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IDEAL CRITERIA FOR BOTH X2
− DY 2 = m1 AND

x2
− Dy2 = m2 TO HAVE PRIMITIVE SOLUTIONS FOR

ANY INTEGERS m1, m2 PRIME TO D > 0

R. A. Mollin

Communicated by V. Drensky

Abstract. This article provides necessary and sufficient conditions for
both of the Diophantine equations X2 − DY 2 = m1 and x2 − Dy2 = m2

to have primitive solutions when m1, m2 ∈ Z, and D ∈ N is not a perfect
square. This is given in terms of the ideal theory of the underlying real
quadratic order Z[

√
D].

1. Introduction. In [4], criteria for the existence of primitive solutions

of both equations in the title were given for the case where m1 = −m2. It

is the purpose of this article to generalize this to arbitrary m1,m2 ∈ Z. The

problem was inspired by work done in [3] as well as by correspondence with

Keith Matthews (see Example 3.5 below). Moreover, the initial inspiration for

looking at this problem was the criterion given by Lagrange for the existence of a
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solution to the negative Pell equation x2−Dy2 = −1, namely that such a solution

exists if and only if the period length of the simple continued fraction expansion

of
√

D is odd. One may naively ask if this holds true for x2 −Dy2 = −m, i. e. is

it true that both X2 −DY 2 = −m and x2 −Dy2 = m have primitive solutions if

and only if the period length of the simple continued fraction expansion of
√

D

is odd. The answer is no and we gave a criterion in [4] for when both do have

primitive solutions. It turns out, nevertheless, that one can generalize this to the

arbitrary case given in the title by using ideal theory to give a simpler proof with

more far-reaching applications and consequences such as the classical results of

Lagrange, mentioned above, and that of Eisenstein (see Remark 3.1 below).

2. Notation and preliminaries. We will be studying solutions of

quadratic Diophantine equations of the general shape

x2 − Dy2 = m,(2.1)

where D ∈ N is not a perfect square and m ∈ Z. If x, y ∈ Z is a solution of (2.1),

then it is called positive if x, y ∈ N and it is called primitive if gcd(x, y) = 1.

Among the primitive solutions of (2.1), if such a solution exists, there is one

in which both x and y have their least values. Such a solution is called the

fundamental solution. We will use the notation

α = x + y
√

D

to denote a solution of (2.1), and we let

N(α) = x2 − Dy2

denote the norm of α.

Recall that a quadratic irrational is a number of the form

(P +
√

D)/Q

where P,Q,D ∈ Z with D > 1 not a perfect square, P 2 ≡ D (mod Q), and Q 6= 0.

Now we set:

P0 = P , Q0 = Q, and recursively for j ≥ 0,

qj =

⌊

Pj +
√

D

Qj

⌋

,(2.2)

Pj+1 = qjQj − Pj ,(2.3)

and

D = P 2
j+1 + QjQj+1.(2.4)
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Hence, we have the simple continued fraction expansion:

α =
P +

√
D

Q
=

P0 +
√

D

Q0

= 〈q0; q1, . . . , qj, . . .〉 ,

where the qj for j ≥ 0 are called the partial quotients of α.

To further develop the link with continued fractions, we make the initial

(well known) observation that a real number has a periodic continued fraction

expansion if and only if it is a quadratic irrational (see [6, Theorem 5.3.1, p.

240]). Furthermore a quadratic irrational may have a purely periodic continued

fraction expansion which we denote by

α = 〈q0; q1, q2, . . . , qℓ−1〉
meaning that qn = qn+ℓ or all n ≥ 0, where ℓ = ℓ(α) is the period length of the

simple continued fraction expansion. It is known that a quadratic irrational α

has such a purely periodic expansion if and only if α > 1 and −1 < α′ < 0, where

α′ is the algebraic conjugate of α. Any quadratic irrational which satisfies these

two conditions is called reduced (see [6, Theorem 5.3.2, p. 241]).

We need the following basic notation for discriminants and ideals. Let

D0 > 1 be a square-free positive integer and set:

σ0 =

{

2 if D0 ≡ 1 ( mod 4),
1 otherwise.

