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ABSTRACT. The algebra M, (K) of the matrices n x n over a field K can be
regarded as a Z-graded algebra. In this paper, it is proved that if K is an
infinite field, all the Z-graded polynomial identities of M, (K) follow from
the identities:

z = 0, l|a2)]=n,
vy = yz, afz)=ay)=0,
ryz = zyz, oz) = —ay) = oz),

where « is the degree of the corresponding variable. This is a generalization
of a result of Vasilovsky about the Z-graded identities of the algebra M,,(K)
over fields of characteristic 0.

Introduction. Let us denote by M, (K) the algebra of all square ma-
trices of order n over a field K. The polynomial identities of the algebra M, (K)
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play an important role in the theory of Pl-algebras. For fields of characteristic
zero, Razmyslov [14] described a finite basis for the identities of My(K') (this re-
sult was improved by Drensky [5], who found a minimal basis of these identities).
When K is a finite field, Maltsev and Kuzmin [12] found a basis of two identities
for My(K'). Koshlukov [10] described a finite basis of the identities of M (K),
when K is an infinite field of characteristic p > 2. Recall that in [7, 8] finite bases
for the identities of M3(K) and M4(K) were described when K is a finite field.

However, the problem of finding an explicit finite basis for the identities
of the algebra M, (K), for n > 3 and K an infinite field, still has no solution even
in the case of characteristic 0. Hence one is led to study other types of polynomial
identities such as weak identities, identities with trace, graded identities etc. Thus
for example the trace identities of the algebra M, (K) over a field of characteristic
0 were described by Procesi [13] and by Razmyslov [15]. The interest in the
study of graded identities is justified by the relationship between the graded and
ordinary polynomial identities which is one of the key components in the structure
theory of T-ideals developed by Kemer, see for an account [9].

Although in positive characteristic there does not exist such relationship,
the graded identities are still of interest, see for example [2, 3].

Let Z, Z,, and N denote the sets of the integers, the integers modulo n and
the positive integers respectively. The algebra M, (K) can be equipped with a
natural Z,-grading. When the characteristic of the field K equals 0, Di Vincenzo
[4] described a finite basis for the Zs-graded polynomial identities of My (K). This
basis consists of two graded identities, namely y1y2 = yoy1 and 212023 = 232021
for y; being even and z; odd variables. Still in characteristic 0, Vasilovsky [17]
found an explicit finite basis for the Z,-graded polynomial identities of M, (K)
for every n. This last result holds for K an infinite field, see [1].

The algebra M, (K) has also a Z-grading. When K is of characteristic
0, Vasilovsky [16] found a basis for the Z-graded identities. In this paper, we
prove that the result of Vasilovsky also holds for infinite fields. Our methods are
similar to those of [1] and [17].

From now on, let K be an infinite field. The main theorem we prove is
the following.

Theorem 1. All graded polynomial identities of the Z-graded algebra
M, (K) follow from

r = 0, la(z)|>n,
vy = yz, afr)=oaly) =0,
ryz = zyr, ofr)=—a(y)=a(2),

where « s the degree of the corresponding variable.
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1. Definitions and preliminary results. A Z-graded algebra A =
Y acz Ao is an associative algebra that can be expressed as the direct sum of
the subspaces {A, | o € Z} of A such that A,Ag C A,yg. Further, Z-graded
homomorphisms, subalgebras, ideals and so on, are defined in the usual way.
Sometimes the adjective homogeneous is used instead of Z-graded.

Denote by e;; the matrix units, i.e. the matrices whose only non-zero
entry is 1 in the ith row and jth column. For o € Z, let M,,(K), be the subspace
of M, (K) spanned by all matrix units e;; such that j —¢ = a. Thus M, (K)o
consists of the diagonal matrices

ag 0 -+ 0
0 ay - 0
0 0 - ap

with aq,a9,...,a, € K; for 1 < a <n—1, M,(K), consists of the matrices of
the form

0 0 a1 O 0
0 0 0 as 0
0 0 0 O On—a
0 0 0 O 0
O --- 0 0 0 --- 0
where a1, as9,...,a,_q € K, while M,,(K)_, consists of the matrices of the form
o 0 --- 0 0 --- 0
o 0 --- 0 0 --- 0
a; O -0 0 --- 0
0 ay --- 0 0 - 0
0 0 - apgo 0 -+ 0
where ay,as,...,ap—q € K. Finally M, (K), = 0 for |a| > n. Since e;jej; = e;

and ejjer = 0 if j # k, it follows that M, (K)o M, (K)g C My (K)q+s for o and
B in Z, so the decomposition above defines a Z-grading for the algebra M, (K).

