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CHARACTERIZATIONS OF THE SOLUTION SETS OF
GENERALIZED CONVEX MINIMIZATION PROBLEMS
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Abstract. In this paper we obtain some simple characterizations of the
solution sets of a pseudoconvex program and a variational inequality. Similar
characterizations of the solution set of a quasiconvex quadratic program are
derived. Applications of these characterizations are given.

1. Introduction. Throughout this work R
n is the real Euclidean vector

space, X ⊂ R
n is an open set, and S ⊂ X is convex. The purpose of the paper is

to give characterizations of the solution set of the nonlinear programming problem

(P) min f(x) subject to x ∈ S.

Most of them are extensions of the characterizations of the solution set of a
pseudolinear differentiable program due to Jeyakumar and Yang [5]. Similar char-
acterizations of convex programs are derived in the earlier work of Mangasarian
[9].
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Characterizations of the solutions sets are useful for understanding the
behavior of solution methods for programs that have multiple optimal solutions.

The paper is organized as follows. In Section 3 we consider the case
when f is pseudoconvex. The pseudoconvex functions don’t satisfy the prop-
erties of pseudolinear functions that Jeyakumar and Yang use, however, similar
characterizations can be derived. We show that in the common case these charac-
terizations cannot be extended to quasiconvex program. In Section 4 we consider
a quasiconvex quadratic program. We derive characterizations of the solution set
of this program and give two applications. In Section 5 we apply the obtained
characterizations to study the solution set of a variational inequality.

2. Preliminaries. We denote the set of the reals by R, and R is the
extended real line. Consider a given function f : X → R. Suppose that h(x, u)
is a generalized directional derivative of f at the point x in the direction u. The
function h(x, u) may be considered as a bifunction h : X × R

n → R.

Recall the following well-known concepts.

The point x ∈ X is said to be stationary with respect to h if h(x, u) ≥ 0
for all u ∈ R

n.

The function f : X → R is said to be quasiconvex on S if

f(x + t(y − x)) ≤ max {f(x), f(y)}, whenever x, y ∈ S and 0 ≤ t ≤ 1.

The following cone is connected to the quasiconvex function f at each
fixed point x ∈ S:

N (x) = {ξ ∈ R
n | y ∈ S, f(y) ≤ f(x) imply 〈ξ, y − x〉 ≤ 0}.

Indeed, this is the normal cone to the sublevel set of f(x). Here by 〈·, ·〉 we have
denoted the usual scalar product in R

n.

The function f is said to be pseudoconvex with respect to h(x, u) on S if

x, y ∈ S, f(y) < f(x) imply h(x, y − x) < 0.

The standard notion of convex subdifferential may also be applied to our
directional derivative h. Each continuous linear functional ξ over R

n satisfying
〈ξ, u〉 ≤ h(x, u) for all u ∈ R

n is called a subgradient of f with respect to h at
x. The set of all subgradients ∂f(x) at x is called the subdifferential of f at x.
∂f(x) is (possibly empty) closed convex subset of R

n.

The function f is said to be radially lower semicontinuous on the convex
set X ⊂ R

n, if the function ϕ(t) = f(a + t(b − a)) is lower semicontinuous on
[0, 1] for every a, b ∈ X.
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Throughout we assume that for each x, y ∈ S and u ∈ R
n the generalized

directional derivative satisfies some of the following properties:

1. h(x, u) < ∞.

2. If f is quasiconvex on S, then f(y) ≤ f(x) implies h(x, y − x) ≤ 0.

3 (Fermat rule). If f(x) = min {f(x) | x ∈ S}, then h(x, x − x) ≥ 0.

4. The set ∂f(x) is nonempty.

5. h(x, u) considered as a function of u is the support function of ∂f(x),
and h(x, u) = max{〈ξ, u〉 | ξ ∈ ∂f(x)}.

6. If f is quasiconvex, then ∂f(x) ⊂ N (x).

Some examples of generalized directional derivatives h that satisfy the
considered properties are given in author’s work [4].

3. Characterizations of the solution set of a pseudoconvex

program. Consider the global minimization problem (P ). We give characteri-
zations of the solution set of the program (P ) in terms of its minimizer x.