Define:

ω0 = (σ0 − 1 +
√

D0)/σ0, and ∆0 = (ω0 − ω′

0)
2 = 4D0/σ

2
0 .

The value ∆0 is called a fundamental discriminant or field discriminant with

associated radicand D0, and ω0 is called the principal fundamental surd associated

with ∆0. Let ∆ = f2
∆∆0 for some f∆ ∈ N and set

g = gcd(f∆, σ0), σ = σ0/g, and D = (f∆/g)2D0,

then ∆ is called a discriminant with associated radicand D. Furthermore, if we

let

ω∆ = (σ − 1 +
√

D)/σ = f∆ω0 + h

for some h ∈ Z, then ω∆ is called the principal surd associated with the discrim-

inant

∆ = (ω∆ − ω′

∆)2.

This will provide the canonical basis element for certain rings that we now define.

Let [α, β] = αZ + βZ denote a Z-module. Then O∆ = [1, ω∆], is an order
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in K = Q(
√

∆0) = Q(
√

D0) with conductor f∆. If f∆ = 1, then O∆ is called

the maximal order in K. The units of O∆ form a group which we denote by U∆.

The positive units in U∆ have a generator which is the smallest unit that exceeds

1. This selection is unique and is called the fundamental unit of K, denoted by

ε∆0
.

It may be shown that any Z-module I 6= (0) of O∆ has a representation

of the form [a, b + cω∆], where a, c ∈ N with 0 ≤ b < a. We will only be

concerned with primitive ones, namely those for which c = 1. In other words,

I is a primitive Z-submodule of O∆ if whenever I = (z)J for some z ∈ Z and

some Z-submodule J of O∆, then |z| = 1. Thus, a canonical representation of a

primitive Z-submodule of O∆ is obtained by setting σa = Q and b = (P − 1)/2

if σ = 2, while b = P if σ = 1 for P,Q ∈ Z, namely

I = [Q/σ, (P +
√

D)/σ].(2.5)

A nonzero Z-module I as given in (2.5) is called a primitive O∆-ideal if

and only if P 2 ≡ D (mod Q) (see [6, Theorem 3.5.1, p. 173]). Also, the value Q/σ

is called the norm of I, denoted by N(I). Hence, we see that I is an O∆-ideal if

and only if α = (P +
√

D)/Q is a quadratic irrational. Also, the conjugate ideal

of I given in (2.5) is I ′ = [Q/σ, (P −
√

D)/σ]. We define a reduced ideal I to be

one which contains an element

β = (P +
√

D)/σ

such that

I = [N(I), β],

where β > N(I) and −N(I) < β′ < 0, since this corresponds exactly to the

reduced quadratic irrational α = β/N(I) > 1 with −1 < α′ < 0.

We will have need of the following, which may be traced back to Lagrange.

Theorem 2.1. Let ∆ > 0 be a discriminant,

I = [Q/σ, (P +
√

D)/σ]

a reduced ideal in O∆, and α = (P +
√

D)/Q. If Pj and Qj for j = 1, 2, . . . , ℓ(α) =

ℓ are defined by Equations (2.2)–(2.4) in the simple continued fraction expansion

of α, then

ε∆ =
ℓ

∏

i=1

(Pi +
√

D)/Qi
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and

N(ε∆) = (−1)ℓ.

P r o o f. See [5, Theorems 2.1.3–2.1.4, pp. 51–53]. �

In the next section, we will need the following (see [6, pp. 178–181]).

� Multiplication Formulas for Ideals

Let ∆ be a discriminant, and let Ii = [ai, (bi +
√

∆)/2] for i = 1, 2 be

primitive ideals in O∆. Then the following formulae hold.

I1I2 = (d)[a3, (b3 +
√

∆)/2],(2.6)

where

a3 = a1a2/d
2,(2.7)

with

d = gcd(a1, a2, (b1 + b2)/2)(2.8)

and

b3 ≡ 1

d
(δa2b1 + µa1b2 +

ν

2
(b1b2 + ∆)) (mod 2a3),(2.9)

where δ, µ and ν are determined by

δa2 + µa1 +
ν

2
(b1 + b2) = d.(2.10)

We now proceed with a discussion of the solvability of

x2 − Dy2 = m ∈ Z,(2.11)

for any radicand D ∈ N.

