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ABSTRACT. An ordered pair X (R) = (X, R) consisting of a nonvoid
set X and a nonvoid family R of binary relations on X is called a relator
space. Relator spaces are straightforward generalizations not only of uniform
spaces, but also of ordered sets.

Therefore, in a relator space we can naturally define not only some topo-
logical notions, but also some order theoretic ones. It turns out that these
two, apparently quite different, types of notions are closely related to each
other through complementations.

1. Introduction. A nonvoid family R of binary relations on a nonvoid
set X is called a relator on X, and the ordered pair X(R) = (X,R) is called
a relator space. Relator spaces are straightforward generalizations not only of
uniform spaces, but also of ordered sets. Therefore, in a relator space we can
naturally define not only some topological notions, but also some order theoretic
ones.
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For instance, the families of all adherence and interior points of a subset
A of X(R) can be briefly defined by

cdr(4) = [ B7H4) and intr(A) = clr(A°)S,
ReR

where A¢ = X \ A.
While, the families of all lower and upper bounds of a subset A of X(R)
can be briefly defined by

br(4)= ) (R () and ubg (A) = lbg-1(A),
RER acA

where R™1 ={R"!: ReR}.
The relations clg and lbgr are closely related to each other. Namely, by
using the relator R¢ = {R°: R € R}, where R°= X?\ R, we can prove that

Ibr(A) = clge(A)° and clr(A) = lbre(A)".

These formulas resemble, in spirit, to those of Euler on elementary functions.
Now, by making use of the relation lbg, the members of the families

ming (A) = ANlbgr(A4) and maxg (A) = ming-1(A)

may be naturally called the minima and the maxima of the set A in the relator
space X (R), respectively.

Moreover, analogously to the family 7o = {A C X : A C intg(A)} of
all open subsets of X(R), we may also naturally define the families

L = {A cCX: AcC le(A)} and Ur = [,R—l.
Thus, we also have
Lr={ACX: A=ming(4A)} and Lr ={ming(A4): AC X}.

Moreover, concerning the unicity of mimima in a relator space X(R), we
can prove that the following assertions are equivalent:

(1)  UR is antisymmetric; (2) lbgr(x) Nubg(x) C {z} for all x € X;
(3) card(A) <1 forall A€ Lg; (4) card(ming(A4)) <1 forall AC X.
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1. A few basic facts on relations. A subset F' of a product set X xY
is called a relation on X to Y. In particular, the relations Ax = {(z,z) : x € X}
and X2 = X x X are called the identity and the universal relations on X.

Namely, if in particular X = Y, then we may simply say that F' is a
relation on X. Note that if F' is a relation on X to Y, then F is also a relation on
X UY. Therefore, it is sometimes not a severe restriction to assume that X =Y.

If Fis a relation on X to Y and z € X and A C X, then the sets
F(z)={yeY: (x,y) € F} and F[A] = U,c4 F(a) are called the images of
x and A under F, respectively. Whenever A € X seems unlikely, we may write
F(A) in place of F[A].

If F' is a relation on X to Y, then the values F'(x), where z € X, uniquely
determine F since we have F' = J,.y{z} X F(z). Therefore, the inverse F~! of
F can be defined such that F~l(y)={rx € X: ye& F(x)} foral yeY.

If F is a relation on X to Y, then the sets D, = F~1(Y) and R, = F(X)
are called the domain and range of F', respectively. If in particular, D, = X
(and R, =Y), then we say that F' is a relation of X into (onto) Y.

A relation F'is said to be a function if for each x € D, there exists y € R,
such that F'(z) = {y}. In this case, by identifying singletons with their elements,
we usually write F'(x) = y in place of F(z) = {y}.

If F is a relation on X to Y and G is a relation on Y to Z, then the
composition G o F' of G and F' can be defined such that (G o F)(x) = G(F(x))
for all x € X. Note that thus we have (G o F)~! = F~lo G71.

Moreover, if F' and G are relations on X to Y, then we may also naturally
consider the relations FF NG, FFUG and F'\ G. Moreover, when confusion seems
unlikely, we may briefly write F° in place of X x Y\ F.

Concerning the complement relation F¢ we can easily establish the fol-
lowing theorems.

Theorem 1.1. If F' is a relation on X to Y, and v € X and A C X,
then
Fe(z) = F(2)° and Fe(A)° = ﬂ F(a).
acA

Hint. To prove the second assertion, note that

Fe(A)¢ = <U FC(@)C = () Fa)° = () F(a). O

acA acA a€A

Theorem 1.2. If F' is a relation on X toY and A C X, then

F(A)° C FS(A) if A#0 and ~ F(A)°CF(A°) if Y=R,.



242 Arpeid Szdz

Hint. To prove the first assertion, note that if A # (), then

F(A)* = (F)°(A)° = [ F°(a) C | F°(a) = F*(A). 0

acA a€A

Theorem 1.3. If F' is a relation on X to 'Y, then

(FC)fl — (Fﬁl)c.

Theorem 1.4. If F' is a relation on X toY and G is a relation on'Y to
Z, then

(GoF)*CGoF if X=D, and (GoF)°CGoF° if Z=R,.

Proof. Note that if X = D,, then
(G o F)(x) = (G o F)()° = G(F(2))° € G(F(x)) = (G° o F)(x)
for all z € X. While, if Z = R,,, then
(G o F)(x) = G(F(2))° C G(F(2)°) = G(F(x)) = (G o F*)(x)

foralz e X. O
Remark 1.5. By Theorem 1.1, we also have

(G°o F)°(z) = (G°o F)(x)* = G°(F(z))° = [] G(y)
yEF ()

for all z € X.

2. A few basic facts on relators. A nonvoid family R of relations
on one nonvoid set X to another Y is called a relator on X to Y. Moreover, the
ordered pair (X,Y)(R) is called a relator space. Particular cases of relators have
been intensively studied by several authors.

If in particular X =Y, then we may simply say that R is a relator on X.
Moreover, by identifying singletons with their elements, we may naturally write
X(R) in place of (X, X)(R). Namely, (X, X) = {{X},{X,X}} = {{X}}.
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Note that if R is a relator on X to Y, then R is also a relator on X UY.
However, if F' is a relation on one relator space X (R) to another Y (S), then it
seems quite unnatural to consider the families F' o R and S o F' as relators on
XUY.

