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ABSTRACT. We consider the valuation of American options using Monte
Carlo simulation, and propose a new technique which involves approximating
the optimal exercise boundary. Our method involves splitting the boundary
into a linear term and a Fourier series and using stochastic optimization in
the form of a relaxation method to calculate the coefficients in the series.
The cost function used is the expected value of the option using the the
current estimate of the location of the boundary. We present some sample
results and compare our results to other methods.

1. Introduction and numerical method. Options are derivative
financial instruments which give the holder the right but not the obligation to
buy (or sell) the underlying asset. American options are options which can be
exercised either on or before a pre-determined expiry date. For such options
there is, therefore, the possibility of early exercise, and the issue of whether
and when to exercise an American option is one of the best-known problems in
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mathematical finance, leading to an optimal exercise boundary and an optimal
exercise policy, the following of which will maximize the expected return from the
option. Regrettably, despite considerable efforts on the part of many researchers,
no closed form solution has yet been found for this optimal exercise boundary,
except in one or two special cases. One such special case is the American call
with no dividends, when exercise is never optimal, so that the value of the option
is the same as that of a European call; indeed, the value of an American call
will differ from that of the European only if there is a dividend of sufficient
size to make early exercise worthwhile. Another special case is the Roll-Geske-
Whaley formula [45, 27, 28, 48] for the American call with discrete dividends.
For cases where exact solutions are not known, an investor wishing to know the
location of this free boundary must rely either on approximations, for example
the Geske-Johnson formula discussed below [34, 29] for the American put, or else
solve the problem numerically. One popular approximation is the use of series
expansions close to expiry [5, 35, 23, 2, 3, 38]. Obviously, the location of this
optimal exercise boundary is critical in correctly pricing an American option. By
contrast, for European options, which can only be exercised at expiry, the value
of the option can be calculated using the Black-Scholes-Merton option pricing
formula [8, 41], either in terms of error functions or equivalently the cumulative
probability density function for the normal distribution.

For American options, as mentioned above, to date, no closed form so-
lutions have been found, and practitioners usually price such options either by
approximations or by numerically solving the underlying equations. Some of the
more popular approximations include quadratic approximation method used by
MacMillan [36] for the valuation of an American put on a non-dividend paying
stock, which has extended to stocks with dividends by Barone-Adesi and co-
workers [6, 7, 1]; this method, which approximates the early exercise premium,
i.e. the amount by which the value of an American exceeds a European, is
very popular amongst institutional investors. Another well-known approxima-
tion is the Geske-Johnson formula [34, 29, 17, 9] for the American put. Selby
& Hodges [46] give an overview of the Roll-Geske-Whaley and Geske-Johnson
formulae together with an complete analysis of American call options with an
arbitrary number of (discrete) dividends and a suggestion as to how to improve
the numerical implementation of the Geske-Johnson formula; a review of the cur-
rent state of the art of the computational aspects of this problem is given in [26].
If the numerical approach is taken, there are two principal ways of doing this.
One approach involves directly integrating the stochastic d.e. for the price of the
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underlying security, which is assumed to follow a log-normal random walk,
(1.1) dS = (r — Do) Sdt + 0SdX,

where dS' is the change in the stock price in the time interval dt, r is the risk-free
rate, Dy is the dividend yield, o is the volatility and dX is a random walk. Black
& Scholes [8] derived this equation in the absence of dividends, and Merton
[41] added the effect of a constant dividend yield. While the assumption of a
constant dividend yield is questionable for an option on a single security, it is
justifiable for other options, such as foreign exchange, index options and options
on commodities. Typically, this stochastic d.e. (1.1) is integrated numerically,
and then the option valued by calculating the pay-off, which is max (S — F,0) in
the case of a vanilla call and max (E —S,0) in the case of a vanilla put. Merton
[42] observed that it is the boundary conditions that distinguish options, and
in the stochastic framework, the only difference between the put and the call is
the pay-off. Binomial and trinomial trees [21, 12] are two popular methods for
integrating this equation, both of which involve integrating backwards in time
from expiration rather than forwards in time from the time of purchase of the
option.

