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Abstract. Let f ∈ C[−1, 1] change its convexity finitely many times, in the
interval. We are interested in estimating the degree of approximation of f by
polynomials, and by piecewise polynomials, which are nearly coconvex with
it, namely, polynomials and piecewise polynomials that preserve the convex-
ity of f except perhaps in some small neighborhoods of the points where f
changes its convexity. We obtain Jackson type estimates and summarize the
positive and negative results in a truth-table as we have previously done for
nearly comonotone approximation.

1. Introduction. Let f ∈ C[−1, 1] change its convexity finitely many
times, say s ≥ 0 times, in the interval. We are interested in estimating the
degree of approximation of f by polynomials which are nearly coconvex with it,
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namely, polynomials that preserve the convexity of f except perhaps in some
small neighborhoods of the points where f changes its convexity.

Recently [8], we have investigated the degree of coconvex approximation
by polynomials, that is, approximation by polynomials that change convexity ex-
actly where f does. We have been able to obtain Jackson-type estimates involving
the various moduli of smoothness of f and its derivatives (whenever they exist).
However, the estimates are usually valid only for polynomials of sufficiently high
degree n ≥ N , where N depends on the location of the changes in convexity,
or even on f itself. Also, if there is at least one change of convexity, then the
estimates involving the moduli of smoothness of f , are valid only up to ω3(f, ·),
those involving the moduli of smoothness of f ′, are valid only up to ω2(f

′, ·), and
those involving the moduli of smoothness of f ′′, are valid only up to ω3(f

′′, ·).
Our aim here is to relax somewhat the constraints in the expectation

to obtain better estimates on the approximation. We will show that this is
indeed the case, however the improvement is limited. A similar phenomenon is
known from nearly comonotone approximation of a function which changes its
monotonicity finally many times in the interval. (See our recent survey [5] where
we have collected all known positive and negative results on nearly comonotone
approximation on a finite interval, by algebraic polynomials in the uniform norm
(see also [3, 4]).) We intend here to obtain the analogous results for nearly
coconvex approximation.

Let I := [−1, 1] and denote by C = C0 and Cr, respectively the space of
continuous functions, and that of r-times continuously differentiable functions on
I, equipped with the uniform norm

‖f‖ := max
x∈I

|f(x)|.

Denote by Yσ, σ ∈ N, the set of all collections Yσ := {yi}σ
i=1, such that −1 <

yσ < . . . < y1 < 1, and for σ = 0, we write Y0 := {∅}. For later reference set
y0 := 1 and yσ+1 := −1.

For s ∈ N, we denote by ∆2(Ys), the collection of all functions f ∈ C that
change convexity at the set Ys, and are convex in [y1, 1], that is, f is convex in
[y2i+1, y2i], 0 ≤ i ≤ [s/2], and it is concave in [y2i, y2i−1], 1 ≤ i ≤ [(s + 1)/2]. In
particular ∆2 := ∆2(Y0) is the set of convex functions on I. Also, let

ρn(x) :=
1

n2
+

1

n
ϕ(x) :=

1

n2
+

1

n

√

1 − x2,

and for r ≥ 0, k ≥ 0, and a constant c > 0, denote

O(r, k, c, Ys) :=











s+1∪
i=0

(yi − cρn(yi), yi + cρn(yi)) (r, k) = (0, 4) or (1, 3)

s∪
i=1

(yi − cρn(yi), yi + cρn(yi)) otherwise.
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We wish to approximate a general function f ∈ ∆2(Ys), by means of polynomials
which are nearly coconvex with f , that is, we require that the polynomials be
coconvex with f except perhaps in some neighborhood of Ys. We will show that
for the appropriate (r, k), we can find polynomials which are coconvex with f
in [−1, 1] \ O(r, k, c, Ys), for some c > 0. Thus, in particular, these polynomials
belong to ∆2(Yσ) for some σ ≥ 0, so that Yσ ⊆ O(r, k, c, Ys). (We know by
experience from other shape preserving approximation, that it is in these neigh-
borhoods of the points of change of convexity, where it is the hardest to fulfill
the requirements.)

There are two main ingredients in the proofs of positive results. First one
establishes the existence of piecewise polynomials which are both nearly coconvex
with f and sufficiently close to it, and second, one should show that such piece-
wise polynomials may be well approximated by polynomials which are coconvex
with them, that is, polynomials that change their convexity exactly where the
piecewise polynomial does. The latter was the main contents of our recent paper
[7]. Thus we concentrate here on establishing the former and on drawing the final
conclusions from having obtained the two needed ingredients.