Relator spaces of the simpler type X (R) are already substantial general-
izations of the various ordered sets and uniform spaces [17]. They deserve to be
widely investigated because of the following facts.

If D is a nonvoid family of certain distance functions on X, then the
relator Rp consisting of all surroundings B? = {(z,y) : d(z,y) < r}, where
d € D and r > 0, is a more convenient mean of defining the basic notions of
analysis in the space X (D) than the family of all open subsets of X (D), or even
the family D itself.

Moreover, all reasonable generalizations of the usual topological struc-
tures (such as proximities, closures, topologies, filters, and convergences, for in-
stance) can be easily derived from relators (according to the results of [21] and
[16]), and thus they need not be studied separately.

For instance, if A is a certain generalized topology or a nonvoid stack
(ascending system) in X, then A can be easily derived (according to the forth-
coming definitions of the families 7g and £r) from the Davis—Pervin relator R 4
consisting of all preorders R4 = A%2 U A° x X, where A € A.

Note that in contrast to these preorders R4, the surroundings Bff are
usually tolerances (reflexive and symmetric relations) on X. Therefore, beside
preorder relators, tolerance relators are also important particular cases of reflexive
relators.

Unfortunately, the class of all reflexive relators proved to be insufficent
for several important purposes. For instance, if F' is a relation on one relator
space X(R) to another Y (S), then we have to consider the relators F' o R and
S o F too.

In the sequel, we shall be frequently dealing with relations on families of
sets. In particular, for any A C X we write:

C(A) =X\ 4 and P(A)={B: BcC A}.

Moreover, if R is a relator on X to Y, thenforany AC X, BCY,z€ X
and y € Y we write:

(1) AeIntr(B) if R(A)C B forsome REeETR;

(2) AeClgr(B) if R(AANB#0 forall ReTR;

(3) zeintr(B) if {z} € Intgr(B); (4) ze€clr(B) if {z} € Clg(B);
(5) Be&r if intr(B)#0; 6) BeDr if cgr(B)=X;
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Furthermore, if in particular R is a relator on X, then for any A C X we also
write:

(1) Aer, if AecIntr(A); 8) Aer, if A°¢Clg(A);

(9) AeTr if AC intR(A); (10) Aec Fr if CIR(A) C A.

The relations Intg and intg are called the proximal and the topological
interiors induced by R. While, the members of the families, 7, 7z and Er are
called the proximally open, the topologically open and the fat subsets of X(R),
respectively.

The fat sets are frequently more important tools than the open sets. For
instance, if < is a certain order relation on X, then 7 and £ are just the families
of all ascending and residual subsets of the ordered set X (<), respectively. And
the residual sets are certainly more important than the ascending ones.

Moreover, it is also worth mentioning that if for instance R is a relation
on R such that R(z) =] — oo, z]U{z + 1} for all x € R, then T = {0, R}, but
Er # {R}. Therefore, in contrast to the open sets, the fat sets may be useful
tools even in a topologically indiscrete relator space.

Hence, it is not surprising that if R is a relator on X to Y, then besides
the relations

5, =R and o, =R,
sometimes we also need the sets
Er =()ér and Dr = J(P(Y)\ Dr).

3. Proximal upper and lower bounds.

Definition 3.1. IfR is a relator on X to'Y, then we define two relations
Ubgr on P(X) to P(Y) and Lbr on P(Y) to P(X) such that for all A C X and
BCY
Ubgr(A)={DCY: 3JReR: AxDCR}

and

Lbr(B)={CcX: JReR: CxBCR}

The members of the families Ubg(A) and Lbgr(B) are called the proximal upper
and lower bounds of the sets A and B in the relator space (X,Y)(R), respectively.

Remark 3.2. To see the appropriateness of the above definition, we can
note that A x B C R if and only if (a,b) € R or equivalently aRb for all a € A
and b € B.
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Therefore, if < is a certain order relation on X, then for any A, B C X
we have B € UbL(A) if and only if A < B in the sense that a < b for all a € A
and b € B.

Note that, by writing <% in place of Ubg, we could also write A <x B
in place of B € Ubg(A). However, the latter notation is usually more convenient
than the former one.

By the corresponding definitions, we evidently have the following

Theorem 3.3. If R is a relator on X to Y, then

Ubg = Lbg-1 = Lby' and Lbg = Ubg-1 = Ubg'.

Hint. Note that the second statement of the theorem can be immediately
derived from the first one by writing R~! in place of R. O

Remark 3.4. By the above theorem, it is clear that the relations Ubg
and Lbg are equivalent tools in the relator space (X,Y)(R).

Moreover, by using the corresponding definitions, we can easily prove

Theorem 3.5. If R is a relator on X toY and A C X, then

Ubr(A) = |J P& =] [ PRBl))

RER ReR acA

Proof. By Definition 3.1, for any B C Y, we have
BeUbr(A) <= 3JReR: AxBCR.

Moreover, we can easily see that

AxBCR <= VacA: BCR(a) <= Be ()P(R)
acA

Therefore, we actually have
BeUbg(4) « Be (] () P(R(a)).
ReR acA
On the other hand, by Theorem 1.1, it is clear that

(] P(R(a)) = P(ﬂ R(a)) = P(R(A)°).

acA a€A
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Therefore, the required inequalities are true. O
Now, as an immediate consequence of Theorems 3.5 and 3.3, we can also
state

Theorem 3.6. If R is a relator on X to Y, then

Ubg = U Ubg and Lbg = U Lbg.
RER RER

Remark 3.7. These simple facts will guarantee the existence of a largest
relator RY on X to Y such that Ubg = Ubgyn ( Lbg = Lbgn).

Moreover, by Theorem 3.6, it is clear that we also have the following

Theorem 3.8. If R; is a relator on X toY for alli € I, with I # ),
and R = U;e; R, then

Ubg = | J Ubg, and Lbr = JLbg, .
i€l el

However, it is now more interesting to note that, by using Theorem 3.5,
we can also easily prove the following counterparts of Euler’s famous formulas on
exponential and trigonometric functions [15, p. 227].