Denote by S the solution set arg min {f(x) | x ∈ S}, and let it be
nonempty. Suppose that x is any fixed element of this set. Consider the following
notations of sets:

S̃ := {z ∈ S | h(z, x − z) = 0}, S̃1 := {z ∈ S | h(z, x − z) ≥ 0},

Ŝ := {z ∈ S | h(x, z − x) = 0}, S∗ := {z ∈ S | h(z, x − z) = h(x, z − x)},

S# := {z ∈ S | h(zλx, x − z) = 0 for all λ ∈ (0, 1]},

and S0 := {z ∈ S | h(zλx, x − z) = h(x, z − x) for all λ ∈ (0, 1]}.

Here we have denoted by zλx the sum zλx = x + λ(z − x).

Theorem 3.1. Assume that f : X → R is pseudoconvex on the convex
set S, and Properties 1, 2, 3, 4, 5 are satisfied. Let x be any fixed point of S.
Then

S = S# ∩ Ŝ = S̃ ∩ Ŝ = S̃ = S̃1 = S∗ = S0.

P r o o f. It is obvious that

S# ∩ Ŝ ⊂ S̃ ∩ Ŝ ⊂ S̃ ⊂ S̃1, S# ∩ Ŝ ⊂ S̃ ∩ Ŝ ⊂ S∗, S# ∩ Ŝ ⊂ S0 ⊂ S∗.
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We shall prove that S ⊂ S# ∩ Ŝ. Suppose that z is an arbitrary point of
S. By Property 4 the function f is quasiconvex on S [4, Proposition 5.1], and
consequently the solution set S is convex. Assume that λ is any number of the
interval (0, 1]. Then zλx ∈ S. It follows from Property 3 that h(zλx, x−zλx) ≥ 0
for all x ∈ S. Taking in the last inequality x = x, we get h(zλx, x− z) ≥ 0, since
h(x, u) is positively homogeneous function of u as a consequence of Property 5.
It follows from the equality f(x) = f(zλx), by Property 2, that

h(zλx, x − zλx) ≤ 0.(1)

Hence, h(zλx, x−z) = 0. According to Property 3, h(x, z−x) ≥ 0. By Property 2,
we obtain from the equality f(z) = f(x) that h(x, z−x) ≤ 0. Hence, h(x, z−x) =
0. Thus, z ∈ S# ∩ Ŝ.

To show the inclusion S̃1 ⊂ S, assume that z ∈ S̃1. Consequently, h(z, x−
z) ≥ 0. By pseudoconvexity, f(x) ≥ f(z), which implies that z ∈ S.

At last, we shall establish the inclusion S∗ ⊂ S̃1. Let z be arbitrary
point of S∗. Using Property 3, it follows from x ∈ S that h(x, z − x) ≥ 0. By
h(z, x − z) = h(x, z − x), we obtain that z ∈ S̃1. The proof is complete. �

Corollary 3.1. Suppose additionally that the function f is twice Frèchet
differentiable everywhere on X. Then

S = S# ∩ Ŝ ∩ {z ∈ S | 〈x − z,∇2f(zλx)(x − z)〉 = 0 ∀ λ ∈ [0, 1]}.

P r o o f. Let z ∈ S. By Theorem 3.1, 〈∇f(x + λ(z − x)), x − z〉 = 0,
and 〈∇f(x + (λ + µ)(z − x)), x − z〉 = 0 for all λ, µ such that λ ∈ [0, 1] and
λ + µ ∈ [0, 1], because of S = S# ∩ Ŝ. Thus, we conclude that

〈
∇f(x + λ(z − x) + µ(z − x)) −∇f(x + λ(z − x))

µ
, x − z〉 = 0.

By taking the limits, as µ → 0, we get that 〈x − z,∇2f(zλx)(x − z)〉 = 0 for all
λ ∈ [0, 1].

The remaining part of the proof is obvious. �

Theorem 3.2. Consider a radially lower semicontinuous function f :
X → R that is pseudoconvex on the convex set S, and Properties 1, 2, 4 are
satisfied. Let x be any fixed point of S. Then S = S

#
1 , where

S
#
1 = {z ∈ S | 〈ξ, x − z〉 = 0, ∀ ξ ∈ ∂f(zλx), ∀ λ ∈ (0, 1)}.

P r o o f. We shall prove the inclusion S ⊂ S
#
1 . Assume that z ∈ S

and λ ∈ (0, 1). Since f(x) = f(zλx), by Properties 4, 2, inequality (1) holds.
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Hence, 〈ξ, x − z〉 ≤ 0 for all ξ ∈ ∂f(zλx). Since f(z) = f(zλx), by Property 2,

h(zλx, z− zλx) ≤ 0. Therefore, 〈ξ, x− z〉 ≥ 0 for all ξ ∈ ∂f(zλx). Thus, z ∈ S
#
1 .