An alternative approach involves using a no-arbitrage argument to trans-
form the problem into the Black-Scholes-Merton partial differential equation for
the value V(S,t) of the option

oV 02520%V ov
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(1.2) 55

and solving this together with the constraint that the value of the option cannot
be less than the pay-off from immediate exercise. A popular method used together
with this approach is finite-difference [14, 20, 50, 49]. Broadie & Detemple [16]
give a review of all numerical methods.

Although finite-difference methods and binomial/trinomial trees are both
well-suited to tackle the valuation of American options, another numerical method,
Monte Carlo simulation, despite being one of the most flexible and popular meth-
ods available to financial practitioners, appears to less well-suited to that prob-
lem. As with the tree methods, Monte Carlo simulation, pioneered by Boyle [11],
involves integrating the underlying stochastic d.e. (1.1), but involves marching
forwards rather than backwards in time and typically involves generating a large
number of realizations of the possible stock price and then averaging over those
realizations to obtain an average or expected price. Monte Carlo methods en-
counter problems with the free boundary: in the real world, an investor holding
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an American option constantly has to decide whether it is optimal to hold or op-
timal to exercise, and, just as in the real world, a Monte Carlo simulation needs
to make the same decisions. In theory, this can be done using Monte Carlo, but
it would involve each path being split into a multitude of other paths at each
time-step, and the number of realizations required quickly becomes impractical,
as pointed out in [31], while Wilmott [49] has opined that Monte Carlo for Amer-
ican options is “very, very hard”. Because of this, a number of techniques have
been proposed over the years to enable Monte Carlo to be adapted to the valu-
ation of American options, ranging from Malliavin calculus to direct calculation
of the location of the free boundary. Examples of early attempts to apply Monte
Carlo methods to American options include [47, 10, 18, 30, 44, 15, 13]. For a
more detail bibliography, the reader is referred to [32], whose work motivated the
present study. Fu et al. [24] recently gave a partial survey of some of the existing
methods, considering three classes of methods: methods which attempt to mimic
backwards induction methods [47, 30], methods which write the early exercise
boundary in terms of parameters and optimize over those parameters, such as
[25] for discrete dividends, and methods which are based on finding upper and
lower bounds for the optimal exercise boundary [15].

In this study, we shall take the path of direct calculation of the location of
the free boundary coupled with Monte Carlo simulation. However, while others
[32] have proposed considering the position of the free boundary at a number of
points and optimizing the location of the boundary at those points to maximize
the expected pay-off from the option, we have taken a slightly different approach
and supposed that the boundary is composed of a number of basis functions and
then optimized the coefficients accompanying those functions to find the location
of the boundary. The principal advantage of doing this is that we have only
a small number of coefficients to optimize (in our simulations, typically about
100) rather than a large number of grid points (in our simulations, we typically
had 2000 grid points), and therefore the dimension of the problem is significantly
smaller. Thus, if we denote the location of the free boundary as S = S¢(t), then
while others have found the location of the boundary by varying the position of
S¢(t1), -+, 8f(tn), our approach is instead to assume that we can write

(1.3) S(t) =Y cndnl(?),
n=1

for some set of basis functions ¢, (t), and then truncate the series (1.3), so that
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we assume we can write
N

(1.4) Si(t) ~ > cudnlt),
n=1

and then find the location of the free boundary by varying the ¢,. Typically, one
would define a cost function V' (Sp, %o, Sf) to be the value of the option if it was
purchased at time ¢y when the initial stock price was Sy and if we assume that
the exercise boundary is given by Sf(t). Given the location of the boundary and
the initial stock price, the value of the option can be calculated by Monte Carlo
simulation.

Turning to specifics, we consider the valuation of both a plain vanilla
American call and put with constant volatility. For these problems, we know the
location of the free boundary at two points [49]: at expiry T, we know that for
the call, if r > Dg > 0 then

(1.5) S¢(T) =St =Er/Dy > E,
while similarly for the put

(1.6) S¢(T)=Sr=E.