We will first construct continuous piecewise polynomials on the Cheby-
shev partition, that are nearly coconvex with f ∈ ∆2(Ys), and approximate it well.
Namely, given n ∈ N, n > 1, we set xj := xj,n := cos (jπ/n), j = 0, . . . , n, the
Chebyshev partition of [−1, 1], and we denote Ij := Ij,n := [xj , xj−1], j = 1, . . . , n.
Let Σk,n be the collection of all continuous piecewise polynomials of degree k−1,
on the Chebyshev partition, that is, if S ∈ Σk,n, then

S|Ij
= pj, j = 1, . . . , n,

where pj ∈ Πk−1, the space of polynomials of degree ≤ k − 1, and

pj(xj) = pj+1(xj), j = 1, . . . , n − 1.

As alluded to above, we will construct an S ∈ ∆2(Yσ), so that Yσ ⊆ O(r, k, c, Ys).
In order to state the following result, recently proved by the authors [7], we need
more notation.

Given Yσ ∈
∞
⋃

µ=0
Yµ, let

Oi := Oi,n(Yσ) := (xj+1, xj−2), if yi ∈ [xj , xj−1), 1 ≤ i ≤ σ,

where xn+1 := −1, x−1 := 1, and denote

O := O(n, Yσ) :=
σ
⋃

i=1

Oi, O(n, ∅) := ∅.
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Finally, we write j ∈ H = H(n, Yσ), if Ij∩O = ∅. We denote by Σk,n(Yσ) ⊆ Σk,n,
the subset of those piecewise polynomials for which

pj ≡ pj+1, whenever both j, (j + 1) /∈ H.

Theorem LS. For every k ∈ N and σ ∈ N0 there are constants c =
c(k, σ) and c∗ = c∗(k, σ), such that if n ∈ N and Yσ ∈ Yσ, and S ∈ Σk,n(Yσ) ∩
∆2(Yσ), then there is a polynomial Pn ∈ ∆2(Yσ) of degree ≤ c∗n, satisfying

(1.1) ‖S − Pn‖ ≤ cωϕ
k (S, 1/n).

(For the definition of ωϕ
k (f, t), see Section 2.)

Thus, if we are able to construct a good piecewise polynomial approxi-
mation, of the above type, to f ∈ ∆2(Ys), (with an appropriate Yσ), then we will
have a good polynomial approximation to f .

We state the main results in Section 2, and after some auxiliary lemmas
in Section 3, we have the proof in Section 4.

In the sequel we will have absolute positive constants C, and we will have
positive constants c that depend only on s, k and r that are going to be indicated.
We will use the notation C and c for such constants which are of no significance
to us and may differ on different occurrences, even in the same line. However,
sometimes we need to keep track of the constants and then they will have indices
like C0, C1, . . . and c0, c1, . . ..

2. Nearly coconvex approximation. In addition to the spaces of
continuously differentiable functions we need two additional spaces. We will use
the norm

‖f‖ := esssup
x∈I

|f(x)|,

also for a function that is essentially bounded on I, and with this notation, let the
space W r, be the set of functions f ∈ C which possess an absolutely continuous
(r − 1)st derivative in I, such that ‖f (r)‖ < ∞. Also let the space Br, be the
set of functions f ∈ C which possess a locally absolutely continuous (r − 1)st
derivative in (−1, 1), such that ‖ϕrf (r)‖ < ∞, where ϕ(x) :=

√
1 − x2.

We sometimes wish to restrict ourselves to a subinterval [a, b] ⊆ I in which case
we will use the notation ‖ · ‖[a,b] for the above norms on the interval [a, b]. Given
f ∈ C, and k ∈ N, let

∆k
hf(x) :=

k
∑

i=0

(−1)k−i

(

k

i

)

f

(

x − k

2
h + ih

)

,
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be the symmetric difference of order k, defined for all x and h ≥ 0, such that
x ± k

2h ∈ [a, b]. The ordinary moduli of smoothness of f in [a, b], ωk(f, t; [a, b]),
are defined by

ωk(f, t; [a, b]) := sup
0≤h≤t

sup
x

|∆k
hf(x)|, t ≥ 0,

where the inner supremum is taken over all x such that x ± k
2h ∈ [a, b]. In

particular when [a, b] = I, we write ωk(f, t) := ωk(f, t; I). We also need the
Ditzian-Totik (DT-)moduli of smoothness [1] defined by

ωϕ
k (f, t) := sup

0≤h≤t

sup
x

|∆k
hϕ(x)f(x)|, t ≥ 0,

where the inner supremum is taken over all x such that x ± k
2hϕ(x) ∈ [−1, 1]. It

is well known that

ωϕ
k (f, t) ≤ c(k)ωk(f, t), t > 0,

and that

(2.1) ωϕ
k (f, t) ≤ c(k)ωϕ

k−1(f, t), t > 0, k > 1.

