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Abstract. We study the distribution of the (complex) eigenvalues for in-
terior boundary value problems with dissipative boundary conditions in the
case of C1-smooth boundary under some natural assumption on the behav-
iour of the geodesics. As a consequence we obtain energy decay estimates of
the solutions of the corresponding wave equation.

1. Introduction and statement of results. Let O♯ ⊂ Rn, n ≥ 2,
be a bounded, connected domain with a C∞-smooth boundary ∂O♯, and let
g♯ =

∑n
i,j=1 g♯

ij(x)dxidxj be a Riemannian metric in O♯, g♯
ij ∈ C∞(O♯). Let

O ⊂ O♯, ∂O∩∂O♯ = ∅, be another bounded, connected domain with boundary of
class C1, equipped with the Riemannian metric g =

∑n
i,j=1 gij(x)dxidxj := g♯|O.

Denote by ∆g the (negative) Laplace-Beltrami operator on (O, g), i.e.

∆g = p−1
n∑

i,j=1

∂xi

(
pgij∂xj

)
,
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where
(
gij

)
is the inverse matrix to (gij), and p = (det (gij))

1/2 =
(
det

(
gij

))−1/2
.

Our purpose is to study the energy decay of the solutions of the equation

(1.1)





(∂2
t − ∆g)u(t, x) = 0 in O × R,

u(0, x) = f1(x), ∂tu(0, x) = f2(x) in O,
−∂νu + a(x)∂tu = 0 on ∂O × R,

where ν is the unit inner normal to ∂O associated to the metric g, and a(x) ∈
C(∂O) is a non-identically zero real-valued function such that a(x) ≥ 0, ∀x ∈ ∂O.
The energy of the solution u(t, x) is given by

E(t) =
1

2

∫

O

(
|∂tu(t, x)|2 + |∇gu(t, x)|2

)
pdx.

When ∂O is of class C∞, Bardos, Lebeau and Rauch [1] gave a necessary and
sufficient condition which guarantees the exponential energy decay

(1.2) E(t) ≤ Ce−ctE(0), t ≥ 1, C, c > 0.

Roughly speaking, this condition says that every generalized geodesic must meet
the set Γ := {x ∈ ∂O : a(x) > 0} at a nondiffractive point at time ≤ T for
some constant T > 0. We refer to [1] for more precise definitions and statements.
Burq [2] extended their result to the case of C3-smooth boundary and C2-smooth
metric g.

Consider in the Hilbert space H = H1(O) ⊕ L2(O), where L2(O) :=
L2(O, dVolg), H1(O) is the closure of C∞(O) with respect to the norm∫
O |∇gu|

2dVolg, the operator

A = −i

(
0 Id

∆g 0

)

with domain

D(A) = {u = (u1, u2) ∈ H : Au ∈ H,−∂νu1 + au2 = 0 on ∂O}.

It is well known that iA is a generator of a semi-group, eitA, and the solution of
(1.1) is given by

(
u

∂tu

)
= eitA

(
f1

f2

)
.

Moreover, the resolvent of A is a compact operator, so specA is discrete, 0 ∈
specA, with no other eigenvalues on Imλ = 0. In other words, we have specA \
{0} ⊂ {Im λ > 0}. It is easy to see that a λ ∈ C belongs to specA iff the following
problem has a non-trivial solution:

(1.3)

{
(∆g + λ2)u = 0 in O,

−∂νu + iλa(x)u = 0 on ∂O.
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Clearly, the bound (1.2) would follow from

(1.4) ‖eitAf‖H ≤ C ′e−ct/2‖f‖H , ∀f ∈ H ′ := H ⊖ Ker A.

The bound (1.4) implies that specA \ {0} ⊂ {Im λ ≥ c/2} and

(1.5) ‖(A − λ)−1‖L(H) ≤ C0 for Im λ ≤ c0, |λ| ≥ 1,

for some constants C0, c0 > 0. Note that the inverse is also true, that is, (1.5) ⇒
(1.4). In fact, to get (1.4) it suffices to have (1.5) for real λ, |λ| ≫ 1, only.