If Dy > r, this behavior is reversed and for the call
(1.7) SH(T) = Sp = E,
while for the put

(1.8) S¢(T)=Sr=Er/Dy < E.

The reasons for this stem from the put-call ‘symmetry’ condition [19, 40], namely
that the prices of the call and put are related by

(1.9) C[S,E, Do,r] = P[E,S,r, D],

while the positions of the optimal exercise boundary for the call and put are
related by

(1.10) S [t, E,r, Do] = E*/S}[t, E, Do, ]

Also, as t — —oo, we can use the perpetual American call and put to give us the
location of the boundary in that limit, finding that

. E
(1.11) Sp(t) — §* = yres
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where

ot = éﬁc#—%r—pwiv@w—J%F+4aw%r+D@+a4,
where we take “4” for the call and “-” for the put. The behavior of perpetual
American options without dividends was discussed in [41], and the extension
to options with a continuous dividend yield is straightforward, and is discussed
further in [39]. In terms of 7 = T — ¢, the tenor or remaining life of the option,
we know the location of the free boundary at the points where 7 = 0 and 7 — oc.
In this paper, we wish to find the value at time ¢y of an American option which
expires at time T > ty, or equivalently the value at 79 = T — ¢y of an option
that expires at 7 = 0. Rather than work directly with the semi-infinite interval
0 <7 <00, we use a standard transformation,

(1.12) g:TIm, Tszg

to transform this interval onto the finite interval 0 < ¢ < 1, so that we wish to
find the value at £ = 1/2 of an option which expires at £ = 0. We then make the
assumption that the free boundary can be written as a linear term together with
a Fourier sine series,

(1.13) Sp=8r+ (5" —Sr)&+ ch sinnmé .

n=1

We chose this form for two principal reasons: firstly, it gives the required behavior
at the two ends and, secondly, it is fairly straightforward to evaluate. We then
sought to chose the ¢, that maximized the cost function mentioned above, namely,
the value of the option. Typically in a multi-dimensional optimization problem
such as this, the numerical algorithm is as follows:

(i) choose a direction in which to optimize

(ii) optimize in that direction

(iii) either stop or return to (i).

For the first part of this, namely choosing the directions in which to optimize, we
used a standard and very popular scheme, conjugate gradients; in fact we used
a popular package [43]. At the end of each step, the code returned the direction
in which to optimize during the next step, although it was necessary to input a
direction for the initial step. For the second part, we used a slightly unorthodox
scheme for our line minimization. Normally, for this part of the algorithm, one
might pick a scheme such as a golden search or a quasi-Newton scheme, such as
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that used in [33]. However, our cost function (the value of the option) is somewhat
unusual in that part of the routine (generation of the random walk, based on [22]
is fairly expensive, but the remainder of the routine is not. The cost function,
meaning the Monte Carlo portion of the code as opposed to the optimization
portion, was essentially the same code used by us to study the effect of using
sub-optimal exercise policies on the value of an option [4], and also to evaluate
the series expansion mentioned earlier [38]. For our particular problem, evaluating
the cost function for several possible boundaries simultaneously (using the same
random walk for every boundary) costs only marginally more than evaluating
it at for a single boundary, although obviously if too many possible boundaries
were used, storage would become an issue. Because of this, we chose to use
a comparatively primitive line minimization routine which essentially involved
evaluating the function at a large number of points on the line (typically, 101)
and then successively refining the grid. Convergence was usually achieved on
each line in a handful of steps, and because of the unusual nature of the cost
function, the line minimization scheme used was fairly efficient. Results obtained
using our numerical method were compared to results obtained using a (100,000
step) binomial tree, and extremely good agreement was found after only a very
small number of iterations.