If f ∈ C
r, then

(2.2) ωk(f, t) ≤ c(k, r)trωk−r(f
(r), t), t > 0, k > r,

and

(2.3) ωϕ
k (f, t) ≤ c(k, r)trωϕ

k−r(f
(r), t), t > 0, k > r,

Also if f ∈ W r, then

ωr(f, t) ≤ c(r)tr‖f (r)‖, t > 0,

and if f ∈ Br, then

(2.4) ωϕ
r (f, t) ≤ c(r)tr‖ϕrf (r)‖, t > 0.

The main result of this paper is the approximation of f ∈ ∆2(Ys), s ≥ 0, by
polynomials which are nearly coconvex with it. We emphasize that these results
are new even for convex functions, namely, also for s = 0. We prove

Theorem 2.1. Let r = 0 and k ≤ 4, or r = 1 and k ≤ 3, or r ≥ 2 and
any k ≥ 1. For every f ∈ ∆2(Ys) ∩ C

r and each n ≥ k + r − 1, there exists a
polynomial pn ∈ Πn such that

(2.5) p′′n(x)
s

∏

i=1

(x − yi) ≥ 0, x ∈ I \ O(r, k, c∗, Ys),
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and

(2.6) ‖f − pn‖ ≤ c

nr
ωϕ

k (f (r), 1/n) ≤ c

nr
ωk(f

(r), 1/n),

where c∗ = c∗(k, r, s) and c = c(k, r, s). Furthermore, if f ∈ ∆2(Ys) ∩W r, r ≥ 1,
then there exists a pn ∈ Πn satisfying

(2.7) p′′n(x)
s

∏

i=1

(x − yi) ≥ 0, x ∈ I \ O(r, 0, c∗, Ys),

with c∗ = c∗(r, s), such that

(2.8) ‖f − pn‖ ≤ c

nr
‖f (r)‖,

where c = c(r, s).

Recently, Nissim and Yushchenko [9] proved that (2.6) is invalid for r = 1
and k > 3, and (which by (2.2) is implied by it), for r = 0 and k > 4, even if we

allow the constant c to depend on f , and we assume that p′′n(x)
s
∏

i=1
(x − yi) ≥ 0

except on some arbitrary sets of measures → 0, as n → ∞. Thus, in particular
there exists no c∗ even dependent on f such that we may exclude O(r, k, c∗, Ys)
and still have (2.6).

Thus, we can summarize the validity of nearly coconvex polynomial ap-
proximation in the following truth table.

r
...

...
...

...
...

... . ..

2 + + + + + + · · ·
1 + + + + − − · · ·
0 + + + + − · · ·

0 1 2 3 4 5 k

Fig. 1

where the symbol “+” in columns k ≥ 1 stands for the validity of (2.6) and
in column k = 0 it stands for the validity of (2.8) with constants above, and
the symbol “−” indicates that the above inequalities cannot be had even with
constants that depend on f .

3. Auxiliary lemmas. We begin with two lemmas that we need for
the case where f is merely continuous.



Nearly coconvex approximation 367

Lemma 3.1. Let h > 0 be arbitrary, and let P , P1, and P2, be three
cubic polynomials such that

(3.1) P (0) = P2(0), P ′(0) = P ′
2(0), P (h) = P1(h), and P ′(h) = P ′

1(h).

Then

(3.2) ‖P − P1‖[0,h] ≤ 4‖P1 − P2‖[0,h].

P r o o f. Straightforward computations show that (3.1) implies that

(3.3)

P (x) − P1(x) = (P2(0) − P1(0))

(

2
x3

h3
− 3

x2

h2
+ 1

)

+ h(P ′
2(0) − P ′

1(0))

(

x3

h3
− 2

x2

h2
+

x

h

)

.

By Markov’s inequality

|P ′
1(0) − P ′

2(0)| ≤
2

h
32‖P1 − P2‖[0,h],

and (3.2) readily follows by (3.3). �

Next we have

Lemma 3.2. Let the interval [a, b] be partitioned into

T : a =: a13 < a12 < · · · < a1 < a0 := b.

Denote Ji := [ai, ai−1], 1 ≤ i ≤ 13, and J := [a12, a1], and set

(3.4) Λ :=
b − a

min
1≤i≤13

|Ji|
.

Let S be a continuous piecewise cubic on the above partition, set S|Ji
=: Pi and

assume that

(3.5) ‖Pi − Pj‖[a,b] ≤ 1, 1 ≤ i, j ≤ 13.