Theorem 3.9. If R is a relator on X to Y, then

Lbg = (Clge)° and Clg = (Lbge)".

Proof. By Theorems 3.3 and 3.5, for any A C X and B C Y, we have

A€lbr(B) += AcUby(B) <= BecUbg(4) <
< BecUper PR(A)) <= TJRecR: BeP(R(A)°)

Moreover, we can easily see that
B e P(R(A)°) <= BCR(A)° < R‘(A)NB=4.
Therefore, we actually have

A€Llbr(B) < JIReR: R(ANB=)
<= A¢Clge(B) < A€ Clre(B)° A € (Clge)“(B).
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Thus, Lbgr(B) = (Clge)¢(B), and therefore the first statement of the theorem is
true. The second statement of the theorem is immediate from the first one. O

From the above theorem, by the equality Clg = (Intg oC)¢, it is clear
that we also have the following

Theorem 3.10. If R is a relator on X to'Y, then

Lbr = Intre oC and Intr = LbgeoC.

Remark 3.11. The above properties can also be expressed in the forms
that
Clge = (Lbr)¢ and Intge = Lbg oC.

By Definition 3.1 and Theorem 3.3, we evidently have the following

Theorem 3.12. If R is a relator on X to'Y, then

(1) Ubgr(®) =P(Y) and Ubz () =P(X);

(2) Ubgr(A) C Ubgr(C) foral CCACX and Ub;zl(B) C Ub;zl(D)
forall DC BCY.

Remark 3.13. The above characteristic properties can also be expressed
in the forms that:

(1) 0 € Ubg(A) and B € Ubg(h) forall AC X and B CY;

(2) B € Ubg(A) implies D € Ubg(C) forall ¢ C A C X and
DcBcCY.

By Theorem 3.12, we evidently have the following

Theorem 3.14. If R is a relator on X toY and A; C X for alli € 1,
then

Ubg <U Ai> C(\Ubr(4;) and | JUbr(4;) C Ubg (ﬂ AZ-) .

iel el i€l el

Remark 3.15. Note that if in particular R is a singleton, then the
equality is also true in the first statement of the above theorem.

Moreover, by using Theorems 3.12 and 1.1, we can also easily prove

Theorem 3.16. If R is a relator on X to Y, then
(1) Ubg = UbgoP~! =PoUbg;
(2) Ubg = ((Ubg)c0 P)° = (P10 (Ubg)°)".
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Proof. By Theorems 3.12 and 1.1, it is clear that

Ubg(4) = ] Ubg(C) = Ubg(P~'(A4)) = (UbgoP~')(A)
AcC
and
Ubgr(A) = 1) Ubg(C) = (Ubg)“(P(A))° = ((Ubg)" o P)*(A)
CCA

for all A C X. Therefore, Ubg = Ubg oP~! and Ubg = ((Ubg)¢ o P)°. Hence,
by using Theorems 3.3 and 1.1, we can infer that

Ubg = (Ubz!)'= (Ubg-1) "= (Ubg-1 0P~ 1) '= (UbgloP 1) "'= P o Ubg
and

Ubg = (Ubg-1) ™" = ((Ubg-1)0 P)°) =

= (b o P)) = (((UbR)) o)) = (P 1o (Ubr))". O

By Theorems 3.12 and 3.3, it is clear that in particular we also have

Theorem 3.17. If R is a relator on X toY, and AC X and B CY,
then

Ubg(A) C () Ubgr(a) and Lbr(B) C (1] Lbr(b).
acA beB

Remark 3.18. Note that if in particular R is a singleton, then the
corresponding equalities are also true.

However, it is now more important to prove the following

Theorem 3.19. If R is a relator on X to Y, and AC X and B CY,
then
Ubgr(A)={DcCY: P(A) CLbr(D)}

and

Lbr(B)={CcX: P(B)CUbg(C)}.

Proof. If D € Ubg(A), then by Definition 3.1 we have D C Y. More-
over, by Theorem 3.12, for any C' C A, we have D € Ubg(C), and hence
C € Ubgx'(D). This, by Theorem 3.3, implies that C' € Lbg(D). Therefore,
P(A) C Lbr(D) is also true.
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On the other hand, if D is a subset of Y such that P(A) C Lbgr (D), then
in particular we also have A € Lbg (D), and hence D € Lby'(A). Therefore, by
Theorem 3.3, D € Ubg(A) is also true. O

Remark 3.20. The first statement of the latter theorem is actually a
reformulation of the second statement of Theorem 3.16.

Namely, for any A C X and D C Y, we have P(A) C Lbgr(D) if and only
if C € Lbr(D), and hence D € Ubg(C) for all C' C A.

4. Topological upper and lower bounds.

Definition 4.1. IfR is a relator on X to'Y, then we define two relations
ubg on P(X) toY and lbg on P(Y) to X such that for all AC X and BCY

ubr(A)={yeY: {y}ecUbgr(A4)}
and
Ibr(B) = {z € X: {z} € Lbg(B)}.

The members of the families ubg(A) and lbr(B) are called the topological
upper and lower bounds of the sets A and B in the relator space (X,Y)(R),
respectively.

Remark 4.2. Hence, by Remark 3.2, it is clear that if < is a certain
order relation on X, then for any A C X and b € X we have b € ub4(A) if and
only if A < b in the sense that a < b for all a € A.

By Definitions 3.1 and 4.1, we evidently have the following

Theorem 4.3. If R is a relator on X toY, and A C X and B C Y,
then
ubr(A)={yeY: IReR: Ax{y}CR}

and

Ibr(B)={xre€X: 3IReR: {z}xBCR}

Hence, it is clear that, analogously to Theorem 3.3, we also have

Theorem 4.4. If R is a relator on X to Y, then

ubr = lbr-1 and lbr = ubg-1.

Furthermore, as an immediate consequence of the corresponding defini-
tions, we can also state the following
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Theorem 4.5. If R is a relator on X toY, andx € X and y € Y, then
b} (x) = Lby! (z) and ubL!(y) = Uby!(y).

