) (mod 2a3),
where 0, 4 and v are determined by

(2.10) dag + pnal + %(bl + bg) =d.

We now proceed with a discussion of the solvability of
(2.11) >~ Dy*=mcZ,
for any radicand D € N.

We will need the following later for illustrations of the main result.

Definition 2.1. If 7; = z; + yj\/ﬁ for 7 = 1,2 are primitive solutions
of Equation (2.11), then they are said to be in the same class provided that their
ratio is a solution of Pell’s equation

(2.12) 2 — Dy? = 1.

In other words, 71 and 19 are in the same class of solutions of Equation (2.11) if
there exists a solution 3 = u +vvD of (2.12) such that 713 = To.

If 7 and —7' are solutions in the same class, then that class is called
ambiguous. A solution xq + yov/D of Equation (2.11) for which yq is the least
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positive value in its class is uniquely determined and called the fundamental so-
lution in its class. If xg 4+ yoV/D is ambiguous, then we require, in addition, that
Zo > 0.

An arithmetic property for determining when solutions of Equation (2.11)
are in the same class is given as follows.

Proposition 2.1. Two primitive solutions x; + yj\/ﬁ for j = 1,2 of
Equation (2.11) are in the same class if and only if both
(x122 — Yy1y2 D) /m € Z and (y1z2 — x1y2)/m € Z.
Consequently, there are only finitely many classes of primitive solutions of Equa-
tion (2.11).
Proof. See [6, Proposition 6.2.1, p. 299]. O
Theorem 2.2. Let D € N not a perfect square, m € Z, and let o =
zo + yoV'D be a primitive solution of
(2.13) z? — Dy* = m.
Then each of the following hold.
(a) There is a unique primitive element 8 = Xo + Yov/D € Z[v/D] such that
Ba = (Xo + YoV D)(wo — yovVD) = Py + VD,
where
—|ml|/2 < Py < |m|/2.
(b) The solution (xg,yo) may be determined from [ via:

- _ XoPy—YoD and _ YoPy — Xo
TN PTTNG)

(¢) For any solution v in the same class as « there ezists a unique element &

such that 67 = Py +V/D.

(d) There is a unique ideal

I = [N(a), (Fo + VA)/2) ~ 1.

Proof. See [6, Theorem 6.2.7, pp. 302-304]. O

Definition 2.2. Given a primitive solution « of equation (2.13), the ideal
1., in Theorem 2.2 is called the unique ideal associated with «. Also, « is said to
belong to the unique element Py determined by Theorem 2.2.
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3. Results.

Theorem 3.1. Let my,mo € Z, D € N, not a perfect square, and

(314) gcd(mlmg, D) =1.
If
(3.15) 22 — Dy? =my

has a primitive solution zo + yoV'D, then
(3.16) 22 — Dy* = my

has a primitive solution if and only if there exists a divisor d € N, of g =
ged(may, me) such that

(3.17) 2% — Dy? = mymo/d?
has a primitive solution X + Y /D with
(318) ng(l‘oX - y()YD,XyO - l‘oY) = \m1|/d

Furthermore, when such a solution to (3.17) ewists, then a primitive so-
lution of (3.16) is given by

on — y(]YD + (a:oY - Xyo)\/ﬁ

1 D =
(3.19) 1‘1+y1\/— | /d

Proof. Suppose that (3.15)—(3.16) both have primitive solutions
oy = xo + yo\/ﬁ and vy = x1 + yl\/ﬁ,

respectively. Then, for A = ¢2D, there exist unique, primitive, principle Oa-
ideals:

Loy = (w0 + yoVD) = [ma, (P + VA) /2],
and

Loy, = (z1+y1VD) = [ma, (P + VA])/2,
where o belongs to P for j = 0,1 (see Definition 2.2). Thus ,we have,
(320)  laglay = (ag + Lay)(Lag N 1ay) = ged(Lags Loy )lem(Lag, Lo, ),
(see [7, Exercise 3.15], for instance).

Also, by the multiplication formulae (2.6)—(2.10),
m1ms

Laplay = (d) |52 (P + V) /2]
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P+P

where a1 /d belongs to P, and d = ged (ml, ma, =5

) . Moreover,

T2 (P, +VA) 2] = (X + Y VD),
where
X 4+ y/D = ot + yoy1 D + (w130 + zoy1)V D
N d
with
2 2 Mima
X?-py? = T2,

It follows from Theorem 2.2 that X + YD € Z[VD], and given that
[%, (P2 + \/K)/Q] is a primitive ideal generated by X + Y+/D, then it is
primitive. We have established (3.17). We now check that (3.18) holds.