Suppose that S does not change convexity in [a3, a0], and in [a13, a10]. Then
there is a collection Y ∗ ⊂ [a11, a3], of at most three points (including the possibil-
ity of none), and a continuous piecewise cubic polynomial S∗ ∈ Σ4,13([a, b], T, Y ∗)
(where the latter is the set of piecewise cubic polynomials defined as in the intro-
duction, but for the partition T of the interval [a, b]), satisfying

S∗(x) = Pi(x), x ∈ Ji, i = 1, 13,
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such that

(3.6) ‖S∗ − S‖[a,b] ≤ CΛ4.

P r o o f. Without loss of generality assume that S is convex in [a3, a0].
Let P be the cubic polynomial satisfying

P (a1) = P1(a1), P ′(a1) = P ′
1(a1), P (a12) = P13(a12), and P ′(a12) = P ′

13(a12).

Clearly, P ′′ is a linear function. Suppose first that S is convex in [a13, a10]. If
P ′′ ≥ 0 in [a12, a1], then we put Y ∗ = ∅, and define

(3.7) S∗(x) :=











P13(x), a13 ≤ x ≤ a12

P (x), a12 < x < a1

P1(x), a1 ≤ x ≤ a0.

Then (3.6) follows from (3.2) and (3.5).
Otherwise, either P ′′(x)P ′′

1 (x) ≤ 0 for some x ∈ [a2, a1], or P ′′(x)P ′′
12(x) ≤

0 for some x ∈ [a12, a11]. In any case we conclude that either P ′′(x)P ′′
1 (x) ≤ 0

in [a1, a0], or P ′′(x)P ′′
13(x) ≤ 0 in [a13, a12]. Set i0 = 1 in the former case, and

i0 = 13 in the latter. Then by Markov’s inequality,

(3.8)

‖P ′′‖Ji0
≤ ‖P ′′ − P ′′

i0
‖Ji0

≤ 2Λ‖P ′′ − P ′′
i0
‖J

≤ CΛ

|J |2 ‖P − Pi0‖J

≤ CΛ

|J |2 ,

where for the last inequality we have applied Lemma 3.1 and (3.5). Finally, (3.8)
implies

(3.9) ‖P ′′‖J ≤ CΛ2

|J |2 .

Let

(3.10) s2(x) =











α, x ∈ [a9, a8],

β, x ∈ [a5, a4],

0, elsewhere in [a12, a1],

where α and β are selected so that the piecewise polynomial

(3.11) S2(x) := P (a12) + P ′(a12)(x − a12) +

∫ x

a12

(x − u)s2(u)du,
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satisfies S2(a1) = P (a1) and S′
2(a1) = P ′(a1). It follows by (3.9) that

(3.12)

∣

∣

∣

∣

∫ a1

a12

(a1 − u)s2(u) du

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ a1

a12

(a1 − u)P ′′(u) du

∣

∣

∣

∣

≤ CΛ2,

and

(3.13)

∣

∣

∣

∣

∫ a1

a12

s2(u) du

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ a1

a12

P ′′(u) du

∣

∣

∣

∣

≤ CΛ2

|J | .

Now, (3.12) and (3.13) imply that

|α|, |β| ≤ CΛ4

|J |2 ,

which in turn yields

(3.14) ‖S2 − P‖J ≤ CΛ4.

By virtue of Lemma 3.1 and (3.5)

‖P − S‖J ≤ C,

which combined with (3.14) yields

(3.15) ‖S2 − S‖J ≤ CΛ4.

Hence, letting

(3.16) S∗(x) :=











P13(x), a13 ≤ x ≤ a12

S2(x), a12 < x < a1

P1(x), a1 ≤ x ≤ a0,

we obtain (3.6) from (3.15). Finally, depending on the signs of α and β, we take
Y ∗ ⊆ {a11, a7, a3} (either two or none), and observe that S∗ ∈ Σ4,13([a, b], T, Y ∗),
namely, that S∗ is a single polynomial in the required intervals about the points
which are candidates for Y ∗, that is, in [a12, a9], in [a8, a5], and in [a4, a1].

If, on the other hand, S is concave in [a13, a10], then suppose first that
P ′′(a11) < 0 and P ′′(a2) > 0. We recall that P ′′ is linear, thus we may take S∗

as in (3.7) and Y ∗ := {y∗}, y∗ being the unique point where P ′′(y∗) = 0. Again,
evidently, S∗ ∈ Σ4,13([a, b], T, Y ∗), and (3.6) follows from (3.2).