We will need the following later for illustrations of the main result.

Definition 2.1. If τj = xj + yj

√
D for j = 1, 2 are primitive solutions

of Equation (2.11), then they are said to be in the same class provided that their

ratio is a solution of Pell’s equation

x2 − Dy2 = 1.(2.12)

In other words, τ1 and τ2 are in the same class of solutions of Equation (2.11) if

there exists a solution β = u + v
√

D of (2.12) such that τ1β = τ2.

If τ and −τ ′ are solutions in the same class, then that class is called

ambiguous. A solution x0 + y0

√
D of Equation (2.11) for which y0 is the least
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positive value in its class is uniquely determined and called the fundamental so-

lution in its class. If x0 + y0

√
D is ambiguous, then we require, in addition, that

x0 ≥ 0.

An arithmetic property for determining when solutions of Equation (2.11)

are in the same class is given as follows.

Proposition 2.1. Two primitive solutions xj + yj

√
D for j = 1, 2 of

Equation (2.11) are in the same class if and only if both

(x1x2 − y1y2D)/m ∈ Z and (y1x2 − x1y2)/m ∈ Z.

Consequently, there are only finitely many classes of primitive solutions of Equa-

tion (2.11).

P r o o f. See [6, Proposition 6.2.1, p. 299]. �

Theorem 2.2. Let D ∈ N not a perfect square, m ∈ Z, and let α =

x0 + y0

√
D be a primitive solution of

x2 − Dy2 = m.(2.13)

Then each of the following hold.

(a) There is a unique primitive element β = X0 + Y0

√
D ∈ Z[

√
D] such that

βα′ = (X0 + Y0

√
D)(x0 − y0

√
D) = P0 +

√
D,

where

−|m|/2 < P0 ≤ |m|/2.

(b) The solution (x0, y0) may be determined from β via:

x0 =
X0P0 − Y0D

N(β)
and y0 =

Y0P0 − X0

N(β)
.

(c) For any solution γ in the same class as α there exists a unique element δ

such that δγ′ = P0 +
√

D.

(d) There is a unique ideal

Iα = [N(α), (P0 +
√

∆)/2] ∼ 1.

P r o o f. See [6, Theorem 6.2.7, pp. 302–304]. �

Definition 2.2. Given a primitive solution α of equation (2.13), the ideal

Iα in Theorem 2.2 is called the unique ideal associated with α. Also, α is said to

belong to the unique element P0 determined by Theorem 2.2.
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3. Results.

Theorem 3.1. Let m1,m2 ∈ Z, D ∈ N, not a perfect square, and

gcd(m1m2,D) = 1.(3.14)

If

x2 − Dy2 = m1(3.15)

has a primitive solution x0 + y0

√
D, then

x2 − Dy2 = m2(3.16)

has a primitive solution if and only if there exists a divisor d ∈ N, of g =

gcd(m1,m2) such that

x2 − Dy2 = m1m2/d
2(3.17)

has a primitive solution X + Y
√

D with

gcd(x0X − y0Y D,Xy0 − x0Y ) = |m1|/d.(3.18)

Furthermore, when such a solution to (3.17) exists, then a primitive so-

lution of (3.16) is given by

x1 + y1

√
D =

x0X − y0Y D + (x0Y − Xy0)
√

D

|m1|/d
.(3.19)

P r o o f. Suppose that (3.15)–(3.16) both have primitive solutions

α0 = x0 + y0

√
D and α1 = x1 + y1

√
D,

respectively. Then, for ∆ = σ2D, there exist unique, primitive, principle O∆-

ideals:

Iα0
= (x0 + y0

√
D) = [m1, (P0 +

√
∆)/2],

and

Iα1
= (x1 + y1

√
D) = [m2, (P1 +

√
∆])/2,

where αj belongs to Pj for j = 0, 1 (see Definition 2.2). Thus ,we have,

Iα0
Iα1

= (Iα0
+ Iα1

)(Iα0
∩ Iα1

) = gcd(Iα0
, Iα1

)lcm(Iα0
, Iα1

),(3.20)

(see [7, Exercise 3.15], for instance).