For the initial step, it was necessary to supply both an initial form for
the boundary and the direction in which to optimize. For all the runs presented
here, we took the initial form to be just the linear term, with the ¢, set equal
to zero, so that the initial boundary was taken to be Sp + (S* — Sp)&. For the
initial step, we maximized in the direction

4 & ™ sin(2m — 1)mé £ 0<€E<1/2
PZ 2m—1) =1 —¢ 1/2<€e<1”

m=1

In the initial step, therefore, we are assuming that the boundary is of the form

de & "gin(2m — 1)7€
Sy = Sr+(S*—Sr) 5—;2 2m—1) )™
m=1

Sr+(S*—Sr+c)f  0<E<1)2
lo S5 —sr—e)—g) 1/2<6<1"

and finding the value of ¢ which maximizes the value of the option. We should
mention that although the exercise boundary lies between 0 < ¢ < 1, our simu-
lation runs from £ = 1/2 to & = 0, and so our simulation only sees the portion
of the boundary between 0 < & < 1/2. Because of this, during the initial step
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we are essentially assuming that the boundary is linear between 0 < £ < 1/2 and
finding the slope that maximizes the value of the option.

One further point should be made: trying to find the location of a free
boundary for a stochastic d.e. is inherently much harder than for a deterministic
PDE, because the free boundary is constantly moving for the stochastic d.e.. In
effect, we are trying to hit a moving target. By that we mean that the optimal
boundary for one realization will differ from that for another realization. Using
Monte Carlo, we average over a large number of realizations, so in some sense,
our free boundary is tending towards the “real” free boundary; however, even
averaging over a large number of realizations, such as the 1,000,000 used in our
code, if the runs were to be repeated using a different seed for the random number
generator, the results would be very slightly different: that difference might only
be in the 10th significant figure for example, but there would still be a difference.
As the number of realizations increases, the difference should decrease. The
deterministic PDE (1.2) can be thought of as an average over the stochastic d.e.
(1.1) when the number of realizations goes to infinity. One other problem that
must be avoided is the generation of a “biased estimate”: if the same paths are
used at every step in the iteration process, we generate not the optimal boundary
for the population as a whole, but rather that for the small number of paths we
have repeatedly used; such a boundary is called a biased estimate.

2. Numerical results. In this section, we present some of our test
results, obtained using the code described in § 1. In Tables 1-6, we show some
sample results for the call, with similar results shown in 7-12 for the put. The
parameters for each run are given in the captions to the tables: these are Sy, the
initial stock price, F, the exercise price, r, the risk-free rate, Dy, the dividend
yield, o, the volatility, and 79 = T — ¢y the tenor of the option. The values shown
in the table are the values of the option from the Monte Carlo simulation using the
current estimate of the free boundary. Along with these values, we also present
the output of our Monte Carlo scheme after iterating in 10 directions, and also

To 0.5 1 2.5 5 10 20

EUro. 0.023195 0.044423 0.086953 0.127347 0.161536 0.160888
AMER. 0.023201  0.044502 0.087941 0.132095 0.180189 0.219917
MONTE. 0.023193 0.044507 0.087959 0.132031 0.179885 0.219269
% ERROR | 0.032543 0.011157 0.020411 0.048978 0.168709 0.294928

Table 1. Call: Run 1; Sg = 0.8, E = 0.9,r = 0.05, Dy = 0.04,0 = 0.25. “Furo.” and
“Amer.” are values of European and American options computed using a 100,000 step
binomial tree, “Monte” is the value returned by our Monte Carlo scheme, and “%
error” is the percentage difference between Amer. and Monte.
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To 0.5 1 2.5 5 10 20

Euro. 0.338368 0.365258 0.398009 0.370437 0.250189 0.094601
AMER. 0.338368 0.365258 0.398447 0.400956 0.400956 0.400954
MONTE. 0.338362 0.365240 0.398368 0.400818 0.400598 0.400292
% ERROR | 0.001800 0.005110 0.019803 0.034392 0.089220 0.164987

