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ABSTRACT. We study the distribution of the (complex) eigenvalues for in-
terior boundary value problems with dissipative boundary conditions in the
case of C'-smooth boundary under some natural assumption on the behav-
iour of the geodesics. As a consequence we obtain energy decay estimates of
the solutions of the corresponding wave equation.

1. Introduction and statement of results. Let Of ¢ R", n > 2,
be a bounded, connected domain with a C*-smooth boundary 0O%, and let
gt = ZZj:l gfj(x)dxidxj be a Riemannian metric in OF, gfj € C>®(0f). Let
O c O, 00NdO* = (), be another bounded, connected domain with boundary of
class O, equipped with the Riemannian metric g = szzl gij(z)dz;dx; = ¢*|o.
Denote by A, the (negative) Laplace-Beltrami operator on (O, g), i.e.

n
Ag = p_l Z a$i (pgijal’j) )

1,j=1
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where (g/) is the inverse matrix to (g;;), and p = (det (gij))l/2 = (det (¢7)) -1z,
Our purpose is to study the energy decay of the solutions of the equation
(02 — Ayu(t,z) =0 in O xR,

(11) U(O,JL‘) = fl(x)¢atu(07$) = fQ(x) in O,
—Oyu+a(z)diu=0 on 00 xR,

where v is the unit inner normal to 0O associated to the metric g, and a(x) €
C(00) is a non-identically zero real-valued function such that a(x) > 0, Vx € 00.
The energy of the solution u(t, z) is given by

E(t) = %/O (|0pu(t, 2) > + |Vgu(t, 2)*) pdz.

When 00 is of class C*°, Bardos, Lebeau and Rauch [1] gave a necessary and
sufficient condition which guarantees the exponential energy decay

(1.2) E(t) < Ce ™ ™E(0), t>1,C,c>0.

Roughly speaking, this condition says that every generalized geodesic must meet
the set I' := {z € 00 : a(x) > 0} at a nondiffractive point at time < T for
some constant 7' > 0. We refer to [1] for more precise definitions and statements.
Burq [2] extended their result to the case of C3-smooth boundary and C?-smooth
metric g.

Consider in the Hilbert space H = H;(0) & L*(O), where L?(0) :=
L*(O,dVol,), Hy(O) is the closure of C*(0) with respect to the norm
Jo IV gul?*dVoly, the operator

) 0 Id
A‘”(Ago)
with domain

D(A) ={u = (u1,u2) € H : Au € H,—0,u1 + aug = 0 on 00}.

It is well known that 74 is a generator of a semi-group, e**4, and the solution of

(1.1) is given by
w\ _ aaf N1
(Quy%t<ﬁ>'

Moreover, the resolvent of A is a compact operator, so spec A is discrete, 0 €
spec A, with no other eigenvalues on Im A = 0. In other words, we have spec A \
{0} € {Im A > 0}. It is easy to see that a A € C belongs to spec A iff the following
problem has a non-trivial solution:

{ (Ag+M)u=0 in O,

(1.3) —dyu~+ida(x)u=0 on 00O.
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Clearly, the bound (1.2) would follow from

(1.4) e fllg < C'e || f|lg, Vf e H' :=HoKer A.
The bound (1.4) implies that spec A\ {0} C {Im A\ > ¢/2} and
(1.5) [A=XN)" e £ Co for ImA< e, A >1,

for some constants Cy, cg > 0. Note that the inverse is also true, that is, (1.5) =
(1.4). In fact, to get (1.4) it suffices to have (1.5) for real A, |\| > 1, only.
Lebeau and Robbiano [4] proved without any conditions on the geodesics
(still in the case of C*°-smooth boundary, assuming only that a > 0 and T" # ()
that spec A\ {0} € {Im X > C1e~2Al} for some constants C,Cy > 0 and that

(16) (A= X"Yeu < Cre®N for TmA < Cle G A > 1,

for some positive constants C1, Ch, Cy, Cy. Tt is easy to see that (1.6) follows from
(1.6) with Im A = 0. One can derive from (1.6) (e.g. see [3], Theorem 3) that for
every integer m > 1,

(L7) B@®)Y? < Clle™ flla < Cp (log )™ || fllpiamy, t > 2,Yf € D(A™)N H,
where || f[|p(am) == [[(A+1)" |z
The purpose of the present paper is to obtain an intermediate result be-

tween (1.2) and (1.7) for boundaries with little regularity. We make the following
assumptions

(1.8) a(x) >ap >0 VzedO,
and

3T > 0 so that for every gf-geodesic (t) with v(0) € OF there exists ¢ € (0,7

(1.9) such that ~(t) € dOF.