Also, by the multiplication formulae (2.6)–(2.10),

Iα0
Iα1

= (d)
[m1m2

d2
, (P2 +

√
∆)/2

]

,
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where α0α1/d belongs to P2, and d = gcd
(

m1,m2,
P0+P1

2

)

. Moreover,
[m1m2

d2
, (P2 +

√
∆)/2

]

= (X + Y
√

D),

where

X + Y
√

D =
x0x1 + y0y1D + (x1y0 + x0y1)

√
D

d
with

X2 − DY 2 =
m1m2

d2
,

It follows from Theorem 2.2 that X + Y
√

D ∈ Z[
√

D], and given that
[m1m2

d2
, (P2 +

√
∆)/2

]

is a primitive ideal generated by X + Y
√

D, then it is

primitive. We have established (3.17). We now check that (3.18) holds.

gcd(x0X − y0Y D, x0Y − Xy0) =
1

d
gcd(x1(x

2
0 − y2

0D), y1(x
2
0 − y2

0D)) =

1

d
gcd(x1m1, y1m1) =

|m1|
d

gcd(x1, y1) =
|m1|

d
.

It remains to check (3.19). Since it is straightforward that
(

x0X − y0Y D

m1/d

)2

−
(

x0Y − Xy0

m1/d

)2

D = m2,

then we are done.

To prove the converse, assume that (3.17)–(3.18) hold, and set

α =
(x0 + y0

√
D)(X − Y

√
D)

|m1|/d
.

Then N(α) = N(x1 + y1

√
D) = m2, α ∈ Z[

√
D], and gcd(x1, y1) = 1 since (3.18)

holds. �

Corollary 3.1. Suppose that D > 0 is a nonsquare integer, a is a

nonnegative integer, and p is a prime not dividing D. If

x2 − Dy2 = −pa(3.21)

has a primitive solution, then

X2 − DY 2 = pa(3.22)

has a primitive solution if and only if ℓ(
√

D) is odd.

P r o o f. If ℓ(
√

D) is odd, then by Theorem 2.1 the result holds. Con-

versely, if both (3.21)–(3.22) have primitive solutions, then there are principal
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O∆-ideals of norm pa and −pa with generators ηp and η−p respectively. Hence,

ηη−p is a unit in O∆ so by Theorem 2.1, ℓ(
√

D) is odd. �

Remark 3.1. The special case of Corollary 3.1 where a = 0 is the result

by Lagrange, namely that the Pell equation x2 −Dy2 = −1 has a solution if and

only if ℓ(
√

D) is odd (see [6, Corollary 5.3.3, p. 249]). The special case where

a = 2 = p is related to a problem of Eisenstein, namely that if the radicand D ≡ 1

(mod 4), x2 − Dy2 = −4 has a primitive solution if and only if N(εD) = −1

and εD 6∈ Z[
√

D]. In Corollary 3.1, we are assuming that x2 − Dy2 = −4 has a

solution, so in this case, ℓ(
√

D) is necessarily odd as demonstrated in the proof

of the corollary. The special case where a = 1 is Corollary 3.2 of [4].

It turns out that Corollary 3.1 is the best that one hope to achieve in the

sense that the parity of ℓ(
√

D) determines the mutual solvability of x2−Dy2 = m

and X2−DY 2 = −m. The following illustration shows that once m is divisible by

two distinct primes, this parity is not a deciding factor in the mutual solvability

of these two equations.

Example 3.1. If D = 34, m2 = 33 = −m1, and d = 3. Then since

(x0, y0) = (1, 1) is a solution of x2 − Dy2 = m1, and (X,Y ) = (27, 5) is a

solution of x2 − Dy2 = m1m2/d
2 = −112 with

gcd(x0X − y0Y D,Xy0 − x0Y ) = gcd(143, 22) = 11 = |m1|/d,

then

x2
1 − y2

1D =

(

x0X − y0Y D

m1/d

)2

− D

(

Xy0 − x0Y

m1/d

)2

= 132 − 22 · 34 = 33 = m2.