Table 2. Call: Run 2; as in Table 1 but So = 0.7, E = 0.4, =0.4, Dy =0.1,0 = 0.1

To 0.5 1 2.5 5 10 20

Euro. 0.057070 0.079965 0.121169 0.157195 0.183689 0.173111
AMER. 0.057107 0.080204 0.122987 0.164251 0.207832 0.242933
MONTE. 0.057116 0.080210 0.122912 0.164192 0.207585 0.242328

% ERROR | 0.017089 0.007819 0.055885 0.035961 0.118953 0.249252
Table 3. Call: Run 3; as in Table 1 but Sy = 0.8, E = 0.8, = 0.05, Dg = 0.04,0 = 0.25

To 0.5 1 2.5 5 10 20

EURro. 0.197894 0.195609 0.188215 0.173993 0.141084 0.081668
AMER. 0.2 0.2 0.200445 0.202105 0.204394 0.205801
MONTE. 0.2 0.2 0.200467 0.202061 0.204257 0.205710
% ERROR | 0.0 0.0 0.011020 0.022036 0.066897 0.044473

Table 4. Call: Run 4; as in Table 1 but Sy = 0.8, F = 0.6, = 0.1, Dy = 0.08,0 = 0.1

So 80 90 100 110 120

EUuro. 1.664384 4.494691 9.250614 15.79748 23.70618
AMER. 1.664384 4.494691 9.250615 15.79749 23.70620
MONTE. 1.663624 4.499741 9.241533 15.80405 23.71288
% ERROR | 0.045668 0.112340 0.098170 0.041537 0.028176

Table 5. Call: Run 5; as in Table 1 but £ = 100, = 0.07, Dy = 0.03,0 = 0.3,70 = 0.5

So 80 90 100 110 120

EURroO. 12.13284 17.34267 23.30064 29.88174 36.97249
AMER. 12.14519 17.36829 23.34836 29.96346 37.10338
MONTE. 12.15495 17.37829 23.31541 29.96723 37.11079
% ERROR | 0.080333 0.057547 0.141142 0.012584 0.019969

Table 6. Call: Run 6; as in Table 5 but 79 = 3

for comparison purpose the values of European and American options obtained
using a (100,000 step) binomial tree. In addition, for each run, we present the
percentage difference between the Monte Carlo results and the American value
found using the binomial tree. Scatter-plots of these errors against the tenor
7 are shown in Fig. 1. For the call, in terms of a dollar metric, the results
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70 0.5 1 2.5 ) 10 20
Euro. 0.118225 0.131894 0.150178 0.155113 0.139426 0.094915
AMER. 0.123108 0.140755 0.171396 0.197211 0.220503 0.236395
MONTE. 0.122902 0.140380 0.170856 0.196370 0.218977 0.233921
% ERROR | 0.167317 0.265892 0.314922 0.426304 0.692309 1.046856

Table 7. Put: Run 1; S =1,FE =1.1,r = 0.05, Dg = 0.01, 0 = 0.25. Rows as in Table 1

To 0.5 1 2.5 5 10 20

Euro. 0.054507 0.067462 0.078114 0.072078 0.048465 0.018024
AMER. 0.057784 0.074915 0.099378 0.115604 0.126328 0.130819
MONTE. 0.057624 0.074696 0.099077 0.115167 0.125311 0.130056
% ERROR | 0.277470 0.293307 0.302315 0.378050 0.804711 0.583097

Table 8. Put: Run 2; as in Table 7 but So =1, F =1, =0.1, Dy = 0.04,0 = 0.25

To 0.5 1 2.5 5 10 20

Euro. 0.222576 0.269822 0.285079 0.219015 0.098440 0.015569
AMER. 0.236077 0.303697 0.391449 0.438619 0.460432 0.465275
MONTE. 0.235644 0.302550 0.390739 0.436820 0.456430 0.464443
% ERROR | 0.183236 0.377816 0.181294 0.410094 0.869300 0.178930