Otherwise, either P ′′(x)S′′(x) ≤ 0, for x in [a3, a2] (this happens when
P ′′(a11) < 0 and P ′′(a2) ≤ 0), or P ′′(x)S′′(x) ≤ 0, for x in [a11, a10] (which occurs
when P ′′(a11) ≥ 0 and P ′′(a2) > 0), or both are valid in [a2, a1] and in [a12, a11],
respectively (as is the case when P ′′(a11) ≥ 0 and P ′′(a2) ≤ 0). We conclude as
above, that (3.8) is valid for at least one i0 among {2, 3, 11, 12}. Hence we proceed
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with the definition of s2 and S2 as in (3.10) and (3.11), respectively. We define S∗

by (3.16) and conclude that (3.6) holds, and that S∗ ∈ Σ4,13([a, b], T, Y ∗), where
Y ∗ ⊆ {a11, a7, a3} is taken depending on the signs of α and β, this time we need
either all three points or one. This completes the proof. �

If f is twice differentiable we prove

Lemma 3.3. Let k ≥ 4 and 0 < h1, h2 ≤ h, and let f ∈ C2[−5h, 5h],
be such that f is convex in [5h − h1, 5h], and f is either convex or concave in
[−5h,−5h+h2]. Then there is a polynomial Pk+1 coconvex with f in [−5h,−5h+
h2] and in [5h − h1, 5h], such that

(3.17)
Pk+1(−5h) = f(−5h), Pk+1(5h) = f(5h),

P ′
k+1(−5h) = f ′(−5h), P ′

k+1(5h) = f ′(5h),

and

(3.18) ‖f − Pk+1‖[−5h,5h] ≤ ch2ωk(f
′′, h; [−5h, 5h]),

where c = c(k).

P r o o f. Denote by Lk−1 the Lagrange polynomial, that interpolates f ′′

at k equidistant points in [−5h, 5h], including the endpoints. Then we have by
Whitney’s theorem

(3.19) ‖f ′′ − Lk−1‖[−5h,5h] ≤ cωk(f
′′, h; [−5h, 5h]) =: c∗ω.

Hence, the polynomial

pk+1(x) := f(−5h) + f ′(−5h)(x + 5h) +

∫ x

−5h

(x − t)Lk−1(t) dt,

satisfies

(3.20) |f(x) − pk+1(x)| ≤ 10h

∫ 5h

−5h

|f ′′(t) − Lk−1(t)| dt ≤ 100c∗h2ω,

and

(3.21) |f ′(x) − p′k+1(x)| ≤
∫ 5h

−5h

|f ′′(t) − Lk−1(t)| dt ≤ 10c∗hω.

Thus, we set

P ∗
k+1(x) := pk+1(x) +

[

f ′(5h) − p′k+1(5h)

(10h)2
(x − 5h)

−2
f(5h) − pk+1(5h)

(10h)3
(x − 10h)

]

(x + 5h)2,
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and readily see that (3.17) is satisfied with Pk+1 replaced by P ∗
k+1. Also (3.18)

with Pk+1 replaced by P ∗
k+1, follows by virtue of (3.20) and (3.21). Finally let

q(x) :=















c∗ω

90h2
(x2 − (5h)2)2, if f is convex in [−5h,−5h + h2]

c∗ω

80h3
x(x2 − (5h)2)2, otherwise.

Then at worst q is a quintic polynomial (accounting for the restriction k ≥ 4),
and it is readily seen that

‖q‖[−5h,5h] ≤ ch2ω,

and

q(−5h) = q(5h) = q′(−5h) = q′(5h) = 0.

Moreover, straightforward computations show that

|q′′(x)| > c∗ω, if 4h < x < 5h, and if − 5h < x < −4h,

while q′′ is always positive in (4h, 5h), and it is positive or negative in (−5h,−4h),
respectively, if f is convex or concave in [−5h,−5h + h2]. Therefore, if we define

Pk+1(x) := P ∗
k+1(x) + q(x),

then it readily follows that Pk+1 satisfies (3.17) and (3.18), and it is coconvex
with f in [−5h,−5h + h2] and in [5h − h1, 5h]. �

Finally we need a result from [8, Corollary 2.4], namely,

Lemma LS. Let k ≥ 1 and let f ∈ C
2[a, a + h], h > 0, be convex.

Then there exists a convex polynomial P ∈ Πk+1 satisfying P (a) = f(a) and
P (a + h) = f(a + h), and either P ′(a) = f ′(a) and P ′(a + h) ≤ f ′(a + h), or
P ′(a) ≥ f ′(a) and P ′(a + h) = f ′(a + h), such that

‖f − P‖[a,a+h] ≤ ch2ωk(f
′′, h; [a, a + h]),

where c = c(k).

4. Proof of the main results. The proof of Theorem 2.1 will be
divided into two parts. First we will prove it for r = 0 and k = 4, which in turn
implies, by virtue of (2.3), the validity of (2.6) for all cases r = 0 and k ≤ 4, and
r = 1 and k ≤ 3, and by (2.4), also the validity of (2.8) for r = 1 and r = 2,
except for the justification for the smaller excluded set O(2, 0, c∗, Ys). We will
explain this improvement at the end of the first part of the proof. Then we will
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prove the theorem for r = 2 and all k ≥ 4, which again by virtue of (2.3), implies
the validity of (2.6) for all r ≥ 2 and all k ≥ 1, and the validity of (2.8) for all
r > 2.