Hint. To prove the first statement, note that for any B C Y we have
Belby'(r) <= xelbgr(B) <= {2} €Llbr(B) <= Belby'(z). O

Concerning the inverses of the relations lbg and ubg, it is also worth
proving

Theorem 4.6. If R is a relator on X toY, and A C X and B C Y,
then

Ubr(A) C () Ibg'(a) and Lbr(B) C (1] ubg'(b).
acA beB

Proof. By Theorems 3.17, 3.3 and 4.5, we have
Ubg(A) C (1] Ubg(a) = (] Lbg'(a) = [] b (a).

acA acA acA

Hence, by Theorems 3.3 and 4.4, it is clear that the second statement of the
theorem is also true. O
However, it is now more important to prove the following

Theorem 4.7. If R is a relator on X toY, and AC X and BCY,
then

Ubg(4) C P(ubg(A)) and Lbg(B) C P(Ibg(B)).

Proof. If D € Ubgr(A), then by Remark 3.13 and Definition 4.1 we
evidently have {d} € Ubg(A), and hence d € ubgr(A) for all d € D. Therefore,
D C ubgr(A), and thus the first statement of the theorem is true.

The second statement of the theorem is again immediate from the first
one by Theorems 3.3 and 4.4. O

Remark 4.8. The second statement of Theorem 4.7 can also be derived
from the first statement of Theorem 4.6.

Namely, by Theorem 3.3, A € Lbg(B) implies B € Ubg(A). Moreover,
forany A C X and B C Y, we have

B€Nyealbr'(a) <= VaecA: Belbzl(a) <
< VacA: aclbr(B) < ACgr(B) < AcP(lbr(B)).
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By Theorem 3.5 and Definition 4.1, we evidently have the following
Theorem 4.9. If R is a relator on X toY and A C X, then

ubr(A) = |J R°A)°=J () Rl

ReR ReER acA

Now, as an immediate consequence of Theorems 4.9 and 4.4, we can also
state

Theorem 4.10. If R is a relator on X to Y, then

ubg = U ubg and Ibg = U bg.
ReR ReR

From Theorems 3.9 and 3.10, by the corresponding definitions, it is clear
that we also have the following two theorems.

Theorem 4.11. If R is a relator on X to Y, then

le = (Cch)C and CIR = (lec)c.

Theorem 4.12. If R is a relator on X to Y, then

Ib = intre oC and intg = lbre oC.

Remark 4.13. The first statement of Theorem 4.11 can also be easily
derived from Theorem 4.9 by noticing that

_ -1
bR (B) = ubgr-1(B) = Uper (R™)"(B)* = Uper (R) ™ (B)* =
= <ﬂR€R(RC)_1(B)> = clge(B)¢ = (clge)“(B)
for all B C Y. Moreover, Theorem 4.12 can also be easily derived from Theorem
4.11 by using that clg = (intg oC)°.
As a very particular cases of Theorem 4.9, we can also state the following

Theorem 4.14. If R is a relator on X toY and x € X, then

0 (x) = ubg(z).
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Proof. By the corresponding definitions and Theorem 4.9, it is clear

o (2) = (UR) (z) = <U R> (@) = |J Rlx) = ubg(x). O

ReR ReR

that

Hence, by using that o, = (J,.)¢, we can immediately get the following

re)

Theorem 4.15. If R is a relator on X toY and x € X, then

ubgr () = 0, (x)° and Or(z) = ubge(x)°.

Remark 4.16. Note that this theorem is actually a particular case of
Theorem 4.11 since we have 0, (x) = clg-1(x) for all x € X.

Now, by using Theorems 4.9 and 4.15, we can also easily prove the fol-
lowing two theorems.

Theorem 4.17. If R is a relator on X to Y, then

Br= () R(X)°= () ubr(X).

ReR ReR

Proof. By the corresponding definitions and Theorem 4.9, it is clear

that
Er=()ér= () [ R = () R(X) = () ubr(X). 0
RER zeX RER RER
Theorem 4.18. If R is a relator on X to Y, then
Dr = (3,)°(X) = | ubge (@).
reX
Proof. By the corresponding definitions and Theorem 4.15, it is clear
that

Er={) () R@) =) (ﬂn) (@) = [ 6x(@) = () ubre ()"

rzeX ReER zeX zeX zeX

Hence, since Dr = X \ ER, it is clear that the second statement of the theorem
is also true. 0O
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From Theorems 3.12, 3.16 and 3.17, by Definition 4.1, it is clear that we
also have the following three theorems.

Theorem 4.19. If R is a relator on X to Y, then
(1) ubgr(®) =Y; (2) ubgr(A) Cubgr(C) foral CCACX.

Theorem 4.20. If R is a relator on X to Y, then

ubg = ubg P! and ubr = ((ubg)® o P)*.

Theorem 4.21. If R is a relator on X to Y, and AC X and B CY,

then
ubg(A) C (] ubg(a) and Ibr(B) C () Ibr(b).
acA beB
However, in contrast to Theorem 3.19, we can only prove the following
Theorem 4.22. If R is a relator on X to Y, and AC X and B CY,
then

ubgr(A) c{deY: AClbgr(d)} and lbgr(B)C{ce X: B Cubgr(c)}.

Proof. By Definition 4.1 and Theorems 3.3 and 4.7, it is clear that
d € ubgr(A) = {d} € Ubr(4) = AcLlbr(d) = ACIlbr(d). a

Remark 4.23. Note that if in particular R is a singleton, then the
equalities are also true in the assertions of Theorems 4.6, 4.7, 4.21 and 4.22.

5. Proximal maxima and minima.

Definition 5.1. If R is a relator on X, then we define two relations
Maxg and Ming on P(X) to itself such that for all A C X

Maxg(A) = P(A) N Ubg(A)  and  Ming(A) = P(A) N Lbgr(A).

The members of the families Maxg(A) and Ming(A) are called the proximal
maxima and minima of the set A in the relator space X (R), respectively.
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Remark 5.2. Hence, by Remark 3.2, it is clear that if < is a certain
order relation on X, then for any A, B C X we have B € Maxg(A) if and only
if BC Aand A< B.

