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Abstract. LetD denote the open unit disc and f : D → C be meromorphic
and injective in D. We further assume that f has a simple pole at the point
p ∈ (0, 1) and an expansion

f(z) = z +
∞
∑

n=2

an(f)zn, |z| < p.

Especially, we consider f that map D onto a domain whose complement
with respect to C is convex. It is proved that this implies

K :=

{

w :

∣

∣

∣

∣

w +
p(1 + p2)

(1 − p2)2

∣

∣

∣

∣

>
2p2

(1 − p2)2

}

⊂ f(D)

and that for any c ∈ C\K there exists a function f satisfying the conditions
mentioned above such that c does not belong to f(D). This means that K
is the exact Koebe domain for the class of functions considered here.
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For a family A of functions f analytic in the open unit disc D the Koebe
domain K(A) is defined by

K(A) :=
⋂

f∈A

f(D).

There are many families of functions that play an important role in Geometric
Function Theory for which the Koebe domains have been determined, for example
the family of schlicht functions and the family of convex functions. Since these
families are invariant under rotations around the origin the Koebe domains are
discs with center in the origin. In the present paper we consider a family which
is not invariant under rotations and we shall determine its Koebe domain. We
are concerned with the family of concave univalent functions with pole p ∈ (0, 1)
denoted by Co(p) here. To be precise, we say that a function f : D → C belongs
to the family Co(p) if and only if:
(1) f is meromorphic in D and has a simple pole at the point p ∈ (0, 1).
(2) f has an expansion

f(z) = z +

∞
∑

n=2

an(f)zn, |z| < p.

(3) f maps D conformally onto a set whose complement with respect to C is
convex.

There are results on Co(p) that resemble very much those on convex
functions, for example it has been proved in [3] that |an(f)| > 1 for f ∈ Co(p).
Other results look very different from the analogous results on convex functions.
Results of this type are those on the domains of variability of the Taylor coeffi-
cients an(f), f ∈ Co(p) (compare [6], [1], [3], [2] and especially [5] where further
references on Co(p) may be found).
Concerning covering theorems on Co(p) it may be deduced from the results of
J. Miller (see [6, Theorem 5]) that

{

−p

1 + p2

}

=
⋂

f∈Co(p)

(C \ f(D)).

Further, it was proved in [1] and in [2] that for f ∈ Co(p), c ∈ C\f(D), the sharp
inequalities

|c| ≥
p

(1 + p)2

and

−
p

(1 − p)2
≤ Re(c) ≤ −

p

(1 + p)2
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are valid.
The present paper is devoted to the determination of the Koebe domain of Co(p).
We show

Theorem 1. Let p ∈ (0, 1). Then

K(Co(p)) =

{

w :

∣

∣

∣

∣

w +
p(1 + p2)

(1 − p2)2

∣

∣

∣

∣

>
2p2

(1 − p2)2

}

.(1)

The proof of (1) will be divided into the two natural steps. First, we prove

Theorem 2. Let p ∈ (0, 1), f ∈ Co(p) and c ∈ C \ f(D). Then the
inequality

∣

∣

∣

∣

c +
p(1 + p2)

(1 − p2)2

∣

∣

∣

∣

≤
2p2

(1 − p2)2
(2)

is valid.

P r o o f. Since C \ f(D) is starlike with respect to c and f is normalized
as defined above and has a simple pole at the point p, the function

F (z) :=
(1 − z

p
)(1 − z p)f ′(z)

f(z) − c
,

resp. its holomorphic continuation from D \ {p} onto D has a positive real in D
(compare [5, Theorem 6]). This and the univalence of f imply that the function
G defined by

G(z) =
1

F (z)
, z ∈ D,

is holomorphic in D and has a positive real part there. Further, we use

G(0) = −c and G(p) =
p

1 − p2
.

Let c = x+ iy, x, y ∈ R. From the properties of the function G we conclude that
x < 0 and that there exists a function ϕ holomorphic in D such that ϕ(D) ⊂ D,
ϕ(0) = 0 and

−
G(z) + iy

x
=

1 − ϕ(z)

1 + ϕ(z)
, z ∈ D.

