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ABSTRACT. We answer positively a question raised by S. Argyros: Given
any coanalytic, nonalytic subset ¥/ of the irrationals, we construct, in Mer-
courakis space ¢1(X’), an adequate compact which is Gul’ko and not Ta-
lagrand. Further, given any Borel, non F, subset ¥’ of the irrationals, we
construct, in ¢;(X’), an adequate compact which is Talagrand and not Eber-
lein.

0. Introduction. On the last Sunday of August 1998, the first named
author, Petr Cizek died at a car accident in the U.S.A. This paper was prepared
on the basis of his Diploma Thesis [2] by the second named author, his supervisor.
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In [11], Talagrand constructed a Talagrand compact space which is not
Eberlein. In [12], he constructed an example of a Gul’ko compact space which is
not Talagrand. His example is based on the fact that the set of all well founded
trees is not analytic. In this note, we suggest a method of constructing a nontrivial
compact set in Mercourakis space ¢1(X') where Y/ is any coanalytic subset of a 0-
dimensional Polish space Y. This is done via an adequate family of subsets in Y.
In such a way we get, in Theorem 3.4, a Gul’ko compact which is not Talagrand
(if ¥ is not analytic) and, in Theorem 3.6, a Talagrand compact which is not
Eberlein (if ¥’ is Borel non F,). We use a fact that ¥ can be continuously injected
into the space of trees in such a way that the preimage of the well-founded trees
is 3. Our adequate family on Y’ is then obtained as the preimage of an adequate
family in the set of all well-founded trees, which was constructed in [12].

1. Preliminaries. A compact space is called Eberlein if it is homeo-
morphic to a weakly compact subset of a Banach space. Put

S=0pUNUN?U---

where N denotes the set of positive integers. For 0 € NY and n € N we put
oln = (c(1),...,0(n)). A topological space X is called K-analytic (K-countably
determined) if X is a subspace of a compact space C' and there are closed subsets
K; C C, s €S8, such that

x= ﬁKa\n

oceNN n=1

o
(X = U m Ky, for some subset ¥ C NN>.
ey n=1

It is known (and can be shown without much effort) that these concepts do not
depend on which compact superspace C' is considered.

Proposition 1.1 ([11, Proposition 1.1], [4, Proposition 7.1.1]). A com-
pletely reqular space X is K-analytic (K-countably determined) if and only if there
is an upper semicontinuous and compact valued mapping from NN (from a subset
of NV) onto X.
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A compact space K is called Talagrand (Gul’ko) if the space C'(K) of continuous
functions on K endowed with the topology p of the pointwise convergence on K
is K-analytic (C-countably determined).

In what follows, we shall focus on a special class of compacta consisting of
characteristic functions of a family of subsets of a given set. Let I' be a nonempty
set. A family A of subsets of I' is called adequate if

(i) for every v € I" the singleton {v} belongs to A,
(ii) whenever A € A and B C A, then B € A, and
(iii) if A C I" and B € A for every finite set B C A, then A € A.
If A is such a family, we put
Ka={xa: A€ A}

then it is easy to check that K 4 is a compact subset in the space {0, 1}F. The
compacta constructed in this way will be a main objective of this paper. For
v €T put

6(v)(xa) = xa(v),  xa € Ku;
then, obviously, 6(y) € C(K4). Put

™ = §(I') U {0}.

Proposition 1.2 ([11]). Let A be an adequate family of subsets of some
set I'. Then:

(i) The set I'* separates the points of the compact K 4.
(11) The set T* is closed in (C(K.4),p).
(7i1) The set 6(T") is discrete in (I'*, p).
(tv) The mapping 6 : I' — C(K 4) is injective.

(v) The sets T*\6(A), A € A, form a subbase of neighbourhoods of 0 in the
subspace (I'*,p).
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Proof. It can be found in the proof of [11, Théoreme 4.2]. O

Theorem 1.3 (see [11, Théoreme 4.2], [4, Theorem 4.3.2]). Let A be
an adequate family consisting of at most countable subsets of a set I'. Then the
corresponding compact K 4 is Eberlein if and only if there exist subsets I';, C
I', neN, such that T = ;2| T, and for every A € A and every n € N the set
ANT, is finite.

Theorem 1.4 (see [11, Théoreme 4.2]). Let A be an adequate family
consisting of subsets of a set I'. Then K 4 is Talagrand compact if and only if
there exist subsets I's C T, s € S, such that T' = U e Nney Dopn and for every
A € A and every o € NV there is n € N such that the set AN Lon is finite.
Moreover, the system {I's : s € S} can be considered monotone in the sense that
I's C I’y whenever s,t € S and s < t.

Theorem 1.5 (see [7, Theorem 1.2]). Let X be a K-analytic (K-countably
determined) topological space and let A be an adequate family of subsets of X such
that each A € A is closed and discrete. Then the corresponding compact K 4 is
Talagrand (Gul’ko).