To show the reverse inclusion assume that there exists z ∈ S
#
1 \ S. As

a consequence we have that f(x) < f(z). Using that f is radially lower semi-
continuous, we obtain that there exists λ ∈ (0, 1) such that f(x) < f(zλx). By
pseudoconvexity, 〈ξ, x − z〉 < 0 for all ξ ∈ ∂f(zλx), which is a contradiction. �

It is well-known that each pseudoconvex function, which satisfies Prop-
erty 4, is quasiconvex. The following lemma from author’s work [4, Theorem
5.1] is a necessary and sufficient condition for pseudoconvexity of a quasiconvex
function. It is a generalization of the well-known property of the differentiable
pseudoconvex functions due to Crouzeix and Ferland [3].

Lemma 3.1. Let f be a quasiconvex and upper semicontinuous function
defined on the open convex set S ⊂ R

n. Assume that the derivative h(x, u)
satisfies Properties 3, 4, 5 and 6. Then f is pseudoconvex on S if and only if the
set of global minimizers coincides with the set of stationary points.

The following question arises from Theorem 3.1. Are there some class
of functions, which include the pseudoconvex ones, and such that they satisfy
considered characterizations? The following two theorems are connected to this
question.

Theorem 3.3. Let S ⊂ R
n be convex and open. Consider the up-

per semicontinuous quasiconvex function f , which is defined on S, and satisfies
Properties 1, 2, 3, 4, 5, and 6. Assume that x is any fixed element from S. Then
the following claims are equivalent:

a) f is pseudoconvex on S;

b) S = S̃;

c) S = S̃1.

P r o o f. The implication a) ⇒ b) follows from Theorem 3.1.
Let’s prove the implication b) ⇒ a). Assume that S = S̃ and z ∈ S

is any stationary point. Therefore, h(z, u) ≥ 0 for all u ∈ R
n. In particular,

h(z, x − z) ≥ 0. Since x ∈ S, then f(x) ≤ f(z). Therefore, by Property 2,
h(z, x − z) ≤ 0. Hence, z ∈ S̃. According to assumption b), z is a global
minimizer. Property 3 implies that each global minimizer is a stationary point.
Thus, by Lemma 3.1, f is pseudoconvex.

The proof of the claim c) ⇐⇒ a) is similar. �

Theorem 3.4. Let S ⊂ R
n be convex and open. Consider the Frèchet

differentiable quasiconvex function f , which is defined on S. Assume that x is
any fixed element from S. Then the following claims are equivalent:
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a) f is pseudoconvex on S;

b) S = S̃ ∩ Ŝ;

c) S = S∗.

P r o o f. The implication a) ⇒ b) follows from Theorem 3.1. To show the
implication b) ⇒ a), suppose that ∇f(z) = 0. It follows from inclusion x ∈ S

that ∇f(x) = 0. Therefore, z ∈ S̃ ∩ Ŝ. Then, by Lemma 3.1, f is pseudoconvex.

The proof of the claim a) ⇐⇒ c) is similar. �

4. Characterizations of the solution set of a quasiconvex
quadratic program. Consider the special case when f is a quadratic function,
that is

f(x) =
1

2
〈x,Qx〉 + 〈c, x〉,

where Q is a constant symmetric n × n matrix, and c a constant n-dimensional
vector. If S ≡ R

n, then the quadratic function is quasiconvex if and only if it
is convex (see, for example [10, Theorem 9.2.23]), but when S 6≡ R

n, Martos
has shown in his earlier papers [11, 12] that the quasiconvex or pseudoconvex
quadratic functions may not be convex. When S coincide with the nonnegative
orthant he has given necessary and sufficient conditions for pseudoconvexity and
quasiconvexity of quadratic nonconvex functions.

Example 4.1. The following example of Arrow and Enthoven [1] shows
that a quasiconvex quadratic function may not be pseudoconvex. Consider the
function of two variables f(x1, x2) = −x1 · x2. It is quasiconvex, but fails to be
pseudoconvex on the set S = {(x1, x2) ∈ R

2 | x1 ≥ 0, x2 ≥ 0}, since it is not
pseudoconvex at the origin.

The considered characterizations may be extended to the quasiconvex
quadratic case.