Let Q = K[yl(k) | i € N;1 <k <n] be the commutative polynomial alge-
bra generated by the variables yi(k). Since the algebra M, (K) ® Q is isomorphic
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to M, () and has a Z-grading given by (M, (K) ® Q), = M, (K), ® €2, we can
define in a natural way a Z-grading for the algebra M, (£2). More exactly, the
following decomposition is a Z-grading for M,,(Q2). If 0 < o < n—1 then M,,(Q),
consists of all matrices of the form

0 - 0 fi 0 -+ 0
0 -+ 0 0 fo -+ 0
0 00 0 - foa
0 oo o0 --- 0
0 0 0 O 0
where fi,..., fn—a € Q, analogously M, (2)_, consists of the matrices of the
form
0 O 0 0 0
0 0 0 0 0
fi 0 o 0 ---
0 fo =+ 0 0 -+ 0
0 0 foea 0 -+ 0
where fi,..., fn—a € Q, and if |a| > n then M, (Q), = 0.

Let X = {x; | i € N} be a set of variables and let {X, | @ € Z} be a
family of disjoint countable subsets of X such that X = UyeczX,. A variable
x € X is of homogeneous degree a, written a(x) = a, if x € X,. Denote by
K(X) the free associative algebra freely generated over K by the set X. We
define a Z-grading in K (X). The monomials

{$i1xi2---$ik ‘ k> 1;$i1,1‘i2,...,£€ik S X}

form a basis of K(X) as a vector space. The homogeneous degree of a monomial
m = &, Tiy ... T4, 1s a(m) = a(x;,) + a(z,) + ... + oz, ). For a € Z, denote
by K(X), the subspace of K(X) spanned by all monomials of homogeneous
degree a. Notice that K(X )oK (X)3 C K(X)qa4p for all a, 5 € Z. Therefore this
decomposition defines a Z-grading of the algebra K(X). An ideal I of K(X) is
said to be a Z-ideal if it is invariant under all Z-graded endomorphisms of K (X),
ie. ¢(I) C I for every Z-graded homomorphism ¢ : K(X) — K(X).

Let A=) .7 Aq be a Z-graded algebra. A polynomial f(z1,...,2m),
or the expression f(x1,...,x,) =0, is called a graded polynomial identity of the



A basis for Z-graded identities of matrices over infinite fields 153

Z-graded algebra A if f(aq,...,a;,) = 0 for all ay,...,a, € UpezA, such that
a; € Ag(z), © = 1,...,m. The set Ty(A) of all graded identities of a Z-graded
algebra A is a Tz-ideal of K (X).

It is well known that the generic matrix algebra of order n is isomorphic
to the relatively free algebra K (X)/T(M,(K)) of the n x n matrix variety (see
for example Section 7.2 in [6], pp. 86-87). We shall use a similar idea for graded
algebras. Denote by F' the Z-graded subalgebra of M, () generated by the
matrices

0 - 0 ?Jz(l) 0o .. 0
0 --- 0 0 yZ(Q) 0
A=|o 0 0 0 . e
0 0 O 0 0
0 0 O 0 0
when 0 < a(z;) <n—1,
0 0 0 0 0
0 0 0 0 0
A= 4" 0 0 0
0y 0 0 0
0 0o .- yz(”Jra(xi)) 0 --- 0

when —n + 1 < a(z;) < —1, and A; = 0 when |a(z;)| > n.
Lemma 1. The relatively free Z-graded algebra K(X)/T7(M,(K)) is
isomorphic to the algebra F'.

Proof. The proof is analogous to that for the generic matrices. The
map ¢ : K(X) — F defined by ¢(f(x1,...,2m)) = f(A1,...,A,) is a Z-graded
homomorphism. Clearly, ¢ is onto. Moreover, an easy calculation shows that
ker ¢ = T7(M,(K)) and ¢ induces an isomorphism, as required. [

Thus we can work in the graded algebra F' instead of the graded algebra
K(X) /Ty (Mn(K)).

Let I be the ideal of the Z-graded identities of K(X) generated by the
graded identities
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ry = yz, ofz)=ay)=0,
ryz = zyr, oz)=—a(y) = az),

where x,y, z are variable of X.

Lemma 2. The Z-graded algebra M, (K) satisfies every graded identity
from the Ty-ideal I.