Moreover, by Definitions 3.1 and 5.1, we evidently have the following
Theorem 5.3. If R is a relator on X and A C X, then

Maxgr(A)={BCA: 3dJReR: AxBCR}

and
Ming(A) ={B C A: JReR: BxACR}.

By Theorem 3.3 and Definition 5.1, it is clear that we also have the
following

Theorem 5.4. If R is a relator on X, then

Maxg = Ming-1 and Ming = Maxp-1.

Moreover, as an immediate consequence of the corresponding definitions
and Theorem 3.3, we can also state the following

Theorem 5.5. If R is a relator on X, then

Max,' = P! NLbg and Miny! =P~ N Ubg.

Hint. To prove the first statement, note that Maxg = P N Ubg, and
thus
Maxz! = (PN Ubg) ' =P 1 NUbL =P 1 NLbg. 0

From Theorem 3.5, by using Definition 5.1, we can easily get the following

Theorem 5.6. If R is a relator on X and ) # A C X, then

Maxg(4) = | ] P(A\R(4)) = | () P(ANR(a)).

RER ReER acA

Proof. By the corresponding definitons and Theorem 3.5, we have

Maxg (A) = P(A) N Ubr(A) = P(A) NUper P(R(A)°) =
= Uper P(A) NP(R(A)) = Uper P(AN R(A)°) = Uper P(A\ R°(A)).
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Moreover, it is clear that we also have

Maxp (A) = P(A) N Ubgr(A) = P(A) NUger Naea P(R(a)) =
= Urer Naca P(A) N P(R(a)) = Urer Naca P(AN R(a)). -

Remark 5.7. Note that the first equality in the above theorem is also
true for the case A = (). However, if A = (), then the left hand side of the second
equality is {0}, while its right hand side is P(X).

Now, as an immediate consequence of Theorems 5.6 and 5.4, we can also
state

Theorem 5.8. If R is a relator on X, then

Maxgr = U Maxpg and Ming = U Ming .
ReR RER

From Theorems 3.9 and 3.10, by using Definition 5.1, we can easily derive
the following two theorems.

Theorem 5.9. If R is a relator on X, then

Ming = P\ Clge and (Mich)c =P°UClg.

Proof. For any A C X, we have

Ming (A) = P(A) NLbr(4) = P(A4) N (Clre)(A) =
= P(A) N Clge(A)° = P(A) \ Clre(A) = (P \ Clge)(A).

Moreover, it is clear that we also have

(Minge)°(A) = Minge(A)¢ = (P(A) N Lbge(A))° = P(A)° U Lbre (A)¢ =
= P(A) U (Lbre)*(A) = P¢(A) U Clr(A) = (P° U Clg)(A). O

Theorem 5.10. If R is a relator on X, then

Ming = P N (Intge oC) and Minge o€ = (PoC)NIntg .

Hint. To prove the second statement, note that for any A C X we have

(Minge oC)(A) = Minge(C(A)) = P(C(A)) N Lbgr:(C(A)) =

(P 0 C)(A) N (Lbre oC)(A) = (P o C)(A) NIntr(A) = (P o C) N Intg) (4). -
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From Theorem 5.3, it is clear that the mapping A — Maxg(A) need
not be monotonic. However, by Theorem 5.5 and the dual of Theorem 3.12, we
evidently have he following

Theorem 5.11. If R is a relator on X, then

(1) Maxg' (0) = P(X);

(2) Maxy'(A) C Maxz'(B) forall BC ACX.

Therefore, analogously to Theorem 3.16, we can also prove the following

Theorem 5.12. If R is a relator on X, then

Maxgr = P o Maxg and Maxg = (P~'o (MaXR)C)C'

Hint. To prove the second statement, note that by Theorem 5.11 we
have Max;z1 = ((Max;zl)c o P)C. Hence, by using Theorem 1.3, we can infer that

Maxr = (1\/[30(7%1)71 = (((1\4&){7731)C o P) c)il =
= () oP) ) = (1o (Macr))”

Moreover, as an immediate consequence of Theorem 3.19 and Definition
5.1, we can also state the following

Theorem 5.13. If R is a relator on X and A C X, then
Maxg(A) ={BC A: P(A) C Lbr(B)}

and
Ming(A) ={B C A: P(A) C Ubr(B)}.

6. Topological maxima and minima.

Definition 6.1. If R is a relator on X, then we define two relations
maxg and ming on P(X) to X such that for all A C X

maxr(A) ={be X : {b} € Maxg(A)}

and
ming(A) ={be X: {b} € Ming(4)}.
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The members of families maxg(A) and ming(A) are called the topological
maxima and minima of the set A in the relator space X(R), respectively.

Remark 6.2. Hence, by Remark 4.2, it is clear that if < is a certain
order relation on X, then for any A C X and b € X we have b € max~(A) if and
only if b€ A and A < b.

Moreover, by Definition 6.1 and Theorem 4.3, we evidently have the fol-
lowing

Theorem 6.3. If R is a relator on X and A C X, then
maxr(A)={beA: I ReR: Ax{b} CR}
and

ming(A) ={becA: FReR: {b}xACR}

From Theorem 5.4, by Definition 6.1, it is clear that we also have the
following

Theorem 6.4. If R is a relator on X, then

maxR = ming-1 and ming = maxp-1 .

Moreover, as an immediate consequence of the corresponding definitions,
we can also state the following

Theorem 6.5. If R is a relator on X and x € X, then

maxy' (z) = Maxy' () and miny' (r) = Ming'(z).

However, it is now more important to note that in particular we also have

Theorem 6.6. If R is a relator on X and A C X, then

maxg(A) = ANubgr(A) and ming (A) = ANlbr(A4).

Hint. To prove the first statement, note that for any b € X we have

b € maxg(A4) < {b} € Maxp(A4) < {b} € P(4), {b} € Ubgr(A)

< be A, beubr(4) <= bec maxg(A). s
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Now, as an immediate consequence of Theorems 4.7 and 6.6, we can also
state

Theorem 6.7. If R is a relator on X and A C X, then

Maxg (A) C P(maxg (A)) and Ming(A) C P(ming(A4)).

Hint. To prove the first inclusion, note that

Maxr (4) = P(A) N Ubgr(A) C P(A) N'P(ubr(4)) =

= P(ANubg(A)) = P(maxg(A)). i

Remark 6.8. Note that if in particular R is a singleton, then the
corresponding equalities are also true.