Consider the sets

Ŝ = {z ∈ S | 〈∇f(x), z − x〉 = 0} = {z ∈ S | 〈Qx + c, z − x〉 = 0},

S̃ = {z ∈ S | 〈∇f(z), x − z〉 = 0} = {z ∈ S | 〈Qz + c, x − z〉 = 0}.

Theorem 4.1. Let f(x) = 1
2
〈x,Qx〉 + 〈c, x〉 be a quasiconvex quadratic

function, defined on the open set X with a symmetric matrix Q, and S ⊂ X be
convex. Suppose that x is an arbitrary fixed element of S. Then

S = S# ∩ Ŝ = S̃ ∩ Ŝ = S∗ = S0.
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P r o o f. It is obvious that S# ∩ Ŝ ⊂ S̃ ∩ Ŝ ⊂ S∗.

We shall prove that S ⊂ S# ∩ Ŝ. Let z ∈ S be arbitrary. Since the
solution set of a quasiconvex program is convex, then f(z) = f(x) = f(zλx) for
all λ ∈ (0, 1]. By quasiconvexity, 〈∇f(x), z−x〉 ≤ 0, and 〈∇f(zλx), x− zλx〉 ≤ 0
for all λ ∈ (0, 1]. Using the convexity of S we get by the Fermat rule that
〈∇f(x), z−x〉 ≥ 0, and 〈∇f(zλx), x−zλx〉 ≥ 0 for all λ ∈ (0, 1]. Thus, z ∈ S#∩Ŝ.

To establish the inclusion S∗ ⊂ S, assume that z ∈ S∗, i.e.

〈Qz + c, x − z〉 = 〈Qx + c, z − x〉.(2)

Since Q is a symmetric matrix, then 〈Qx, z〉 = 〈Qz, x〉. Therefore, equality (2)
may be rewritten as f(x) = f(z). Hence, z ∈ S.

The equality S = S0 follows from the inclusions S# ∩ Ŝ ⊂ S0 ⊂ S∗. The
proof is complete. �

Corollary 4.1. Let Q be a constant symmetric n × n matrix, and c

a constant n-dimensional vector. Consider the quasiconvex quadratic function
f(x) = 1

2
〈x,Qx〉+〈c, x〉, which is defined on the open convex set S ⊂ R

n. Suppose
that S 6= ∅. Then f is pseudoconvex on S.

P r o o f. Let x be any fixed element from S. According to Theorem 4.1,
S = S̃ ∩ Ŝ. By Theorem 3.4, f is pseudoconvex. �

Remark 4.1. It follows from the characterization S = S̃ ∩ Ŝ that

〈z − x,Q(z − x)〉 = 0 for all z ∈ S,

and therefore, if x is a known point of S, then the set S \ {x} is independent of
c. It is obvious that S depends of c.

The following definition is well-known [13]: The set M ⊂ R
n is called

affine if

x + α(y − x) ∈ M for every x, y ∈ M and α ∈ R.

As a consequence of our characterizations we shall give a shorter proof of
the following result of Benson, Smith, Schochetman and Bean [2, Theorem 2.2].

Corollary 4.2. Assume that the quadratic function f(x) = 1
2
〈x,Qx〉 +

〈c, x〉, with a symmetric matrix Q, is convex, and S is affine. Then, S is an
affine set, too.

P r o o f. By Theorem 4.1, S = S̃ ∩ Ŝ. Let z1, z2 ∈ S, α ∈ R. Since S is
affine, z1 + α(z2 − z1) ∈ S. It is obvious that z1 + α(z2 − z1) ∈ Ŝ.
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Since S is convex, then 1
2
(z1 + z2) ∈ S. Therefore,

〈Q
z1 + z2

2
+ c, x −

z1 + z2

2
〉 = 0.

The last equality may be rewritten as

〈Qz1 + c, x − z1〉 + 〈Qz2 + c, x − z2〉 + 〈Qz1 + c, x − z2〉 + 〈Qz2 + c, x − z1〉 = 0.

By z1, z2 ∈ S̃, it follows from this equality that

〈Qz1 + c, x − z2〉 + 〈Qz2 + c, x − z1〉 = 0(3)

We shall show that z1 + α(z2 − z1) ∈ S̃. Using equality (3), we have

〈Q(z1 + α(z2 − z1)) + c, x − z1 − α(z2 − z1)〉 =

α2〈Qz2 + c, x − z2〉 + (1 − α)2〈Qz1 + c, x − z1〉+

α(1 − α)(〈Qz1 + c, x − z2〉 + 〈Qz2 + c, x − z1〉) = 0.