2. Talagrand’s adequate family on well founded trees. We
shall introduce some more notations and concepts. For s = (s(1),...,s(m)) € S
we put |s| =m, [s] = s(1) + -+ s(m), s|lk = (s(1),...,s(k)) it ke {1,...,m},
and s’k = (s(1),...,s(m),k) if k € N. For 0 € N¥ and k € N we put ok =
(o(1),...,0(k)). For s = (s(1),...,s(m)) € S and t = (t(1),...,t(n)) € S
we write, by definition, s < ¢ if m < n and s(1) = t(1),...,s(m) = t(m). A
nonempty subset T" of the set S is called a tree if s € T whenever ¢ € T and s < t.
We shall not consider the tree {#}. The set of all trees is denoted by 7. For a tree
T we denote by [T'] the set of all o € N such that o|n € T for every n € N. A tree
T is called ill-founded if [T] is nonempty. The set of ill-founded trees is denoted
by P. We put £ = T\P and the elements of L are called well-founded trees.
On 7, we consider the topology of the pointwise convergence on §; thus 7 is a
subspace of the metric compact {0,1}°. Forn € Nwe put I, = {s € S : [s] < n}
and

VoY)={XeT: XnIl,=YNI,}
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for Y € 7. Note that the sets V,,(Y") are clopen and form a basis of the topological
space 7 .

Let Ag be a family consisting from all finite subsets B of £ such that we
can write B = {Y1,...,Y,} and there exist X € 7 and s € X, with [s| > n,
so that Y; € Vig(X), i = 1,...,n. Let A be the smallest adequate family of
subsets of £ which contains Ay.

Lemma 2.1. Consider A € A and let X be a cluster point of A. Then
X eP.

Proof. Let J denote the set consisting of the empty set () and of all
strictly increasing sequences of positive integeres. We observe that the mapping
S — J defined by

¢(®) = ®7 Q/)(nla"' 7nk) = (n17n1+n27"' 7n1+n2+"'+nk)7 (nla"' 7nk) € S?

is a bijection. Using this observation, we can translate our Lemma to [12, lemma
1]. O

3. Construction of counterexamples in ¢;(X’). Given a topo-
logical space X, we define Mercourakis’ space c¢1(X) by

a(X)={feRX: {zcX: |f(x)| > e} is closed and discrete for every € > 0}

and consider the topology of the pointwise convergence on it [7], [4, page 127].
We note that if A is an adequate family consisting of closed discrete subsets of
X, then the corresponding K 4 is a subspace of ¢1(X).

Adequate families for our compacta will be constructed in coanalytic sub-
sets of 0-dimensional Polish spaces. Such subsets can be continuously sent into
the set £ of well founded trees, see for instance [6]. Using a simple trick, we
arrange this mapping injective:

Proposition 3.1. Let ¥ be a 0-dimensional Polish space (for instance
NY) and ¥ its coanalytic subset. Then there exists a continuous injective mapping

H:% — T such that ¥ = H(L).

Proof. The set ¥\Y' is analytic. Hence it can be written in the form
Usent Mnzy Fojn where {F, : s € S} is a monotone system of closed subsets of
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3. Since the space 3 is O-dimensional, we can assume that all the sets Fs are
clopen. Further we can assume that the system {Fs : s € S} forms a base for
the topology in ¥ (If not, then we can add some countable base of clopen sets to
the beginning of it.) We define a mapping H : ¥ — 7 by

H(zx)={seS: vz € Fs}, zeX.

H is well defined, continuous, and injective. This is so since the system {Fy: s €
S} is monotone, consists of clopen sets, and separates the points of the space ¥
(as it is a base for the topology of ¥).

Now, z € X\Y' if and only if there exists o € NY such that o|n € H(x)
for every n € N, which means that H(z) is an ill-founded tree. Therefore ¥\X' =
H 1(P)and so ¥ = H-Y(L). O

Proposition 3.2. Let X,Y/, and H be as in Proposition 3.1, let A be
the family defined in Section 2, and put

A1 ={AcCY: H(A) e A}.
Then the family Ay is adequate and its elements are closed and discrete in Y.

Proof. If z € ¥/, then H(z) € L, hence {H(z)} € A, and so {z} € A;.
If Ae Aand B C A, we have H(A) € Ay and H(B) C H(A); hence H(B) € A
and so B € A;. Consider a set A C ¥/ such that B € A; for every finite B C A.
Let C C H(A) be any finite set. Find a finite set B C A such that H(B) = C.
But then B € Ay, ie., H(B)=C € A. Thus H(A) € A, ie., Ac A.