Proof. Since M,,(K)q = 0 whenever |a| > n, M, (K) satisfies the graded
identity x = 0 for |a(z)] > n. Two diagonal matrices commute, therefore the
graded identity xy = yx with a(z) = a(y) = 0 holds in M, (K). As the identity
xyz = zyx with a(x) = —a(y) = a(z) is multilinear, it is sufficient to prove that
it holds for z = e;; € My(K)a, Yy = €rs € Mp(K)_q and 2z = e € M, (K)q,
with |a| < n — 1. Obverse that e;je,ser; # 0 if and only if j = r and s = k;
inthiscase it = j—a=r—a=s=%kand j =i+a =k+a = 1. Hence
eijerser 7 0 if and only if 4 = s = k and j = r = [. Similarly, we have that
erierseij 7 0 if and only if £ = s = ¢ and | = r = j. Therefore, if e;;e,5e51 # 0
then e;jeqsep = e = eg; = epersej, else ejjerser =0 = eyepse;;. O

Lemma 3. Letm = x;, ... x;, be a monomial of Z-degree cv. If Ay, ... A;, #
0 then there erist 1 < s <t <n € N such that A, ... A;, = ZE:S Wi€; i+a Where

W= yg“’i) ) yl(:“) and hjit1 =hj;+1 foralls<i<t—1,1<j<gq.
Proof. We shall use induction on ¢. If ¢ = 1, obviously we have the
result. If ¢ > 1, applying the hypothesis of induction to the monomial x;, ... z;, _,

and multiplying the matrices 4;, ... A;,_, and A;, we can conclude the proof. O

Lemma 4. Let m(xy,...,zy) be a monomial of K(X). If m =0 is a
Z-graded polynomial identity of M, (K) then m lies in the ideal I.

Proof. This result is true for multilinear monomials and its proof is the
same as of Corollary 4 in [16] (that reasoning holds for any characteristic).

Ifm=uxz;...2,let n =z ...2; be a multilinear monomial such that
a(zj,) = alz;,). Each entry of the matrix A;, ... A;, is either 0 or a monomial of

the form yz(lal) ... yi(:j‘Z) for some a,..., a4 € {1,...,n}. The matrices A;, and Aj,

have zero at the same positions, and at a determined position the matrix A;, has
yz(j) if and only if the matrix A;, has y](:) Therefore, where the matrix A;, ... 4;,
has 0 the matrix Aj ... A;, has 0 too, and where the matrix A;, ... A4;, has a

monomial yilal) . ..ygj") the matrix Aj ... A; has the monomial yjf”) e ](.qa‘I).

Since m € Ty(M,(K)) = Tz(F) (Lemma 1), we have that A; ... A;, = 0 which
implies Aj, ... Aj, = 0. Hence n = 0 is a Z-graded polynomial identity of M,,(K)
and n € I. Substituting the variables x;, + x;, it follows that m € I, because I
is a Ty-ideal. O
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Lemma 5. Let m(zy,...,2y) and n(x1,...,2,) be two monomials of
K(X). If the matrices m(Ay, ..., Ap) and n(Ayq, ..., Ay) have at the same posi-
tion the same non-zero entry then m(x1,...,Ty) = n(x1,...,2Ty)(modl).

Proof. Let (h, k) be the position where the matrices m(Ay, ..., A,,) and
n(Aiy,...,Ap) have the same non-zero entry. Let ¢ be the length of m. We shall
use induction on g. If ¢ = 1, the result is obviously true. Now suppose ¢ > 1.

Suppose that z, is a variable of m(xy,...,zy) and m; and my are two
monomials of K(X) such that m = mjz,ma. Denote r = a(my), s = a(xp),
t = a(mz). Then (by Lemma 3) the (h,k)-entry in m(Ay,..., A, ) is obtained
from the product ‘

(Whenhsr) U entri—t (Wh_er—tk)
where i = h +r if a(zp) > 0, ¢ = k — t otherwise. Hence x, occurs in n, and
Ap in n(Ay,..., Ay). Notice that for every non-zero product B := Aj, ... A;, of
the generic matrices, each matrix A; contributes to a non-zero entry of B exactly
once with one suitable variable, namely y;. Therefore by the assumption there
exist subwords ny, na of n such that n = nyz,ny and A, contributes with yg) to
the computation of the (h,k)-entry of n(Aj,...,Ay). (Observe that if n; = 1
then ny(Ay,..., Ay) is the identity matrix.) Using Lemma 3 once again, we know
that the (h, k)-entry in n(Aq,..., Ay,) is obtained from the product

(Mhen e )Y enr -t (M€t i)
where ), is the (h,h + r)-entry of ni(Ai,...,Ay) and n;_, is the (k — ¢, k)-
entry of na(Ai,..., Ay). Observe that 7 is not zero because the (h, k)-entry of
n(Aq,...,Apn) is not zero; thus ni(Ay,..., A,,) has a non-zero entry at the posi-
tion (h, h 4+ r). Hence the Z-degree of n1(A41,...,Ay) in Fis r and a(n) =7 =
a(my). Therefore we can conclude that if z, is a variable of m(z1,...,z,,) and
mi,...,m; are monomials of K (X) such that m = myz,moz,msz...m;_jz,m,
then there exist monomials ny,...,n; in K(X) and a bijection (1-1 correspon-
dence) ¢ : {1,...,1} — {1,...,1} such that n = nyzpnaxpn3...nj_jx,n; and
oz(mlxpmg N mt) = oz(nlxpng PN n¢(t)).