Consequently, S is affine. �

Remark 4.2. Since a quasiconvex quadratic function f(x) = 1
2
〈x,Qx〉+

〈c, x〉 with a symmetric matrix Q, defined on the whole space R
n, is always convex

[10, Theorem 9.2.23], then a quasiconvex quadratic function f(x) = 1
2
〈x,Qx〉 +

〈c, x〉 with a symmetric matrix Q, defined on affine set, is always convex, too.
The proof of this fact repeats the proof of Theorem 9.2.23 in Reference [10].

5. Characterizations of the solution set of a variational in-

equality. It is well-known that when the function f is pseudoconvex on the
convex set S ⊂ R

n and Frèchet differentiable, z ∈ S if and only if 〈∇f(z), x −
z〉 ≥ 0 for all x ∈ S. When the function f is Frèchet differentiable, ∇f is
pseudomonotone map if and only if f is pseudoconvex [6].

Let V ⊂ R
n and an operator F : V → R

n be given. The Standard
Variational Inequality Problem consists in finding y ∈ V such that

(SVI) 〈F (y), x − y〉 ≥ 0 for all x ∈ V.

Recall the following well-known concept [6]. The operator F : V → R
n is

called pseudomonotone, if

x, y ∈ V, 〈F (x), y − x〉 ≥ 0 imply 〈F (y), y − x〉 ≥ 0.(4)

Denote the solution set of (SVI) by V , and let x be any fixed element of
V . In consistency with our notations denote

V̂ := {z ∈ V | 〈F (x), z − x〉 = 0}, Ṽ := {z ∈ V | 〈F (z), x − z〉 = 0},
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V ∗ := {z ∈ V | 〈F (z), x − z〉 = 〈F (x), z − x〉},

V # := {z ∈ V | 〈F (zλx), x − z〉 = 0 for all λ ∈ [0, 1]}.

Theorem 5.1. If the operator F : V → R
n is pseudomonotone, and

x ∈ V is any fixed element of V , then

V ⊂ Ṽ ∩ V̂ = V ∗ = Ṽ ⊂ V̂ .

If in addition F is a continuous map and the set V is closed and convex, then
V ⊂ V #.

P r o o f. We shall prove that V ⊂ Ṽ ∩ V̂ . Let z ∈ V . Therefore,

〈F (z), x − z〉 ≥ 0.(5)

Using the pseudomonotonicity of F , we get that 〈F (x), x − z〉 ≥ 0. Since x ∈ V ,
we have

〈F (x), z − x〉 ≥ 0,(6)

which implies that 〈F (x), z − x〉 = 0. By the pseudomonotonicity, from (6) we
obtain the inequality

〈F (z), z − x〉 ≥ 0.(7)

By (5), we conclude that 〈F (z), x − z〉 = 0. Thus, z ∈ Ṽ ∩ V̂ .

Obviously Ṽ ∩ V̂ ⊂ V ∗.
The inclusion V ∗ ⊂ Ṽ is a consequence of (6), (7), and the definition of

V ∗.

To show the inclusion Ṽ ⊂ V̂ we suppose that z ∈ Ṽ . By the pseudomonotonic-
ity we conclude that 〈F (x), x − z〉 ≥ 0. According to inequality (6), z ∈ V̂ .

If F is continuous and pseudomonotone, V is closed and convex, then the
solution set is convex [7]. Hence, zλx ∈ V for all λ ∈ [0, 1]. Consequently,

〈F (zλx), x − zλx〉 ≥ 0 for all λ ∈ [0, 1].(8)

Using x ∈ V , we get that 〈F (x), zλx − x〉 ≥ 0 for all λ ∈ [0, 1]. By the
pseudomonotonicity, 〈F (zλx), zλx − x〉 ≥ 0 for all λ ∈ [0, 1]. We obtain from
inequality (8) that z ∈ V #. (The equality 〈F (x), x−z〉 = 0 is already shown.) �

Remark 5.1. The converse inclusions of Theorem 5.1 do not hold.
Indeed, assume that V ≡ R

n. Then the solution set coincides with the solution
set of the equality F (x) = 0. Suppose that x ∈ V . Therefore, V̂ ≡ R

n, and
V ∗ = Ṽ = Ṽ ∩ V̂ . If z ∈ Ṽ , then 〈F (z), x − z〉 = 0. This does not imply that
F (z) = 0.
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