Take any A € A; and assume that it is not closed or is not discrete in 3.
Then there exists a one to one sequence (x,) in A converging to an x € ¥'. But
then {x1,x9,...} € A; and so {H(x1), H(x2),...} € A. Hence (H(x,)) is a one
to one sequence converging to H(x) in the space £ because H is injective and
continuous. However, this is impossible since the elements of A are closed and
discrete in £. O

Proposition 3.3. Let X,%/, H, and Ay be as in Proposition 3.2, and
assume there exists a monotone system {T's: s € S} of subsets of ¥/ such that

o0
Y = U ﬂ Lofn

pENN n=1
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and that for every A € Ay and for every p € NV there is n € N such that the set
ANT,, is finite. Then

- U ﬁ I‘plnz'

pENN n=1

Proof. Assume that there exists y € ¢ (o= \Z’ Then H(y) €

P and hence there is ¢ € N so that oln € H(y) for every n € N. Trivially,

H(y) € (aly Vion) (H(y)). Hence y € 32y H™ ' (Vi (H (y )))- Find p € N¥ so
that y € (o, T EE. Hence y € H™ (Vi (H(y))) N Fpln for every n € N.
Here each set H ™' (Vi ,)(H (y))) is open. Choose y1 € H™ ' (Vipj1)(H(y))) N T pj1.
Choose y2 € (H ™' (Viyjz (H(y)))\{y1})NTpj2 .. Choose yn € (H™ ! (Vi (H(y)))\
{v1,- - yn—1}) Ny, ... Then put A = {y1,y2,...}. Note that {H(y1),..., H(yn)}
€ A for every n € N. Hence, by the definition of A, we get H(A) € A, and

therefore A € A;. Thus, for every n € N the set T’
{Yn, Yn+1, - - -}, which is a contradiction. [

pln N A contains the infinite set

Theorem 3.4. Let ¥ be a 0-dimensional Polish space (for instance NY)
and let X' be a coanalytic nonanalytic subset of X.. Then there exists a compact
subset in c1(X), which is Gul’ko and not Talagrand. Actually, the compact can
be found in the form K 4, where A; is an adequate family on X'.

Proof. Let A; be the adequate family constructed in Proposition 3.2 for
our ¥ and ¥'. This proposition together with Theorem 1.5 guarantee that K 4,
is Gul’ko compact. It is a subspace of ¢1(X’) as every element of A; is closed and
discrete. Assume that K 4, is Talagrand compact. Then, by Theorem 1.4, there
is a monotone system {I's : s € S} of subsets of ¥ such that

o
- U ﬂ Lol
pENN n=1
and satisfying the remaining assumption of Proposition 3.3. Thus

- U ﬁ Fplnz'

pENV n=1

However, this means that Y’ is an analytic set, which is in contradiction with the
assumption. [
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Proposition 3.5. Let X,%', H, and Ay be as in Proposition 3.2, and
assume there exists a system {I'y, : n € N} of subsets of ¥’ such that

[ee)

and that for every A € Ay and for every n € N the set ANT, is finite. Then

o0
> =|JTn
n=1

Proof. We can proceed as in the proof of Proposition 3.3. However,
it is simpler to use directly this proposition. Indeed, it is enough to put I'y =
Fs(l)a s €S. Then

e} OO’v
Y=Jm=U T
n=1

pENN n=1

and for every A € A; and for every p € NY the set AN fﬂ\l = ANT,q) is finite.
Hence by Proposition 3.3,

) OO~—E OO—E
E:Uﬂrp|n:Urn. 0
n=1

pENN n=1

Theorem 3.6. Let 3 be a 0-dimensional Polish space (for instance NV)
and let ¥ be a Borel non F, subset of 3. Then there exists a compact subset of
c1(X'), which is Talagrand and not Eberlein. Actually, the compact can be found
in the form K, where A is an adequate family on Y.

Proof. We start as in the proof of Theorem 3.4. Since ¥’ is Borel,
and hence K-analytic, Theorem 1.5 guarantees that K 4, is Talagrand compact.
Assume that K 4, is Eberlein compact. Then, by Theorem 1.3, there exist subsets
I'y € ¥, neN, such that ¥’ = (J;2, ', and for every A € A; and every n € N
the set ANT, is finite. By Proposition 3.5, we then have that

[o¢]
=T
n=1
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Hence the set ¥/ is F,, which is in contradiction with the assumptions. [

The above theorem, in a slightly more general form, was proved, in a

different way, by Mercourakis [8].

Taking into account well known facts, see e.g. [11] or [4], we get: The

Banach space C(K 4,) where K 4, is from Theorem 3.4 is Vasék (i.e. weakly
countably determined) and not weakly K-analytic. The Banach space C(K 4,)
where K 5, is from Theorem 3.6 is weakly K-analytic and not a subspace of a
weakly compactly generated space.
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