For a finite number of n’s, n ≤ c, the proof readily follows by taking
the Lagrange polynomial, interpolating f at k + r equidistant points in [−1, 1],
including the endpoints ±1. So we fix n > 100(k + r)(s + 1). For any integer
τ ≥ 0 denote

O
(τ)
i := O

(τ)
i (Ys) := (xj+τ , xj−1−τ ), if yi ∈ [xj , xj−1),

(where xj := 1, if j < 0, xj := −1, if j > n), and let

O(τ) :=

s
⋃

i=1

O
(τ)
i .

Denote by

G(τ)
ν =: (xMτ,ν , xmτ,ν ), ν = 1, . . . , lτ ≤ s,

the connected components of O(τ), enumerated so that mτ,ν+1 ≥ Mτ,ν . Note that

G
(τ)
ν 1 < ν < lτ , contains at least 2τ + 1 consecutive intervals (xj , xj−1); and the

same holds for G
(τ)
1 and G

(τ)
lτ

, if x1 /∈ G
(τ)
1 and if xn−1 /∈ G

(τ)
lτ

, respectively. On

the other hand the total number of intervals in G
(τ)
ν , 1 ≤ ν ≤ lτ is less than

(2τ + 1)s. Hence,

(4.1) |G(τ)
ν | ≤ c min

mτ,ν+1≤j≤Mτ,ν

|Ij| < cρn(x), x ∈ G(τ)
ν .

P r o o f o f T h e o r em 2.1. (the case r = 0, k = 4) We are given
Ys ∈ Ys and f ∈ ∆2(Ys). In order to apply Theorem LS it suffices to find
a Yσ ∈ Yσ, σ ≤ c(s + 1), such that Yσ ⊂ O(6) ∪ [−1, xn−2] ∪ [x2, 1], and an
S∗ ∈ Σ4,n(Yσ) ∩ ∆2(Yσ), satisfying

‖f − S∗‖ ≤ cωϕ
4

(

f,
1

n

)

.

A closer look at the proof of Theorem 2 in [10] reveals that there is an S ∈ Σ4,n,

which is coconvex with f in [−1, 1] \ (O(2) ∪ [−1, xn−2] ∪ [x2, 1]), and such that

(4.2) ‖f − S‖ ≤ cωϕ
4

(

f,
1

n

)

.

Note that this in turn implies

(4.3) ωϕ
4

(

S,
1

n

)

≤ cωϕ
4

(

f,
1

n

)

.
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We define

S∗(x) := S(x), x ∈ [−1, 1] \ (O(6) ∪ [−1, xn−2] ∪ [x2, 1]).

Denote

pj := S|Ij
, j = 1, . . . n.

By [6, Lemma 9]

(4.4) ‖pi − pj‖[xi,xj ] ≤ cωϕ
4

(

S,
1

n

)

≤ cωϕ
4

(

f,
1

n

)

1 ≤ i < j ≤ i + 13s.

Let 1 < ν < l6. In order to apply Lemma 3.2 for constructing S∗ in G
(6)
ν ,

we write a13,ν := xM6,ν
, a12,ν := xM6,ν−1, . . . , a8,ν := xM6,ν−5, a0,ν := xm6,ν

,
a1,ν := xm6,ν+1, . . . , a5,ν := xm6,ν+5, and put aµ,ν , µ = 6, 7 to be any pair
of xj’s m6,ν + 5 < j < M6,ν − 5, in the correct order. This is a subset of
the Chebyshev nodes so that we may regard the piecewise polynomial that we
construct by Lemma 3.2 as a proper one for our needs. Therefore we conclude

by Lemma 3.2 that for each 1 < ν < l6, we have an S∗
ν ∈ Σ4,13(G

(6)
ν , Tν , Y ∗

ν ),
where Tν := {aµ,ν}13

µ=0, and Y ∗
ν ⊆ [xM6,ν−2, xm6,ν+3], containing at most three

points, such that S∗
ν |Im6,ν+1

= pm6,ν+1, and S∗
ν |IM6,ν

= pM6,ν
. By virtue of (4.1)

the constant Λ in (3.4), is bounded by a constant c = c(s), and combining with
(4.3) we obtain,

(4.5) ‖S∗ − S‖
G

(6)
ν

≤ cωϕ
4

(

f,
1

n

)

.