1
ged(zoX — yoY D, zoY — Xyp) = p gcd(:z:l(x(% — y(Q)D), yl(azg — ygD)) =

||
T
It remains to check (3.19). Since it is straightforward that

20X —yoYD\?  [z0Y — Xyo\ >
S0 AT (2B D=y,
ml/d ml/d

1 m
P ged(rymy, y1im) = % ged(z1,y1) =

then we are done.
To prove the converse, assume that (3.17)—(3.18) hold, and set
_ (zo+y0VD)(X ~YVD)

Imal/d

Then N(a) = N(z1 +y1VD) = ma, a € Z[v/D], and ged(zy1,y1) = 1 since (3.18)
holds. O

Corollary 3.1. Suppose that D > 0 is a nonsquare integer, a is a
nonnegative integer, and p is a prime not dividing D. If

(3.21) z? — Dy* = —p°
has a primitive solution, then

(3.22) X2 - Dy?=p°

has a primitive solution if and only if {(\/D) is odd.

Proof. If £(v/D) is odd, then by Theorem 2.1 the result holds. Con-
versely, if both (3.21)-(3.22) have primitive solutions, then there are principal
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Oa-ideals of norm p® and —p® with generators 7, and 7_, respectively. Hence,
nM—p is a unit in O so by Theorem 2.1, £(v/D) is odd. O

Remark 3.1. The special case of Corollary 3.1 where a = 0 is the result
by Lagrange, namely that the Pell equation 22 — Dy? = —1 has a solution if and
only if £(v/D) is odd (see [6, Corollary 5.3.3, p. 249]). The special case where
a = 2 = p is related to a problem of Fisenstein, namely that if the radicand D =
(mod 4), 22 — Dy? = —4 has a primitive solution if and only if N(ep) = —1
and ep ¢ Z[VD]. In Corollary 3.1, we are assuming that 2> — Dy? = —4 has a
solution, so in this case, £(v/D) is necessarily odd as demonstrated in the proof
of the corollary. The special case where a = 1 is Corollary 3.2 of [4].

It turns out that Corollary 3.1 is the best that one hope to achieve in the
sense that the parity of £(v/D) determines the mutual solvability of 22 — Dy? = m
and X2 —DY? = —m. The following illustration shows that once m is divisible by
two distinct primes, this parity is not a deciding factor in the mutual solvability
of these two equations.

Example 3.1. If D = 34, mgo = 33 = —my, and d = 3. Then since
(wo,y0) = (1,1) is a solution of x> — Dy?> = my, and (X,Y) = (27,5) is a
solution of % — Dy? = mima/d*> = —112 with

ng(l‘oX - y()YD,XyO - l‘oY) = ng(143,22) =11= \m1|/d,
then
2 2
2 2 roX —yo¥Y' D Xyo — oY 2 52
—yiD=—"+—| —-D|——F+—) =13°—-27-34 =33 =mo.
1 — Y ( m1/d ) < — 3 3 33 = moy
Notice that ((v/34) = 4.

We can exploit this example further by illustrating the proof of Theo-
rem 3.1 involving the use of ideals. We have that oy = xo + yov/34 = 1 + /34
is a primitive solution of x? — 34y®> = my, and oy = x1 + y1V/34 = 13 + 234
is a primitive solution of % — 34y®> = my. Thus we have the primitive, principle
ideals (in Z[v/D)):

Iy = (14 V34) = [-33, -1 +V34] = [m1, Py + VD),
and

I, = (13 4+ 2V/34) = [33,10 + V/34] = [my, P, + VD]
where aqg belongs to Py = —1 and oy belongs to P, = 10. Thus,

I =TI 1o, = (3)(27 + 5V34) = (3)[—112,43 + V34] = (3)[mymz/d?, P, + VD),
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where

27+ 5v31 = U V313 +2v34)

3 = OzoOzl/d

belongs to Po = 43.

On the other end of the spectrum from the consideration in Example 3.1
is the case where ged(my,ma) = 1. In this case, both (3.15)—(3.16) have primitive
solutions when 22 — Dy? = myms has one with the ged condition (3.18) satisfied.
For instance, we have the following.

Example 3.2. Let D = 221, m; = —100 and mo = —43. Then
20 + yoV' D = 431 + 29v/221

is a primitive solution of x> — Dy* = my. Also, since gcd(my, ms) = 1, we choose
d =1 1in Theorem 3.1. We calculate a primitive solution

X +YVD = 25317 + 1703v/221
of 22 — Dy? = mymy. Thus by Theorem 3.1,

is a primitive solution of x> — 221y?> = —43.

The following depicts the essential nature of the ged condition (3.18) in
Theorem 3.1.