Lebeau and Robbiano [4] proved without any conditions on the geodesics
(still in the case of C∞-smooth boundary, assuming only that a ≥ 0 and Γ 6= ∅)
that specA \ {0} ⊂ {Im λ ≥ C1e

−C2|λ|} for some constants C1, C2 > 0 and that

(1.6) ‖(A − λ)−1‖L(H) ≤ C̃1e
eC2|λ| for Im λ ≤ C ′

1e
−C′

2
|λ|, |λ| ≥ 1,

for some positive constants C ′
1, C̃1, C

′
2, C̃2. It is easy to see that (1.6) follows from

(1.6) with Im λ = 0. One can derive from (1.6) (e.g. see [3], Theorem 3) that for
every integer m ≥ 1,

(1.7) E(t)1/2 ≤ C‖eitAf‖H ≤ Cm (log t)−m ‖f‖D(Am), t ≥ 2,∀f ∈ D(Am)∩H ′,

where ‖f‖D(Am) := ‖(A + 1)mf‖H .
The purpose of the present paper is to obtain an intermediate result be-

tween (1.2) and (1.7) for boundaries with little regularity. We make the following
assumptions

(1.8) a(x) ≥ a0 > 0 ∀x ∈ ∂O,

and

∃T > 0 so that for every g♯-geodesic γ(t)with γ(0) ∈ O♯ there exists t ∈ (0, T ]

(1.9) such that γ(t) ∈ ∂O♯.

Note that (1.9) is trivially fulfilled for arbitrary O if g♯ is the Euclidean metric∑n
j=1 dx2

j . It is worth noticing that the condition of [1] does not imply (1.9) as,
to our best knowledge, it is not possible to define the generalized bicharacteristic
flow when the boundary is only C1-smooth. But such an implication is also hard
to see (at least for the authors) even for C∞-smooth boundary.

Our main result is the following

Theorem 1.1. Under the assumptions (1.8) and (1.9), we have

(1.10) specA \ {0} ⊂ {Im λ ≥ C(1 + |λ|)−1}, C > 0,

and

(1.11) ‖(A − λ)−1‖L(H) ≤ C1|λ| for Im λ ≤ C2|λ|
−1, |λ| ≥ 1,
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for some constants C1, C2 > 0.

In the same way as in [3], Theorem 3, (see also [5], Section 3) one can
derive from the above theorem the following

Corollary 1.2. Under the assumptions (1.8) and (1.9), for every integer

m ≥ 1,

(1.12) ‖eitAf‖H ≤ Cm

(
t−1 log t

)m
‖f‖D(Am), t ≥ 2,∀f ∈ D(Am) ∩ H ′.

It is easy to see that to prove the above theorem it suffices to prove (1.11)
for real λ, |λ| ≫ 1, only. This in turn is done by proving suitable a priori estimates
for the solutions of the equation (1.3) (with non zero RHS) with real λ ≫ 1.
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in February 2002, and he would like to thank this institution for the hospitality.
The authors were also partially supported by the agreement Brazil-France in
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2. Uniform a priori estimates. Let u ∈ H2(O) satisfy the equation

(2.1)

{
(∆g + λ2)u = v in O,
u|∂O = f, ∂νu|∂O = λh,

where λ ≫ 1 is real. In what follows, ‖·‖, 〈·, ·〉, ‖·‖♯, 〈·, ·〉♯, ‖·‖0, 〈·, ·〉0 will denote
the norms and the scalar products in L2(O), L2(O♯), L2(∂O), respectively. Here
L2(∂O) := L2(∂O, dVol∂g), where ∂g denotes the Riemannian metric on ∂O
induced by the metric g. We equipe the Sobolev space Hs(O), s ≥ 0, (and
similarly Hs(O♯)) with the semi-classical norm

‖w‖Hs(O) := ‖(1 − λ−2∆g)
s/2w‖.

We will derive Theorem 1.1 from the following

Theorem 2.1. Under the assumption (1.9), there exist constants C, λ0 >
0 so that for λ ≥ λ0 we have

(2.2) ‖u‖ ≤ Cλ−1‖v‖ + Cλ1/2‖f‖0 + Cλ1/2‖h‖0.

Let u ∈ H2(O) satisfy the equation (with real λ ≫ 1)

(2.3)

{
(∆g + λ2)u = v in O,

−∂νu + iλa(x)u = 0 on ∂O.
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By Green’s formula we have (with f = u|∂O)

−Im 〈∆gu, u〉 = Im 〈∂νu|∂O, f〉0,

and hence, in view of (1.8),

(2.4) −Im 〈v, u〉 = λ〈af, f〉0 ≥ a0λ‖f‖
2
0.

By (2.2) and (2.4),

‖u‖2 ≤ C1λ
−2‖v‖2 + C1λ‖f‖

2
0

≤ C1λ
−2‖v‖2 + C2 |〈v, u〉| ≤ C3‖v‖

2 +
1

2
‖u‖2.

Hence,

‖u‖ ≤ C4‖v‖, C4 > 0,

which yields

(2.5) ‖u‖H1(O) ≤ C‖v‖, C > 0.

It is easy to see that (2.5) implies (1.11) for real λ ≫ 1, and hence the theorem
itself.