For the interval G
(6)
1 we have two possibilities. If x2 /∈ G

(6)
1 , then we define S∗

on G
(6)
1 by the previous construction, and we are left with the need to define S∗

in the interval [x2, 1]. Observe that in this case S is convex in I3 (since in that
interval f is convex and they are coconvex), that is, p3 is convex in I3, and being
a cubic polynomial it has at most one inflection point in [x2, 1]. So we put

S∗ := p3, x ∈ [x2, 1].

Then (4.2) through (4.4) imply

(4.6) ‖f − S∗‖[x2,1] ≤ cωϕ
4

(

f,
1

n

)

.

Otherwise, x2 ∈ G
(6)
1 , whence M6,1 ≤ 13s + 1. Then S is coconvex with f in

IM6,1 . Again, pM6,1 has at most one inflection point in [xM6,1−1, 1]. As above we
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put

S∗ := pM6,1 , x ∈ [xM6,1 , 1],

and get

(4.7) ‖f − S∗‖[xM6,1,1]
≤ cωϕ

4

(

f,
1

n

)

.

The component G
(6)
l6

is treated similarly.

Altogether we have Yσ ⊂ O(6) ∪ [−1, xn−2] ∪ [x2, 1] ⊂ O(7) ∪ [−1, xn−2] ∪
[x2, 1], with σ ≤ 3l6 +2 ≤ 3s+2 points, and by our construction S∗ ∈ Σ4,n(Yσ)∩
∆2(Yσ). Hence, by Theorem LS there exists a polynomial of degree ≤ c∗n for
which (2.6) with r = 0 and k = 4, holds.

What remains in order to complete this part of the proof is to justify
the smaller excluded set in the case r = 0, k ≤ 3, and in turn, when f ∈ W r,

1 ≤ r ≤ 3. In these cases we show that if x1 /∈ G
(7)
1 , then we can guarantee

the correct approximation order and no inflection points in [x2, 1]. (The same
argument holds at the other endpoint.) We observe that in this situation we are

guaranteed that S∗ constructed above, is convex in I3, (evidently if x2 /∈ G
(7)
1 ,

and by Lemma 3.2 if x2 ∈ G
(7)
1 ). We are going to redefine S∗ in [x2, 1] as the

quadratic Taylor polynomial T2 of S∗ about x2−. It follows that the resulting
piecewise polynomial is coconvex with f in [x3, 1], and has no inflection points in
that interval. We have

|T2(x) − S∗(x)| ≤ cω3(S
∗, |I3|; I3), x ∈ I3,

which together with (4.3) through (4.5) yields

|T2(x) − f(x)| ≤ cωϕ
3

(

f,
1

n

)

, x ∈ [x3, 1].

Hence, (2.6) is satisfied for r = 0 and k ≤ 3, and (2.8) is satisfied for r = 1, 2, 3. �

P r o o f o f Th e o r e m 2.1. (the case r = 2, k ≥ 4) We need the notion
of the length of an interval J := [a, b] ⊆ I, relative to its position in I, namely,

(4.8) /J/ :=
|J |

ϕ((a + b)/2)
,

where |J | := b − a(see [6]). It follows from [6, (2.21)] that

(4.9) ωk(f, |J |;J) ≤ ωϕ
k (f, /J/).

In particular,

ωk(f
′′, |Ij |; Ij) ≤ cωϕ

k (f ′′, 1/n).
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By Lemma LS there is an S ∈ Σk+2,n, coconvex with f in (−1, 1)\O(0), and such
that

(4.10) ‖f − S‖ ≤ cn−2ωϕ
k

(

f ′′,
1

n

)

.

(In the connected components of O(0), we merely take the Lagrange interpolating
polynomial on k equidistant points including the endpoints of this component.)
As in the previous proof we denote

pj,k+1 := S|Ij
, j = 1, . . . , n,

and we put

S∗(x) := S(x), x ∈ (−1, 1) \ O(10).

Now we observe, that if x1 /∈ G
(10)
ν and xn−1 /∈ G

(10)
ν , then M10,ν − m10,ν ≥ 21,

whence

10|IM10,ν
| ≤ |G(10)

ν |, and 10|Im10,ν+1| ≤ |G(10)
ν |.

Thus, if we denote h :=
1

10
|G(10)

ν |, then

h2 := xM10,ν−1 − xM10,ν
and h1 := xm10,ν

− xm10,ν+1 ≤ h,

so that we may apply Lemma 3.3 with these h, h1 and h2. We obtain a polynomial
Pν,k+1 which is coconvex with f in both (xM10,ν

, xM10,ν−1) and (xm10,ν+1, xm10,ν
),

and such that

(4.11)
Pν,k+1(xM10,ν

) = f(xM10,ν
), Pν,k+1(xm10,ν

) = f(xm10,ν
),

P ′
ν,k+1(xM10,ν

) = f ′(xM10,ν
), P ′

ν,k+1(xm10,ν
) = f ′(xm10,ν

),

and

(4.12) ‖f − Pν,k+1‖G
(10)
ν

≤ c|G(10)
ν |2ωk(f

′′, |G(10)
ν |;G(10)

ν ),

By virtue of (4.1) and (4.9), (4.12) yields

(4.13) ‖f − Pν,k+1‖G
(10)
ν

≤ cn−2ωϕ
k (f, 1/n).