Table 9. Put: Run 3; as in Table 7 but So =4, E =4,r=0.2,Dy = 0.16,0 = 0.25

) 0.5 1 2.5 5 10 20
EURoO. 0.088366 0.025296 0.000755 2.8x107% 5.4x10~1 2.6x10~%0
AMER. 0.3 0.3 0.3 0.3 0.3 0.3
MONTE. 0.3 0.3 0.3 0.3 0.3 0.3
% ERROR | 0.0 0.0 0.0 0.0 0.0 0.0

Table 10. Put: Run 4; as in Table 7 but Sp = 0.9, E = 1.2,7 = 0.5, Dy = 0.02,0 = 0.25

E 80 90 100 110 120

EUuro. 2.650647 5.622126 10.02104 15.76761 22.65020
AMER. 2.688789 5.722066 10.23865 16.18116 23.35970
MONTE. 2.677026 5.687059 10.19451 16.13835 23.33461
% ERROR | 0.437452 0.611783 0.431103 0.264579 0.107408

Table 11. Put: Run 5; as in Table 7 but Sy = 100, = 0.07, Dy = 0.03,0 = 0.4,79 = 0.5

E 80 90 100 110 120

EURoO. 10.30938 14.16152 18.53213 23.36293 28.59839
AMER. 11.32567 15.72195 20.79330 26.49445 32.78102
MONTE. 11.28955 15.66149 20.71020 26.42345 32.68867
% ERROR | 0.318934 0.384593 0.399663 0.267972 0.281705

Table 12. Put: Run 6; as in Table 11 but 79 = 3
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Fig. 1. Scatter-plots of the Monte Carlo error as a function of the life of the option. (a)
call; (b) put

appear to be excellent: amongst the results presented here, the largest percentage
error for the call was less than 0.3%. The error appears to increase with increasing
tenor for the call, and this is at least partly due to the fact that we used the same
number of grid points regardless of the value of 7y, meaning that the step size, and
consequently the error of the cost function, increases as 7y increases As a point
of comparison for the accuracy of our results, in real life, option prices trade in
discrete increments (the tick size). On the CBOE for example, the minimum tick
size for DJIA options trading below $300 is $5, and $10 for those above $300,
while for equity options, the minimum tick size for options trading below $300 is
$6.25, and $12.50 for those above $300, so that for an equity option trading below
$300, the tick size is in excess of 2%, meaning that accuracy of our results is well
within the tick size. For the put, the errors are a little larger: the largest error
amongst the results presented here was 1.047%, which is still less than the tick
size mentioned above. It is not entirely clear why the results for the put are not
as good as those for the call, put presumably it is due in part to the well-known
unpleasant behavior of the put boundary close to expiry [5, 35, 23, 3].

We should also mention that in some of the runs, immediate exercise
was optimal, and our code was able to identify those cases and record them
appropriately. This happened in Run 3 for the call, shown in Table 3, for 79 = 0.5
and 1, and also for Run 4 for the put, shown in Table 10, for all the values of
7o considered. There were also some cases where there was very little difference
between the value of the American and European options, meaning that the
starting price Sy was sufficiently far from the optimal exercise boundary that
only a few outlying simulations would hit the boundary and therefore the option
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Fig. 2. Sample run for the call, corresponding to Run 1 in Table 1: Sy = 0.8, £ = 0.9,
r = 0.05, Dy = 0.04, 0 = 0.25. (a) 79 = 0.5; (b) 70 = 1; (¢) 70 = 2.5; (d) 70 = 5; (e)
70 = 10; (f) 790 = 20. Dashed line is location of boundary at expiry. Solid lines are

successive iterations for the boundary.
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70 = 10; (f) 790 = 20. Dashed line is location of boundary at expiry. Solid lines are

successive iterations for the boundary.
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would almost always be held to expiry. Examples of this include Run 1 for the
call, shown in Table 1, with 79 = 0.5. In these cases, although the percentage
error between the true value and the Monte Carlo value remained very small,
the code performed less well in terms of how much of the early exercise premium
(meaning the difference between the European and the American options) was
captured.