From Theorem 4.9, by Definition 6.1, it is clear that we also have the
following

Theorem 6.9. If R is a relator on X and ) # A C X, then
maxz(A) = | J (A\R(A) = ] [) ANnR(a).

ReR ReR acA

Remark 6.10. Note that the first equality in the above theorem is also
true for the case A = (). However, if A = (), then the left hand side of the second
equality is (), while the right hand side is X.

Now, as an immediate consequence of Theorems 6.9 and 6.4, we can also
state

Theorem 6.11. If R is a relator on X, then

maxR = U maxp and ming = U ming .
ReR ReR

From Theorems 5.9 and 5.10, by using Definition 6.1, we can easily get
the following two theorems.

Theorem 6.12. If R is a relator on X and A C X, then

ming (A) = A\ clre(A) and minge(A)¢ = A°Uclr(A).
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Theorem 6.13. If R is a relator on X and A C X, then

ming (A) = ANintge(A°) and minge(A°) = A° Nintr(A).

Moreover, from Theorems 4.14, 4.15, 4.17 and 4.22, by Theorem 6.6, it is
clear that we also have the following three theorems.

Theorem 6.14. If R is a relator on X and x € X, then

maxg(z) = {z} Noy(x) = {z} \ 0 ().

Theorem 6.15. If R s a relator on X, then

Er = m maxp(X).
ReR

Theorem 6.16. If R is a relator on X and A C X, then

maxg(A) C{b€A: ACIbg(b)} and ming(A) C {beA: AC ubr(b)}.

Remark 6.17. Note that if in particular R is a singleton, then the
corresponding equalities are also true.

7. Proximal self upper and lower bound sets.

Definition 7.1. If R is a relator on X, then we define
u, ={ACX: AeUbr(4)}

The members of the family u,, are called the prozimal self upper bound subsets of
the relator space X (R).

Remark 7.2. Hence, by Remark 3.2, it is clear that if < is a certain
order relation on X, then for any A C X we have A € u, if and only if A < A.

Moreover, by Definitions 3.1 and 7.1, we evidently have the following
Theorem 7.3. If R is a relator on X, then

u,={ACX: IRcR: A>CR}.



260 Arpéd Széz

Remark 7.4. Hence, it is clear that if d is a certain distance function
on X, then ug,  is just the family of all bounded subsets of the space X (d).

From Theorem 7.3, it is clear that the following two theorems are also
true.

Theorem 7.5. If R is a relator on X, then

un = | un

ReR

Theorem 7.6. If R is a relator on X, then u, is a nonvoid descending
family such that

By the corresponding definitions and Theorem 3.3, it is clear that we also
have

Theorem 7.7. If R is a relator on X and A C X, then the following
assertions are equivalent:

1) Acuy: (2) A€ Lbr(A);
(3) A€ Maxp(A); (4) A€ Ming(A).

Now, by using Theorems 5.3 and 7.3, we can also easily prove the following

Theorem 7.8. If R is a relator on X, then

u, = Maxg (P(X)) and u, = Ming (P(X)).

Proof. If A € u,, then by Theorem 7.7 we also have A € Maxg(A).
Hence, since A € P(A), it is clear that A € Maxg (P (X)) is also true.

On the other hand, if A € Maxg(P(X)), then there exists B C X such
that A € Maxg(B). Hence, by Theorem 5.3, it follows that A C B, and there
exist R € R such that B x A C R. These, in particular, imply that A?> C R.
Hence, by Theorem 7.3, it is clear that A € u, is also true.

Therefore, the first statement of the theorem is true. The second state-
ment of the theorem is immediate from the first one by Theorems 7.6 and 5.4. O
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Moreover, by using Theorems 3.9 and 3.10, we can easily establish the

following
Theorem 7.9. If R is a relator on X and A C X, then the following

assertions are equivalent:

(1) A€u,; (2) A ¢ Clge(A); (3) A € Intge(A°).

8. Topological self upper and lower bound sets.

Definition 8.1. If R is a relator on X, then we define
Ur={ACX: AcCubr(4A)} and Lr={ACX: AcClbgr(4)}.

The members of the families Ur and Ly are called the topological self upper and
lower bound subsets of the relator space X (R), respectively.

Remark 8.2. Hence, by Remark 4.2, it is clear that if < is a certain
order relation on X, then for any A C X we have A € Ug if and only if A < a

for all a € A.
Moreover, by Theorem 4.3 and Definition 8.1, we evidently have the fol-

lowing
Theorem 8.3. If R is a relator on X, then

Ur ={AC X : VaeA: FIReR: Ax{a} CR}
and
Lr={ACX: VacA: FReR: {a}xACR}

Hence, is clear that we also have the following
Theorem 8.4. If R is a relator on X, then Ur and Lyr are nonvoid

descending families such that

Ur = Lr-1 and Lr =Up-1.

Moreover, by using Theorems 4.7, 7.6 and 8.4, we can easily prove the

following
Theorem 8.5. If R is a relator on X, then

U, CURNLR.
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Proof. By the corresponding definitions and Theorem 4.7, it is clear
that
Acu, = AcUbgr(A) = AecP(ubr(4)) = AecUg.

Therefore, u,, C Ur. Hence, by using Theorems 7.6 and 8.4, we can see that

Up =u, , CUp-1=Lg. a

By the corresponding definitions and the dual Remark 4.8, it is clear that
we also have the following

Theorem 8.6. If R is a relator on X and A C X, then the following
assertions are equivalent:
(1) AcUg; (2) A =maxg(A); (3) A€ Nyesuby (a).

In addition to this theorem, it is also worth proving the following

Theorem 8.7. If R is a relator on X, then

Ur = {maxr(4): AC X} and Lr ={ming(4): AC X}

Proof. By Theorem 8.6, we evidently have Ur C {maxr(A): A C X}.
Moreover, if A C X and B = maxg(A), then by Theorem 6.3, it follows that
B C A, and for each b € B there exists R € R such that A x {b} C R. This, in
particular, implies that for each b € B there exists R € R such that B x {b} C R.
Hence, by Theorem 8.3, it follows that B € u.