If xm10,1 = 1, then we have M10,1 ≤ 21s. Hence, we take P1,k+1(x) := pM10,1(x),
x ∈ [xM10,1 , 1], and obtain (4.12) and whence (4.13). The case xM10,l

= −1 is
similar.

Thus we define

S∗
|Gν

:= Pν,k+1, 1 ≤ ν ≤ l10.
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Altogether we have Yσ ⊂ O(10) with σ ≤ (k + 1)l10 ≤ (k + 1)s points. By (4.10),
(4.11) and (4.13) S∗ ∈ Σk+2,n(Yσ) ∩ ∆2(Yσ), and is such that

(4.14) ‖f − S∗‖ ≤ cn−2ωϕ
k (f ′′, 1/n).

Hence

ωϕ
k+2(S

∗, 1/n) ≤ cn−2ωϕ
k (f ′′, 1/n).

We now apply Theorem LS together with (4.14) to obtain a polynomial Pn which
is coconvex with S and therefore nearly coconvex with f , such that

(4.15) ‖f − Pn‖ ≤ ‖f − S∗‖ + ‖S∗ − Pn‖ ≤ cn−2ωϕ
k (f ′′, 1/n), k ≥ 4.

This completes the proof. �

5. Concluding remarks. We can extend the results of Theorem 2.1
to the space Br (recall the definition from the beginning of Section 2).

Theorem 5.1. If f ∈ ∆2(Ys) ∩ Br, then for each n ≥ r − 1 there exists
a pn ∈ Πn satisfying

(5.1) p′′n(x)

s
∏

i=1

(x − yi) ≥ 0, x ∈ I \
{

O(r, 0, c∗, Ys), if r 6= 4

O(0, 4, c∗, Ys), if r = 4,

such that

(5.2) ‖f − pn‖ ≤ c

nr
‖ϕrf (r)‖,

where c = c(r, s) and c∗ = c∗(r, s).

P r o o f. The proof for r ≤ 4 follows immediately by Theorem 2.1 cases
r = 0, k ≤ 4. Note that the case r = 0, k = 4 accounts for the bigger excluded
set in (5.1). For r > 4 Theorem 5.1 follows from the following result. �

Theorem 5.2. Let r ≥ 2 and k ≥ 1. For every f ∈ ∆2(Ys)∩C
r(−1, 1)∩

Br and each n ≥ k + r − 1, there exists a polynomial pn ∈ Πn such that

(5.3) p′′n(x)

s
∏

i=1

(x − yi) ≥ 0, x ∈ I \
{

O(0, 4, c∗, Ys), if 2 ≤ r ≤ 4

O(r, k, c∗, Ys), if r > 4

and

(5.4) ‖f − pn‖ ≤ c

nr
ωϕ

k,r(f
(r), 1/n),

where c∗ = c∗(k, r, s), c = c(k, r, s).
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See [6] for the definition of the moduli of smoothness ωϕ
k,r(f

(r), t). They
provide an extra fine-tuning of the D–T moduli near the endpoints ±1. In par-
ticular ωϕ

k,0(f, t) = ωϕ
k (f, t), and for a function f ∈ Br we have the inequality

(see [6, (2.5)]),

(5.5) ωϕ
k,r−k(f

(r−k), t) ≤ ctr‖ϕrf (r)‖, k < r.

Clearly Theorem 5.1 for r > 4 follows immediately from Theorem 5.2 and (5.5).
P r o o f o f T h e o r em 5.2. One proves this Theorem 5.2 exactly in the

same manner, as Theorem 2.1 for r ≥ 2. So we will not give details, except that
we have to take care separately of the intervals I1 and In when r ≤ 4. This is due
to the fact that if r ≤ 4, then f ′′ may be unbounded on these two intervals, and
we may not apply Lemma LS there. Thus we have included these two intervals
in the excluded set. �

Remark. Actually, Theorem 5.2 holds with the smaller excluded set
O(r, k, c∗, Ys) also when r = 2, k = 1. However, in all other cases, 2 ≤ r ≤ 4, it
is in general impossible to remove the end intervals from the excluded set. The
same is true also for Theorem 5.1, r = 4, and for Theorem 2.1, r = 0, k = 4, and
r = 1, k = 3. One can prove that following the arguments by Kopotun [2].
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