In Fig. 2, we plot the location of the exercise boundary after the first ten
iterations for the call simulations shown in Table 1. Whereas we saw in Fig. 1
that the error under a dollar metric appears to increase with the tenor 7y for the
call, under an “eyeball metric” it appears to decrease with increasing tenor. In
Fig. 2(a) for example, there is a fairly large oscillation close to expiry for 7y = 0.5,
while the boundary for 79 = 20 shown in In Fig. 2(f) is noticeably much smoother.
Presumably if a larger number of basis functions were used, the boundary would
be better resolved and the oscillations would be smaller.

Similar plots for the put are presented in Fig. 3, where we plot the location
of the exercise boundary after the first ten iterations for the simulations shown
in Table 7. For this run, the oscillation discussed above are actually largest for
the intermediate values of 7y, such as 79 = 2.5, 5 and 10, than for either the very
small or very large values of 7g.
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s s

x x
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@ ? 04 | -
02 a

O 1 1 1 0 1 1 1
0 5 10 15 20 0 5 10 15 20
tenor t tenor t

Fig. 4. Exercise boundaries for various values of 79 superimposed. (a) call, from Table 1
and Fig. 2; (b) put, from Table 7 and Fig. 3

In Fig. 4(a), we superimpose the results of Fig. 2 for the call, and do the
same in Fig. 4(b) for the results of Fig. 3 for the call, superimposing the optimal
exercise boundary after ten iterations for various values of the tenor 75. The
oscillation seen in Fig. 3 is clearly visible here as well for intermediate values of
70. However, despite the fact that the exercise boundary appears dreadful under
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an eyeball metric, we would reiterate that it does very well under a dollar metric,
meaning that an investor who used this boundary as his guide as to whether to
hold an option or exercise it would do very well.

In closing this section, a few points should be made about our results.
During the iteration process, we noticed that sometimes the value of an option
went down from one iteration to the next: it should be remembered that we were
using a different set of paths for each iteration, and so the value of the same
estimate of the free boundary will differ from one iteration to the next. Similarly,
since we were using a finite number of realizations, on some iterations, the value
of the option will exceed the American value slightly. These two effects would
presumably decrease if a larger number of paths were taken, and indeed some
trial runs with more paths suggest that as the number of paths is increased, the
variability is reduced but not eliminated. Along the same lines, it appears that
although our results are highly accurate (indeed, extremely accurate for the call),
it appears that as we take more and more iterations the value does not converge
exactly but remains within a tight band around the true value, with this band
becoming narrower as more paths are used. We will say a few more words about
this in the final section, but we believe it is a generic problem with trying to fix
a free boundary in a stochastic framework.

3. Discussion. In the preceding sections, we have proposed a new
algorithm to allow Monte Carlo methods to be used for American options; this
algorithm involves approximating the optimal exercise boundary as a linear term
together with a finite sum of some basis functions, in our case sine functions on
a transformed domain. In the sample results we have presented, it would appear
that the method very quickly arrives at a very good approximation to the optimal
exercise boundary where “good’ means that if an investor used the approximate
boundary as the basis of his exercise strategy, he would expect returns very close
to the actual value of the option. However, the scheme does not pin down the
free boundary exactly: this is less of a problem the more realizations are taken
(and even with the 1,00,000 paths used in the results presented here, we do not
consider it a “major” problem, since using the approximate boundary in that case
would still enable an investor to capture almost all of the value of the option). We
believe this is a problem inherent with trying to fix a free boundary in a stochastic
framework: as we discussed in the Introduction, it occurs because we are trying
to hit a moving target, and as we mentioned in the previous section, when we
increased the number of paths the variability was reduced but not completely
eliminated. In addition, the method appears to work poorly on an eyeball metric
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despite working extremely well on a dollar metric. This might be due to the non-
analytic behavior of the boundary close to expiry, where it is thought to behave
at best like /7 and at worst like V7 In7 [5, 35, 23, 2, 3], and we would suggest
that it might be worthwhile to try different basis functions which better capture
the behavior close to expiry.
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