We will show that there exist monomials wy, wg such that m = w;(mod
I), n = wy(mod ) and wy, we have the same starting variable. Let x; be the first
variable of m. Hence there exist two monomials n; and ny of K(X) such that
n = niz;n2 and a(ny) = 0. We have three possible cases:

Case 1. There exist two monomials my, ms such that m = z;mx;ms and
a(xim;) = 0. Then there exist three monomials n3, ny4, ns in K(X) such that
n = ngx;ngx;ns and a(ng) = a(ngx;ng) = 0. Hence a(x;ng) = 0 and therefore
n= xin4n3xin5(mod1).

Case 2. There exist two variables x, and xp,, and six monomials mq,
Ms, N3, N4, N5, Ng such that m = myz,xyMa, N = N3TNLT;N5THNG, N1 = N3T,Ny,
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a(my) = a(ng) and a(miz,) = a(ngxensz;ns). Then an easy calculation gives
us that a(ngz;ns) = 0. Since a(ngz,ng) = a(ny) = 0, we may conclude that

a(n3z,) = —a(ng) = ax;ns) and n = x;nsngnzxexpneg(modr).
Case 3. Neither of the previous cases holds. Consider m = x;, ... x;,. Let
x; be a variable occuring in ny, that is n; = nzx;ny. Then there exist r € {1,...,q}

such that z; = x;, and a(n3) = a(x;, ... 2;,_,). Assume that r # ¢ and let n5 and
neg be two monomials such that n = nsz;_,ng and a(ns) = a(x;, ... 2;.). Then
the length of nj is smaller than the length of ny, lest the previous cases happen (if
the length of n5 equals the length of ny then it falls into case 1, if it is larger it falls
into case 2). Thus w;, ., appears in ny too. We conclude that there exists ro €
{1,..., ¢} such that the monomials n; and x;, Ti, .1 - - - Ti, are multihomogeneous
with respect to the Z-degree. Let x; be the first variable of n, then there exist
m3, My, ms monomials such that m = mgmyz;ms, a(msmy) = 0 and myz;jms =
Ti, Tipg 4y - - - Tig- Lherefore a(myxjms) = a(zi, @i, 4y - - - Tiy) = a(n) = 0. Then
it follows that a(mz) = —a(my) = a(z;ms) and m = z;msmyms(mod]) which
starts as n.

Now let  be the first variable of w; and ws, and let wj and w) be two
monomials such that w; = 2w} and wy = zw). Since m — w; and n — wy be-
long to I C T7z(M,(K)) = Tz(F), we have m(Ay,..., An) = wi(A1,..., An)
and n(Aq,...,Ap) = wa(Ay,...,Ay). Then the matrices wi(A,..., A,,) and
wh(Aq, ..., Ay) have at the same position the same non-zero entry, because the
same thing happens with wy(A;1,..., A4,,) and wa(A1, ..., Ay). By the hypoth-
esis of induction, we have wj = w)(modI), therefore w; = wg(modI), which
concludes the proof. O

2. Proof of the theorem. By Lemma 2, we know that I C Ty (M, (K)).
Thus it is enough to show the other inclusion. Since the field K is infinite, a stan-
dard Vandermonde argument shows that every ideal of graded polynomial identi-
ties is generated by its multihomogeneous elements (see for example Proposition
4.2.3 in [6], pp. 39-40). Hence we need only prove that an arbitrary multihomo-
geneous graded polynomial identity f(x1,...,2,) = 0 of M, (K) lies in I. Let
r be the least non-negative integer such that the polynomial f can be expressed
modulo I as a linear combination of » multihomogeneous monomials:

f= Z agmgy(mod1)

q=1

where 0 # a4 € K, my,mg,...,m, € K(X). We shall show that » = 0. Suppose,
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on the contrary, r > 0. By Lemma 1, we have f € Ty(F). Since
T
alml(Al, e ,Am) = — Zaqmq(Al, e ,Am)
q=2

it follows that there exists p € {2,3,...,r} such that m;(Ay,...,4,,) and
mp(A1, ..., Ap) have at the same position the same non-zero entry. (Observe
that mq(Ay,...,Ay) # 0, because otherwise by Lemma 4 m; € I.) Then, by
Lemma 5, m; = m,(mod/) and

p—1 r
f=(a1+ap)m; + Zaqmq + Z agmgy(modI).
q=2 q=p+1

Therefore f can be expressed modulo I as a linear combination of no more than
r — 1 multihomogeneous monomials, which contradicts our choice of the number
r. Thus f = 0(mod[). This completes the proof of the theorem.
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