Therefore, the first statement of the theorem is true. The second state-
ment of the theorem is immediate from the first one by Theorems 6.4 and 8.4. O

Moreover, by Theorems 4.11 and 4.12, it is clear that we also have the
following

Theorem 8.8. If R is a relator on X and A C X, then the following
assertions are equivalent:

(1) A€ Lr; (2) clre(A) C A (3) A C intre(A°).

9. The unicity of topological maxima and minima.

Definition 9.1. A relator R on X is called antisymmetric if for all
R,SeR
RNS™'CAx.
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Remark 9.2. More precisely, in this case, we should rather say that
the relator R is uniformly antisymmetric.

Namely, by using some basic operations on relators [12], the above con-
dition can be expressed in the form that (R AR™1 C ({Ax1}¢)".

By Definition 9.1, we evidently have the following

Theorem 9.3. If R is a relator on X, then the following assertions are
equivalent:

(1) R is antisymmetric; (2) R~ is antisymmetric.

Moreover, as a useful characterization of antisymmetric relators, we can
prove

Theorem 9.4. If R is a relator on X, then the following assertions are
equivalent:

(1) R is antisymmetric;

(2) UR is antisymmetric;

(3) ubgr(z)Nlbg(z) C {z} forall z € X.

Proof. If the assertion (1) holds, then by the corresponding definitions
we have

(UR) N (U'R)ilz (UR) R (UR_1> _
— <UR€R R) N <U5€R Sl> = Uner User(RNS™Y) € Ax.

Therefore, the assertion (2) also holds.
While, if the assertion (2) holds, then we have

(Ur)n (U= ™) = (UR)n(UR) ™ cax.

Hence, by using Theorems 4.14 and 4.4, we can infer that
ubg () N1bg(z) = (U R) (z) N (U R*l) (z) =
~ ((UR) N (UR™) (@)  Axte) = )

for all x € X. Therefore, the assertion (3) also holds.
Finally, if the assertion (3) holds and R, S € R, then again by Theorems
4.14 and 4.4 it is clear that

(RNSY)(z) = R(x) N S~ (z)
c (UR)@) N (UR™) (@) = ubr(x) N1br(x) € {o} = Ax(x)
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for all z € X. Therefore, RNS~! C Ax, and thus the assertion (1) also holds. [
From Theorem 9.4, it is clear that in particular we also have

Corollary 9.5. If R is a relator on X, then the following assertions are
equivalent:

(1) R is antisymmetric;

(2) there exists an antisymmetric relation V on X such that R C P(V).

Proof. If the assertion (1) holds, then by defining V' = [JR and using
Theorem 9.4 we can at once see that the assertion (2) also holds.

While, if the assertion (2) holds and R, S € R, then we can also at once
see that RN S~ Cc VNV~ C Ax. Therefore, the assertion (1) also holds. [

The importance of antisymmetric relators lies mainly in the following

Theorem 9.6. If R is a reflexive relator on X, then the following asser-
tions are equivalent:

(1) R is antisymmetric;

(2) card(A) <1 forall A€Ur;

(3) card(maxg(A)) <1 forall AC X.

Proof. If the assertion (2) does not hold, then there exists A € Ur such
that card(A) > 2. Therefore, there exist z,y € A such that  # y. Hence, by
Definition 8.1, it follows that x,y € ubg(A). Therefore, by Theorem 4.3, there
exist R,S € R such that A x {x} C R and A x {y} C S. Thus, in particular, we
also have (y,z) € R and (z,y) € S. However, this implies that (y,z) € RNS~L
Therefore, the assertion (1) does not also hold. Thus, the implication (1)=-(2) is
true.

While, if the assertion (1) does not hold, then there exist R, S € R such
that RN S~! ¢ Ax. Therefore, there exist z,y € X, with z # y, such that
(z,y) € RN S~L This implies that (z,y) € R and (y,z) € S. Now, by defining
A = {z,y} and using the reflexivity of R and S, we can see that A x {y} C R
and A x {z} C S. Therefore, by Theorem 4.3, we have A C ubg(A). Hence, by
Definition 8.1, it follows that A € Ur. Therefore, the assertion (2) does not also
hold. Thus, the implication (2)=-(1) is also true.

Finally, to complete the proof, we note that the equivalence (2) <= (3)
is immediate from Theorem 8.7. O

Remark 9.7. From the above proof, we can see that the implications
(1)=(2) <= (3) do not require the relator R to be reflexive.

From Theorem 9.6, by using Theorems 9.3, 8.4 and 6.4, we can easily get

Theorem 9.8. IfR is a reflexive relator on X, then the following asser-
tions are equivalent:
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(1) R is antisymmetric;

(2) card(A) <1 forall A€ Lg;

(3) card(ming(A)) <1 forall AC X.

Remark 9.9. By Remark 9.7, it is clear that the implications (1)=(2) <=
(3) do not require the relator R to be reflexive.

10. The unicity of proximal maxima and minima. From The-
orem 9.6, we can also easily get the following

Theorem 10.1. If R is a reflexive relator on X, then the following
assertions are equivalent:

(1) R is antisymmetric;

(2) card(Maxgr(A)) <2 forall AC X.

Proof. If the assertion (2) does not hold, then there exists A C X such
that card(Maxg(A)) > 3. Hence, since () € Maxg(A), we can infer that there
exist B,C € Maxg(A), with B # () and C # 0, such that B # C. Here, we may
assume, without loss of generality, that B ¢ C. That is, there exists b € B such
that b ¢ C. Therefore, if ¢ € C, then b # c¢. Moreover, by Theorem 6.7, it is clear
that b, c € maxg(A). Therefore, by Theorem 9.6, the assertion (1) does not also
hold. Thus, the implication (1)=(2) is true.

On the other hand, if the assertion (1) does not hold, then by Theorem 9.6
there exist A C X such that card(maxg(A)) > 2. Therefore, there exist x,y €
maxp (A) such that x # y. Hence, by Definition 6.1, it follows that {z},{y} €
Maxg (A). Therefore, since () € Maxg (A), we necessarily have card(Maxg (A)) >
3. Thus, the assertion (2) does not also hold. Therefore, the implication (2)=-(1)
is also true. O

Remark 10.2. Note that the assertions 9.6(3) and 10.1(2) are actually
equivalent for any relator R on X.