Notice that ℓ(
√

34) = 4.

We can exploit this example further by illustrating the proof of Theo-

rem 3.1 involving the use of ideals. We have that α0 = x0 + y0

√
34 = 1 +

√
34

is a primitive solution of x2 − 34y2 = m1, and α1 = x1 + y1

√
34 = 13 + 2

√
34

is a primitive solution of x2 − 34y2 = m2. Thus we have the primitive, principle

ideals (in Z[
√

D]):

Iα0
= (1 +

√
34) = [−33,−1 +

√
34] = [m1, P0 +

√
D],

and

Iα1
= (13 + 2

√
34) = [33, 10 +

√
34] = [m2, P1 +

√
D]

where α0 belongs to P0 = −1 and α1 belongs to P1 = 10. Thus,

I = Iα0
Iα1

= (3)(27 + 5
√

34) = (3)[−112, 43 +
√

34] = (3)[m1m2/d
2, P2 +

√
D],
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where

27 + 5
√

34 =
(1 +

√
34)(13 + 2

√
34)

3
= α0α1/d

belongs to P2 = 43.

On the other end of the spectrum from the consideration in Example 3.1

is the case where gcd(m1,m2) = 1. In this case, both (3.15)–(3.16) have primitive

solutions when x2−Dy2 = m1m2 has one with the gcd condition (3.18) satisfied.

For instance, we have the following.

Example 3.2. Let D = 221, m1 = −100 and m2 = −43. Then

x0 + y0

√
D = 431 + 29

√
221

is a primitive solution of x2−Dy2 = m1. Also, since gcd(m1,m2) = 1, we choose

d = 1 in Theorem 3.1. We calculate a primitive solution

X + Y
√

D = 25317 + 1703
√

221

of x2 − Dy2 = m1m2. Thus by Theorem 3.1,

x0X − y0Y D

|m1|
+

x0Y − Xy0

|m1|
√

D = −29 + 2
√

221

is a primitive solution of x2 − 221y2 = −43.

The following depicts the essential nature of the gcd condition (3.18) in

Theorem 3.1.

Example 3.3. If D = 29, m1 = 455 and m2 = 65, then we have the

primitive solution x0 + y0

√
D = 22 +

√
29 to x2 − Dy2 = m1 = 455. Also, for

d = 13, we have the primitive solution X + Y
√

D = 318 + 59
√

29 to

x2 − Dy2 = m1m2/d
2 = 175,(3.23)

where

gcd(x0X − y0Y D,Xy0 − x0Y ) = gcd(5285, 980) = 35 = m1/d.

Hence, by Theorem 3.1, we must have a primitive solution x1 + y1

√
D to

x2 − Dy2 = m2,(3.24)

and it is achieved via

(x1, y1) =

(

x0X − y0Y D

m1/d
,
Xy0 − x0Y

m1/d

)

=

(

5285

35
,
980

35

)

= (151, 28).
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Notice that the gcd condition given above is essential. For instance, we have

primitive solutions such as (X,Y ) = (2698, 501) to Equation (3.23). However,

gcd(x1, y1) = gcd(x0X − y0Y D,Xy0 − x0Y ) = gcd(44827, 8324) = 1 6= m1/d

and (x1, y1) does not give a solution of (3.24). Similarly, the primitive solution

(X,Y ) = (146, 27) of Equation (3.23) has

gcd(x0X − y0Y D,Xy0 − x0Y ) = gcd(2429, 448) = 7 = m2/d 6= m1/d,

and ((x0X − y0Y D)/7, (x0Y −Xy0)/7) = (347,−64) does not yield a solution of

(3.24).

The gcd condition (3.18) in Theorem 3.1 also takes on special meaning

when m2 is a perfect square.