P r o o f o f Th e o r e m 2.1. Recall first that bicharacteristic flow Φ(t) :
T ∗O♯ → T ∗O♯, t ∈ R, associated to the metric g♯ is defined by (x(t), ξ(t)) =
Φ(t)(x0, ξ0), where

(2.6)





ẋ(t) =
∂r♯(x, ξ)

∂ξ
,

ξ̇(t) = −
∂r♯(x, ξ)

∂x
,

x(0) = x0, ξ(0) = ξ0,

r♯(x, ξ) being the principal symbol of −∆g♯ . Fix (x0, ξ0) ∈ T ∗O♯, r♯(x0, ξ0) =

1, and choose a function p(x, ξ) ∈ C∞
0 (T ∗O♯), 0 ≤ p ≤ 1, p = 1 in a small

neighbourhood of (x0, ξ0) and p = 0 outside another neighbourhood of (x0, ξ0)
so that suppxp ∩ ∂O♯ = ∅. Let t > 0 be such that x(τ) /∈ ∂O♯, ∀τ ∈ [0, t],
x(0) ∈ suppxp. For τ ∈ [0, t] denote pτ (x, ξ) = p(Φ(−τ)(x, ξ)) ∈ C∞

0 (T ∗O♯). It
is easy to see from (2.6) that we have

(2.7) ∂τpτ + {r♯, pτ} = 0, 0 ≤ τ ≤ t,

where {·, ·} denotes the Poisson brackets. Denote by pτ (x,Dx), Dx := (iλ)−1∂x,
the λ − ΨDO with symbol pτ (x, ξ), i.e.

pτ (x,Dx)u :=

(
λ

2π

)n ∫ ∫
eiλ〈x−y,ξ〉pτ (x, ξ)u(y)dξdy.
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It follows easily from (2.7) that, for 0 ≤ τ ≤ t, we have

(2.8) Q := λ∂τpτ (x,Dx) + i[∆g♯ , pτ (x,Dx)] = O(1) : L2(O♯) → L2(O♯).

Given a function w defined in O, w̃ will denote its extension by zero outside O.
We have in sense of distributions

(2.9) ∆g♯w̃ = ∆̃gw + (∂νw|∂O) δ + (w|∂O) δ′,

where δ and δ′ denote the delta density on ∂O and its first derivative defined by

δ(ϕ) =

∫

∂O
ϕdVol∂g, δ′(ϕ) = −

∫

∂O
∂νϕdVol∂g, ϕ ∈ C∞

0 (Rn).

Suppose that suppxpτ ∩ ∂O 6= ∅. In view of (2.8) and (2.9), we have

1

2

d

dτ
‖pτ (x,Dx)ũ‖2

♯ = Re 〈∂τpτ (x,Dx)ũ, pτ (x,Dx)ũ〉♯

= λ−1Im 〈[∆g♯ , pτ (x,Dx)]ũ, pτ (x,Dx)ũ〉♯ + λ−1Re 〈Qũ, pτ (x,Dx)ũ〉♯

= −λ−1Im 〈(∆g♯ + λ2)ũ, pτ (x,Dx)∗pτ (x,Dx)ũ〉♯ + λ−1Re 〈Qũ, pτ (x,Dx)ũ〉♯

= −λ−1Im 〈ṽ, pτ (x,Dx)∗pτ (x,Dx)ũ〉♯ + Im 〈h, (pτ (x,Dx)∗pτ (x,Dx)ũ)|∂O〉0

−λ−1Im 〈f, (∂νpτ (x,Dx)∗pτ (x,Dx)ũ)|∂O〉0 + λ−1Re 〈Qũ, pτ (x,Dx)ũ〉♯.

Hence ∣∣∣∣
d

dτ
‖pτ (x,Dx)ũ‖2

♯

∣∣∣∣

≤ O(λ−1)‖v‖‖pτ (x,Dx)ũ‖♯ + O(1)‖h‖0‖(pτ (x,Dx)∗pτ (x,Dx)ũ)|∂O‖0

+O(1)‖f‖0‖(Dνpτ (x,Dx)∗pτ (x,Dx)ũ)|∂O‖0 + O(λ−1)‖u‖‖pτ (x,Dx)ũ‖♯.

On the other hand, by the trace theorem we have

‖(pτ (x,Dx)∗pτ (x,Dx)ũ)|∂O‖0

≤ O(λ1/2)‖pτ (x,Dx)∗pτ (x,Dx)ũ‖H1/2(O♯) ≤ O(λ1/2)‖pτ (x,Dx)ũ‖♯,

‖(Dνpτ (x,Dx)∗pτ (x,Dx)ũ)|∂O‖0

≤ O(λ1/2)‖pτ (x,Dx)∗pτ (x,Dx)ũ‖H3/2(O♯) ≤ O(λ1/2)‖pτ (x,Dx)ũ‖♯.