Example 3.3. If D = 29, m; = 455 and mg = 65, then we have the
primitive solution xo + yov'D = 22 + /29 to x®> — Dy? = my = 455. Also, for
d = 13, we have the primitive solution X + YD = 318 + 5929 to

(3.23) x* — Dy?* = mymso/d® = 175,
where

ged(xoX — yoY D, Xyo — x0Y) = ged(5285,980) = 35 = m; /d.
Hence, by Theorem 3.1, we must have a primitive solution z1 + y1v/D to

(3.24) 22 — Dy? = my,
and it 1s achieved via
xoX —yoY D Xyg— zoY 5285 980
_ =—,— | = (151, 28).
(xlayl) < ml/d ) ml/d 35 ) 35 ( ) )
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Notice that the ged condition given above s essential. For instance, we have
primitive solutions such as (X,Y) = (2698,501) to Equation (3.23). However,

ged(z1,y1) = ged(xoX — yoY D, Xyg — x0Y) = ged(44827,8324) =1 £ mq/d
and (z1,y1) does not give a solution of (3.24). Similarly, the primitive solution
(X,Y) = (146,27) of Equation (3.23) has
ged(xoX —yoY D, Xyo — x0Y) = ged(2429,448) = 7 = ma/d # m, /d,
and ((zoX —yoY D)/7,(x0Y — Xyo)/7) = (347, —64) does not yield a solution of
(3.24).

The ged condition (3.18) in Theorem 3.1 also takes on special meaning
when mo is a perfect square.

Example 3.4. Let D = 106, m; = 1575, and mg = 225 = 3% - 52. Then
we have a primitive solution (xq,yo) = (41,1) to x> —Dy? = my. If we set d = 25,
then we have the primitive solution (X,Y) = (6929,673) to
(3.25) 2% — Dy? = myms/d® = 567
where
(3.26) ged(zoX — yoY D, Xyo — 20Y) = ged(212751,20664) = 63 = mq/d.

Thus, by Theorem 3.1,
( ) .I‘OX — y()YD .1‘0Y — Xy()
X =
1, Y1 ml/d ) ml/d
is a primitive solution of x> — Dy? = ma.

Notice that there are other primitive solutions to (3.25). However, not
all satisfy (3.26). For instance, (X,Y) = (2399,233) satisfies (3.25), but not
(3.26) since ged(zoX — yoY D, Xyo — oY) = 7 = n # my/d = 63. Similarly,
the primitive solution (3791129, 368227) to (3.25) does not satisfy (3.26) since the
ged(zoX — yoY' D, Xyo — 20Y) = 9. However, note that

€4.106 = 4005 + 389106
is the fundamental unit of Z[v/106] and
(—4005 + 389v/106)2(3791129 + 368227/106) = 2399 — 233v/106,

so the solutions (2399, —233) and (3791129, 368227) are in the same class of so-
lutions to (3.25) a la Definition 2.1, but not in the class of (6929,673) by Propo-
sition 2.1.

> = (3377, 328)

The following is an example from a communication from Keith Matthews
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in 1999, who was studying, at that time, a paper [10] by Wilhelm Patz published
in the late 1940s. This correspondence and the interchange surrounding it was
one of the inspirations for the writing of this paper and several other outcroppings
such as [1] — [2].

Example 3.5. Patz [10] used simple continued fraction expansions to
solve x> — Dy? = np where p = 23 — 1 and D = 13 for certain small values
of n. His method is a special case of the Lagrange-Matthews-Mollin algorithm
described in [1]-[2]. In particular Patz considered the case

(3.27) 22— 13y = —p=1-2%
Matthews observed that
x2 — y2D = 49696 — 26183% - 13 = —3p.

From this, he wanted to achieve a solution of (3.27).
If we take mq1 = —3p, mo = —p, and d = p in Theorem 3.1, then

X2 - DY? =256% — 712 - 13 = 3 = mymy/d>
with
ged(zoX — yoY' D, Xyo — xoY) = ged (11444733, 3174432) = |my|/d = 3.
Thus, by Theorem 3.1,

20X — yoY D + (Xyo — 20Y)VD
Imal/d

is a primitive solution of (3.27).

= —3814911 + 105814413

Remark 3.2. Another interpretation of what Theorem 3.1 says is that if
there exists a primitive solution xg —I—yo\/ﬁ of 22— Dy? = mq, then 22— Dy? = my
has a primitive solution precisely when there exists a quadratic irrational

x + +/Dy?
=g
where x,y,d € Z, d | ged(mq,m2), and
N(v) = mymgy/d?
with ged(zox — yoyD, xyo — xoy) = |mq|/d. In particular, if my; = —msg, then
this is tantamount to saying that DY? = 22 + d? and if y = 1, then we have

that D itself is a primitive sum of two integer squares. For instance, we have the
following.

Example 3.6. Returning to Example 3.1, we have that xo + yov 34 =
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1 ++/34 is a primitive solution of x> — 34y? = —33 and 13 + 2V/34 is a primitive
solution of x? — 34y = 33 = my. Furthermore,
-1 4+V34 (-1 +V34)(134+2v34) 5541134
T 1303l 33 33

4 .
% _ GTLLLY),

which is an example of a reduced quadratic irrational with pure symmetric period
(see [9]). Moreover,

D=34=3%+5%=d%+ X?,
(see [9] for connections with ideal classes having no ambiguous ideals in them.)
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