Example 3.4. Let D = 106, m1 = 1575, and m2 = 225 = 32 · 52. Then

we have a primitive solution (x0, y0) = (41, 1) to x2−Dy2 = m1. If we set d = 25,

then we have the primitive solution (X,Y ) = (6929, 673) to

x2 − Dy2 = m1m2/d
2 = 567(3.25)

where

gcd(x0X − y0Y D,Xy0 − x0Y ) = gcd(212751, 20664) = 63 = m1/d.(3.26)

Thus, by Theorem 3.1,

(x1, y1) =

(

x0X − y0Y D

m1/d
,
x0Y − Xy0

m1/d

)

= (3377, 328)

is a primitive solution of x2 − Dy2 = m2.

Notice that there are other primitive solutions to (3.25). However, not

all satisfy (3.26). For instance, (X,Y ) = (2399, 233) satisfies (3.25), but not

(3.26) since gcd(x0X − y0Y D,Xy0 − x0Y ) = 7 = n 6= m1/d = 63. Similarly,

the primitive solution (3791129, 368227) to (3.25) does not satisfy (3.26) since the

gcd(x0X − y0Y D,Xy0 − x0Y ) = 9. However, note that

ε4·106 = 4005 + 389
√

106

is the fundamental unit of Z[
√

106] and

(−4005 + 389
√

106)2(3791129 + 368227
√

106) = 2399 − 233
√

106,

so the solutions (2399,−233) and (3791129, 368227) are in the same class of so-

lutions to (3.25) à la Definition 2.1, but not in the class of (6929, 673) by Propo-

sition 2.1.

The following is an example from a communication from Keith Matthews
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in 1999, who was studying, at that time, a paper [10] by Wilhelm Patz published

in the late 1940s. This correspondence and the interchange surrounding it was

one of the inspirations for the writing of this paper and several other outcroppings

such as [1] – [2].

Example 3.5. Patz [10] used simple continued fraction expansions to

solve x2 − Dy2 = np where p = 231 − 1 and D = 13 for certain small values

of n. His method is a special case of the Lagrange-Matthews-Mollin algorithm

described in [1]–[2]. In particular Patz considered the case

x2 − 13y2 = −p = 1 − 231.(3.27)

Matthews observed that

x2
0 − y2

0D = 496962 − 261832 · 13 = −3p.

From this, he wanted to achieve a solution of (3.27).

If we take m1 = −3p, m2 = −p, and d = p in Theorem 3.1, then

X2 − DY 2 = 2562 − 712 · 13 = 3 = m1m2/d
2

with

gcd(x0X − y0Y D,Xy0 − x0Y ) = gcd(11444733, 3174432) = |m1|/d = 3.

Thus, by Theorem 3.1,

x0X − y0Y D + (Xy0 − x0Y )
√

D

|m1|/d
= −3814911 + 1058144

√
13

is a primitive solution of (3.27).

Remark 3.2. Another interpretation of what Theorem 3.1 says is that if

there exists a primitive solution x0+y0

√
D of x2−Dy2 = m1, then x2−Dy2 = m2

has a primitive solution precisely when there exists a quadratic irrational

γ =
x +

√

Dy2

d
,

where x, y, d ∈ Z, d | gcd(m1,m2), and

N(γ) = m1m2/d
2

with gcd(x0x − y0yD, xy0 − x0y) = |m1|/d. In particular, if m1 = −m2, then

this is tantamount to saying that DY 2 = x2 + d2 and if y = 1, then we have

that D itself is a primitive sum of two integer squares. For instance, we have the

following.

Example 3.6. Returning to Example 3.1, we have that x0 + y0

√
34 =
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1 +
√

34 is a primitive solution of x2 − 34y2 = −33 and 13 + 2
√

34 is a primitive

solution of x2 − 34y2 = 33 = m2. Furthermore,

γ =
−1 +

√
34

13 − 2
√

34
=

(−1 +
√

34)(13 + 2
√

34)

33
=

55 + 11
√

34

33
=

5 +
√

34

3
= 〈3; 1, 1, 1, 1, 3〉,

which is an example of a reduced quadratic irrational with pure symmetric period

(see [9]). Moreover,

D = 34 = 32 + 52 = d2 + X2,

(see [9] for connections with ideal classes having no ambiguous ideals in them.)
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