Hence, there exists a function Φ holomorphic in D such that Φ(D) ⊂ D,

−
G(z) + iy

x
=

1 − zΦ(z)

1 + zΦ(z)
, z ∈ D,

and

−

p
1− p2

+ iy

x
=

1 − pΦ(p)

1 + pΦ(p)
.
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This equation together with Φ(D) ⊂ D yields that for every c = x+iy ∈ C\f(D)
there exists a ζ ∈ D such that

−

p
1− p2

+ iy

x
=

1 − pζ

1 + pζ
=: u+ iv,(3)

where u+ iv varies in the disc described by
(

u −
1 + p2

1 − p2

)2

+ v2 ≤

(

2p

1 − p2

)2

.(4)

From (3) we get

y = −x v

and
p

(1 − p2)
= −xu.

Now, we solve these two equations with respect to u and v and insert this into
(4). The resulting inequality is easily shown to be equivalent to (2). �

Remark. An alternative proof of Theorem 2 may be deduced from the
fact that the disc described by (2) is the starlike center region for the class of all
starlike meromorphic functions with pole p and the above normalization in the
origin. The definition and determination of this region may be found in [4].

To end the proof of Theorem 1, it remains to show that for any c satisfying
(2) there exists a function f ∈ Co(p) such that c ∈ C\f(D). In view of the Koebe
theorem for the family of schlicht functions, the natural candidates for such f

are the functions f ∈ Co(p) that map the unit disc onto C minus a segment of a
line. These functions may be written in the form

fθ(z) =

z −
p(1 − eiθ)

1 − p2eiθ
z2

(

1 − z
p

)

(1 − zp)
, z ∈ D, θ ∈ [0, 2π) fixed.(5)

In [6], [1] and [3] it has been proved that these functions belong to Co(p) and
that they have the above mentioned mapping property. For our aims, we need
detailed information about the slit. These informations are the content of the
following theorem.

Theorem 3. Let θ ∈ [0, 2π) and fθ be defined by (5) and τ ∈ [0, 2π) by

eiτ =
eiθ − p2

1 − p2eiθ
.(6)
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Then

C \ fθ(D) = f(∂D) =

{

c : c = −
p

1 + p2

(

1 + ei
τ

2

2p cos
(

ψ + τ
2

)

1 + p2 − 2p cos ψ

)

, ψ ∈ [0, 2π)

}

.(7)

Let dk, k = 1, 2, denote the endpoints of the slit (7). Both of them lie on the
boundary of the disc described by (2), i. e.

∣

∣

∣

∣

dk +
p(1 + p2)

(1 − p2)2

∣

∣

∣

∣

=
2p2

(1 − p2)2
, k = 1, 2.(8)

P r o o f. The verification of (7) is accomplished setting z = eiψ, multiply-
ing nominator and denominator of fθ(e

iψ) by e−iψ and using the abbreviation (6).
To prove (8) we have to determine the values ψk, k = 1, 2, such that dk = eiψk .
These are the roots of the equation

d

dψ

(

2p cos
(

ψ + τ
2

)

1 + p2 − 2p cos ψ

)

= 0.

Hence, we get

sin
(

ψk +
τ

2

)

=
2p

1 + p2
sin

τ

2
.

For the proof of (8) we derive from this

cos
(

ψk +
τ

2

)

=
±
√

(1 + p2)2 − 4p2 sin2 τ
2

1 + p2

and

cos ψk =
2p sin2 τ

2 ± cos τ2

√

(1 + p2)2 − 4p2 sin2 τ
2

1 + p2
,

where, as in the following, the upper sign belongs to ψ1 and the lower one to ψ2.
Using these formulae and the abbreviation dk = xk + iyk, xk, yk ∈ R, k = 1, 2,
and some elementary computation, we get

xk +
p(1 + p2)

(1 − p2)2
=

2p2

(1 + p2)(1 − p2)2

(

2p sin2 τ

2
∓ cos

τ

2

√

(1 + p2)2 − 4p2 sin2 τ

2

)

and

yk =
2p2

(1 + p2)(1 − p2)2

(

−2p sin
τ

2
cos

τ

2
∓ sin

τ

2

√

(1 + p2)2 − 4p2 sin2 τ

2

)

.
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Adding the squares of the right sides reveals the truth of (8). This ends the proof
of Theorem 3. �

The formulae (7) and (8) show that for any c in the disc defined by (2)
there exists a function fθ such that c ∈ C \ fθ(D). This fact together with
Theorem 2 proves Theorem 1.
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