Hence

(2.10)

∣∣∣∣
d

dτ
‖pτ (x,Dx)ũ‖♯

∣∣∣∣ ≤ O(λ−1)‖v‖ + O(λ1/2)(‖f‖0 + ‖h‖0) + O(λ−1)‖u‖.



On the stabilization of the wave equation by the boundary 239

Clearly, if suppxpτ ∩ ∂O = ∅, (2.10) holds with f = h = 0. Thus we get

‖p(x,Dx)ũ‖♯ = ‖pt(x,Dx)ũ‖♯ −

∫ t

0

d

dτ
‖pτ (x,Dx)ũ‖♯ dτ

(2.11) ≤ ‖pt(x,Dx)ũ‖♯ + O(λ−1)‖v‖ + O(λ1/2)(‖f‖0 + ‖h‖0) + O(λ−1)‖u‖.

Clearly, there exist a domain O′ ⊂ O♯ and a constant 0 < δ0 ≪ 1 such that
O ⊂ O′, ∂O ∩ ∂O′ = ∅, and dist(O′, ∂O♯) ≥ δ0. Fix now a ζ0 = (x0, ξ0) ∈ T ∗O′,
r♯(x0, ξ0) = 1. By (1.9), there exist a neighbourhood U(ζ0) ⊂ T ∗O′ of ζ0 and
0 < t = t(ζ0) ≤ T so that

πxΦ(t)U(ζ0) ⊂ {x ∈ O♯ : δ0/4 ≤ dist(x, ∂O♯) ≤ δ0/2},

where πx(x, ξ) := x. Choose a function p(x, ξ) ∈ C∞
0 (U(ζ0)), p = 1 in a smaller

neighbourhood of ζ0. Let pt(x, ξ) be as above and choose a function η(x) ∈
C∞

0 (O♯) such that suppη ⊂ {x ∈ O♯ : dist(x, ∂O♯) ≤ 2δ0/3}, η = 1 on suppxpt.
We have ηũ = 0 and hence

pt(x,Dx)ũ = η(x)pt(x,Dx)ũ = [η(x), pt(x,Dx)]ũ,

so we obatin

(2.12) ‖pt(x,Dx)ũ‖♯ ≤ O(λ−1)‖ũ‖♯.

By (2.11) and (2.12), we conclude

(2.13) ‖p(x,Dx)ũ‖♯ ≤ O(λ−1)‖v‖ + O(λ1/2)(‖f‖0 + ‖h‖0) + O(λ−1)‖u‖.

Fix now a ζ0 = (x0, ξ0) ∈ T ∗O′ such that r♯(x0, ξ0) 6= 1. Suppose that r♯(x0, ξ0) >
1 (the case r♯(x0, ξ0) < 1 is treated similarly). Then there exists a (conic for
|ξ| ≫ 1) neighbourhood W (ζ0) ⊂ T ∗O of ζ0 such that r♯(x, ξ) > 1 in W (ζ0).
Choose functions q(x, ξ), q1(x, ξ) ∈ C∞(W (ζ0)), q = 1 in a smaller neighbourhood
of ζ0, q1 = 1 on supp q. Thus we have that the operator −λ−2∆g♯−1 considered as
a semi-classical differential operator is elliptic on supp q1 with a strictly positive
principal symbol. Therefore, by Gärding’s inequality we have

(2.14)
Re 〈q1(x,Dx)(−λ−2∆g♯ − 1)ũ, q(x,Dx)ũ〉♯
≥ C‖q(x,Dx)ũ‖2

♯ − O(λ−2)‖ũ‖2
♯ , C > 0.

On the other hand, as above we have

Re 〈(−λ−2∆g♯ − 1)ũ, q1(x,Dx)∗q(x,Dx)ũ〉♯ = −λ−2Re 〈ṽ, q1(x,Dx)∗q(x,Dx)ũ〉♯

+λ−1Re 〈h, (q1(x,Dx)∗q(x,Dx)ũ)|∂O〉0 − λ−2Re 〈f, (∂νq1(x,Dx)∗q(x,Dx)ũ)|∂O〉0

(2.15) ≤
(
O(λ−2)‖v‖ + O(λ−1/2)(‖f‖0 + ‖h‖0)

)
‖q(x,Dx)ũ‖♯.
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Combining (2.14) and (2.15) leads to the estimate

(2.16) ‖q(x,Dx)ũ‖♯ ≤ O(λ−2)‖v‖ + O(λ−1/2)(‖f‖0 + ‖h‖0) + O(λ−1)‖u‖.

Now (2.2) follows from (2.13) and (2.16) by a microlocal partition of the unity
on T ∗O′. �
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[3] N. Burq. Décroissance de l’énergie locale de l’équation des ondes pour le
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