Therefore, by Remark 9.7, the implication (1)=(2) in Theorem 10.1 does
not also require the relator R to be reflexive.

Now, by Theorems 10.1, 9.3 and 5.4, it is clear that we also have

Theorem 10.3. If R is a reflerive relator on X, then the following
assertions are equivalent:

(1) R is antisymmetric;

(2) card(Ming(A)) <2 forall AC X.

Remark 10.4. Moreover, by Remark 10.2, it is clear that the implica-
tion (1)=-(2) does not require the relator R to be reflexive.

Analogously to Definition 9.1, we may also have the following
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Definition 10.5. A relator R on X is called antifiltered if for any R, S €
R and x € X there exists T € R such that

(RNS™H(z) c(TnT ().

Remark 10.6. More precisely, in this case we should rather say that the
relator R is topologically antifiltered.

Namely, by using some basic operations on relators [12], the above con-
dition can be expressed in the form that (R AR c (R A R™H).

By Definition 10.5, we evidently have the following

Theorem 10.7. If R is a relator on X, then the following assertions are
equivalent:
(1) R is antifiltered; (2) R is antifiltered.

Moreover, analogously to Theorem 9.6, we can also prove the following

Theorem 10.8. If R is a reflexive and antifiltered relator on X, then
the following assertions are equivalent:

(1) R is antisymmetric;

(2) card(A) <1 forall A€ uy;

(3) card(A4) <1 for all A € Maxgr(P(X)).

Proof. If the assertion (2) does not hold, then there exists A € u,, such
that card(A) > 2. Hence, by Theorem 8.5, it follows that A € Ug. Therefore,
by Theorem 9.6, the assertion (1) does not also holds. Thus, the implication
(1)=(2) is true.

While, if the assertion (1) does not hold, then by the second part of the
proof of Theorem 9.6 there exist R, S € R and z,y € X, with x # y, such that
y € (RNS™1)(x). Moreover, since R is antifiltered, there exists T € R such that
(RN S™H(x) € (T NT~1)(x). Therefore, we also have y € (T NT~1)(x), and
hence (z,y) € T and (y,z) € T. Now, by defining A = {z,y} and using the
reflexivity of 7', we can see that A? C T. Hence, by Theorem 7.3, it follows that
A € uy. Therefore, the assertion (2) does not also hold. Thus the implication
(2)=(1) is also true.

Finally, to complete the proof, we note that the equivalence (2) <= (3)
is immediate from Theorem 7.8. O

Remark 10.9. From the above proof and Remark 9.7, we can see that
the implications (1) = (2) <= (3) do not require the relator R to be reflexive
or antifiltered.

Now, by Theorems 10.8, 9.3 and 5.4, it is clear that we also have
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Theorem 10.10. If R is a reflexive and antifiltered relator on X, then
the following assertions are equivalent:

(1) R is antisymmetric;

(2) card(A) <1 forall A€ Ming(P(X)).

Remark 10.11. Moreover, by Remark 10.9, it is clear that the impli-
cation (1) = (2) does not require the relator R to be reflexive or antifiltered.

11. Some supplementary notes and comments. If R is a relator
on X and A C X, then the members of the families

Ubp(A)={BC X: P(A)NUbg(B)C Lbg(B)}

and
LbR(A)={BCcX: P(A)NLbgr(B) C Ubgr(B)}

may be called the proximal quasi upper and lower bounds of the set A in the
relator space X (R), respectively. Namely, by Theorem 3.19, we have

Ubgr(A) C Ubk(A) and Lbgr(A) C LbR(A).
Quite similarly, by Theorem 4.22, the members of the families
ubm(A) ={be X: Anubg(b) Clbgr(b)}

and
b (A)={be X: AnNlbgr(b) C ubgr(b)}

may be called the topological quasi upper and lower bounds of the set A in
the relator space X(R), respectively. However, if R is not a singleton, then in
contrast to Definition 6.1 we can only prove that

{b: {b} € UbR(A)} C ubir(A) and {b: {b} € Lbz(A)} C IbR(A).
Now, analogously to Definitions 5.1 and 6.1, the members of the families
Maxy (A) = P(A) N Ub%R(A) and Min%k (A) = P(A) N LbR(A)

may be called the proximal quasi maxima and minima of the set A in the relator
space X (R), respectively. Moreover, the members of the families

maxp(A) = ANubR(A) and mink (A) = ANlbR(A4).
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may called the topological quasi maxima and minima of the set A in the relator
space X (R), respectively.

The members of the latter families may also be called the maximal and the
minimal elements of the set A in the relator space X (R), respectively. Namely,
if for instance < is a certain order relation on X, then for any A C X and b € X
we have b € maxJ, (A) if and only if b € A, and b < a implies a < b for all a € A.
That is, b is a maximal element of A in the usual sense [4, p. 30]. Therefore, in
view of the various maximality principles (such as those of Zorn, Bourbaki [1],
Bishop—Phelps, Brondsted [2], Brézis—Browder, Altman and the present author
[29], for instance), it seems to be of particular importance to find some algebraic
or analytical conditions in order that the set max} (X) be nonempty.

Analogously to the families uw,, Ugr and L, we may also naturally
consider the families

u";2 ={ACX: AecUbir(A)} and l;'; ={ACX: AeLbir(4)}.
and
Upr ={ACX: AcCubr(4)} and LLr,={ACX: AcCIlbxr(4)}.

Concerning the above families, for instance, we can also prove that u, C v/, and
Ur C Uz, and moreover

u, ={AC X: Maxgr(A) CLbr(A)} ={AC X: Maxgr(A) C Ming(A)}.
Finally, we note that the members of the families
Supg (A) = Ming (Ubg(4)) and supy (A) = min’, (ubk (4))

may, for instance, be called the proximal and the quasi topological suprema of
the set A in the relator space X (R), respectively. Concerning proximal suprema,
for instance we can prove that

Supr(A) = u, NUbg(A) and ur, ={ACX: AecSupr(A)}.
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