Note that (1.9) is trivially fulfilled for arbitrary O if ¢ is the Euclidean metric
iy dx}. Tt is worth noticing that the condition of [1] does not imply (1.9) as,
to our best knowledge, it is not possible to define the generalized bicharacteristic
flow when the boundary is only C'-smooth. But such an implication is also hard
to see (at least for the authors) even for C*°-smooth boundary.

Our main result is the following

Theorem 1.1. Under the assumptions (1.8) and (1.9), we have
(1.10) spec A\ {0} c {ImA>C(1+|\)"'}, C>o0,
and

(L11) A =N lean < A for TmA< GIA A = 1,
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for some constants C1,Co > 0.

In the same way as in [3], Theorem 3, (see also [5], Section 3) one can
derive from the above theorem the following

Corollary 1.2. Under the assumptions (1.8) and (1.9), for every integer
m>1,

(L12) | flr < Con (7 logt)"™ [ Flpamy, £ > 2,¥f € D(A™) N H.

It is easy to see that to prove the above theorem it suffices to prove (1.11)
for real A, |\| > 1, only. This in turn is done by proving suitable a priori estimates
for the solutions of the equation (1.3) (with non zero RHS) with real A > 1.

Acknowledgements. A part of this work was carried out while the
second author was visiting Universidade Federal de Pernambuco, Recife, Brazil,
in February 2002, and he would like to thank this institution for the hospitality.
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2. Uniform a priori estimates. Let u € H?(O) satisfy the equation

2.1) { (Ay+ 2 )u=v in O,
' ulpo = f, dyuloo = Ah,
where A > 1is real. In what follows, ||-||, (-,-), [|-[lz, (-s )¢ | -]lo, (s -)o Will denote

the norms and the scalar products in L%(0), L?(O%), L?(00), respectively. Here
L%(00) = L?*(d0,dVoly,), where dg denotes the Riemannian metric on 90O
induced by the metric g. We equipe the Sobolev space H*(O), s > 0, (and
similarly H*(O%)) with the semi-classical norm

lwll s o) = (1 = A72Ag)*w]).
We will derive Theorem 1.1 from the following

Theorem 2.1. Under the assumption (1.9), there exist constants C, Ay >
0 so that for A > Ay we have

(2.2) lull < CA Mol + CAY2] fllo + CAV2 | Alo.

Let u € H?(O) satisfy the equation (with real A > 1)

{ (Ag+X)u=v in O,

(2:3) —dyu~+ida(x)u=0 on 00O.
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By Green’s formula we have (with f = u|gp)
—Im (Agu, u) = Im (D, ulso, f)o,
and hence, in view of (1.8),
(2.4) —Im (v,u) = Maf, fo > aoA| fl5.
By (2.2) and (2.4),
[ull* < CIAT2|lol|* + CLAlI £

< CIA?|ul? + C2 (v, u)| < Caloll* + %HUIIZ'
Hence,
[ull < Callvll,  Ca>0,
which yields
(2.5) [ull o) < Cllofl, € >0.

It is easy to see that (2.5) implies (1.11) for real A > 1, and hence the theorem
itself.

Proof of Theorem 2.1. Recall first that bicharacteristic flow ®(t) :
T*O% — T*O% t € R, associated to the metric g* is defined by (z(t),£(t)) =
(1) (20, £0), where

o Orf(x,6)
i(t) = ﬁ@iﬁ’
(2.6) ény = g;&)j

2(0) = 2°,£(0) = ¢°,

rf(x,€) being the principal symbol of —Ay. Fix (20,£0) € T*OF, ri(20,£%) =
1, and choose a function p(z,&) € C(T*0%), 0 < p < 1, p = 1 in a small
neighbourhood of (2°,£%) and p = 0 outside another neighbourhood of (29, ¢Y)
so that suppyp N OO! = (. Let t > 0 be such that z(r) ¢ 0% Vr € [0,1],
z(0) € supp,p. For 7 € [0,#] denote p,(x,&) = p(®(—7)(z,£)) € C(T*O%). It
is easy to see from (2.6) that we have

(2.7) Orpr +{r*,p,} =0, 0<7<Ht,

where {-,-} denotes the Poisson brackets Denote by p.(x,Ds), Dy = (i\) L0,
the A — WDO with symbol p,(z,¢),

(;Cpu_(%) // Ne=vly (2, € uly)dedy.
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It follows easily from (2.7) that, for 0 < 7 < t, we have
(2.8) Q = A0:p-(2,Dy) +i[Ays, pr(z,D;)] = O(1) : L*(OF) — L*(OF).

Given a function w defined in O, w will denote its extension by zero outside O.
We have in sense of distributions

(29) Dge® = Bgw + (D,w]90) 3 + (wlao) &'
where § and ¢’ denote the delta density on 0O and its first derivative defined by
50) = [ pVoloy, 8(p) == [ dpdVola,. e CFR)
00 00

Suppose that supp,p, N OO # 0. In view of (2.8) and (2.9), we have
1d 2 ~ ~
5% HpT(xv D$)u||ﬁ = Re <a7'p7'(x> D:B)u’pT(xv D$)u>ﬁ
= \"m <[Agu,p7(az, D)\, pr(x, Dy)uyy + A" Re (Qu, pr(z, Dy )u)y
= —A"'Im (A + N)t, pr(z, D) pr(x, Dp)u)s + A~ Re (Q, pr(x, Dy )
=-A"'Im <5> pT(xv D$)*p7—(x‘, Da:)a>ﬁ + Im <h7 (pT(l'a D$)*p7($a D$)77)|8O>0

_Aillm <f7 (anT(xa D:B)*pT(xv D$)a)‘80>0 + AilRe <Qa’ pT(xv D$)a>ﬁ

Hence

d ~112
—lpr D Yl

< O Hwllllpr (2, Do)l + O)lIklloll(pr(x, Dz )*pr (2, Do )u)ao |0

+O)|fllol|(Pypr (2, Di)*pr (. D)) oo lo + ONH)|ulllpr (2, Dy )il
On the other hand, by the trace theorem we have

|(pr(z, D) pr (2, D)) a0 lo
< OWNY?)Ipr(x, Dy)*pr (2, Do )iill /202y < ONY?)llpr (2, Dy ),
(Dypr(z, Da) pr (2, Do)t |50 lo

< O Ipr(, Da)*pr (2, Do)l g2 or) < ONY?)llpy (ar, Dy Y-

Hence

(2.10) % lpr (2, Do)l < O el +ON2)(IIf lo + [IAllo) + OAH)]full.
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Clearly, if supp,p, N 0O = 0, (2.10) holds with f = h = 0. Thus we get
t
- - d -
Ip(e. DYl = (o, Dol = [ 4 lpole D)l dr

(211) < |lpe(a, DaYally + O vl +ON2) ([ fllo + lIhllo) + O ull.
Clearly, there exist a domain @' C OF and a constant 0 < &y < 1 such that
OCO,o0Nd0 =0, and dist(O',00%) > ;. Fix now a ¢* = (29,£0) € T*0O',
ri(20,€9) = 1. By (1.9), there exist a neighbourhood U(¢%) € T*O’ of ¢° and
0 <t=1t(¢% < T so that

() U () C {x € OF : §y/4 < dist(x, 00%) < 8p/2},

where 7, (7, &) := x. Choose a function p(z,£) € C§°(U(¢Y)), p = 1 in a smaller
neighbourhood of ¢%. Let p;(z,€&) be as above and choose a function n(x) €
C°(O%) such that suppn C {z € O : dist(x, 00%) < 260/3}, n = 1 on supp.p;.
We have nu = 0 and hence

pe(@, D )u = n(x)pe(x, D)t = [n(x), pe(x, Dy u,
so we obatin
(2.12) Ipe (2, D2 )ally < O[]l
By (2.11) and (2.12), we conclude
(213)  lp(z, Dy)illy < O ol + ON*)(II£llo + [IRllo) + O ul.

Fix now a (? = (20,£%) € T*O' such that (2%, £°) # 1. Suppose that (20, £%) >
1 (the case 7#(2% £%) < 1 is treated similarly). Then there exists a (conic for
|¢] > 1) neighbourhood W (¢%) € T*O of ¢° such that rf(z,&) > 1 in W(C).
Choose functions ¢(z, &), q1(x, &) € C°(W(¢?)), ¢ = 1 in a smaller neighbourhood
of (%, ¢1 = 1 on supp ¢q. Thus we have that the operator —)\_QAgu —1 considered as
a semi-classical differential operator is elliptic on supp g; with a strictly positive
principal symbol. Therefore, by Garding’s inequality we have

Re <q1 (l‘, D:D)(_)\72Agﬁ - 1)&, Q(x, D:B)a>ﬁ

2.14 . o\~
(2.14) > Cllg(z, Do)all} — OO}, € >0.

On the other hand, as above we have

Re <(—)\_2Agn — Du, q1(x, Dy)*q(x, Dy)u)y = —~)"2Re (0,q1(x, Dg)*q(x, Dy )u)y
+A7'Re (h, (¢1(z, D2)*q(z, D)) |lo0)o — A *Re (f, (01 (z, D2)*q(x, Ds)) 000

215) < (0 Al + 0N (Il + 1kll0)) late, e )il
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Combining (2.14) and (2.15) leads to the estimate
(216)  lg(a, Do)ally < OAH)vll + OA2)((If lo + I1llo) + O ul-

Now (2.2) follows from (2.13) and (2.16) by a microlocal partition of the unity
on T*O'. O
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