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Abstract. Denote by PolCn the space of all complex monic degree n
polynomials in one variable and by PPn the product space PolCn×PolCn−1×
. . . × PolC1 . Stratify the space PPn according to the multiplicities of the
roots of the n polynomials and the presence of common roots between any
two of them. Define the map π : PolCn →֒ PPn by P 7→ (P, P ′/n, P ′′/n(n−
1), . . . , P (n−1)/n!). A stratum is called overdetermined if its codimension in
PPn is greater than the codimension of its intersection with π(PolCn) in
π(PolCn). In the paper we give different examples of overdetermined strata.
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1. Introduction. Define the general family of polynomials of degree

n as the family Qn = xn + a1x
n−1 + . . . + an. In what follows we assume that

a1 = 0 (one can shift the variable x); if, in addition, a2 6= 0, then one can further

normalize the family by setting a2 = −1 (one can change the scale of the x-axis).

In the definitions we follow the same ideas as in [3]. Denote by PolCn the

space of all monic degree n polynomials in one variable with complex coefficients.

Denote by PPn the product space PolCn × PolCn−1 × . . . × PolC1 . A point of

PPn is an n-tuple of polynomials (Pn, Pn−1, . . . , P1) of respective degrees.

One can decompose the space PPn according to the multiplicities of the

roots of the different polynomials and the presence and multiplicities of their

common roots. The combinatorial objects enumerating the strata should be

called coloured partitions since they are partitions of C2
n+1 not necessarily distinct

points on C divided into groups of cardinalities n, n−1, . . . , 1 which we can think

of as having different colours (it is easy to check that this decomposition is actually

a Whitney stratification).

There is a natural embedding map π : PolCn →֒ PPn sending each monic

polynomial P of degree n to (P,P ′/n, P ′′/n(n − 1), . . . , P (n−1)/n!).

Let L be a coloured partition of C2
n+1 coloured points, StL ⊂ PPn be

the corresponding stratum and π(StL) = StL∩π(PolCn) be its (probably empty)

intersection with the embedded space of polynomials π(PolCn). We call this

intersection a stratum in Qn. Note that dimStL equals the number of parts in L.

Definition 1 (B. Z. Shapiro). The stratum StL is called overdetermined

if the codimension c1 of StL in PPn is greater than the codimension c0 of π(StL)

in π(PolCn) in the assumption π(StL) 6= ∅. We call π(StL) an overdetermined

stratum in Qn.

Example 2. If a coloured partition contains the condition that a multuple

root of some Pi should coincide with a root of Pi+1, then each such nonempty

stratum is overdetermined since a multiple root of P (i) is automatically a root of

P (i+1).

Definition 3. An overdetermined stratum is called non-trivial if the

difference c1 − c0 is due not only to the presence of multiple roots (in P and in

its derivatives).

The aim of the present paper is to present different examples of non-trivial

overdetermined strata.
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Definition 4. A real polynomial is called hyperbolic (resp. strictly hy-

perbolic) if it has only real roots (resp. only real and distinct roots).

In previous papers (see [1] and [2]) the non-trivial strata in the case of

hyperbolic polynomials of degree ≤ 5 were fully classified (the word “non-trivial”

is omitted there). Overdetermined strata of the family Qn in the case of real

polynomials are defined in the same way as in the complex case.

Remark 5. A polynomial P such that there are > n − 2 equalities

between roots of P , P ′, . . ., P (n−1) belongs to an overdetermined stratum in Qn.

Indeed, the latter depends on n − 2 parameters (after the normalization a1 = 0,

a2 = −1).

2. Examples of overdetermined strata in the case of complex

polynomials. The following example shows how to construct overdetermined

strata on the basis of polynomials divisible by their derivatives of order k, k > 1.

Example 6. For l, k ∈ N, 1 < l ≤ k < n, l ≤ n/2, set k = ql + r,

n = q1l + r1, q, r, q1, r1 ∈ N ∪ 0, r, r1 ≤ l − 1. Consider the set S of complex

polynomials P such that κP (x) = xrΦ(xl)P (k)(x) (∗) for some monic polynomial

Φ of degree q and κ = n!/(n − k)!.

One checks directly (by comparing the coefficients from left and right in

(∗)) that P must be of the form xr1Ψ(xl) where Ψ is a monic polynomial of degree

q1. It is clear that P (i)(0) = 0 (∗∗) if i − r1 is not a multiple of l.

Lemma 7. For δ := n − k + q1(l − 1) + r1 − 1 > n − 2 (∗ ∗ ∗) the points

(i.e. the polynomials) of the set S belong to overdetermined strata in Qn.

Remarks 8. 1) We do not claim that the polynomials from S belong to

one and the same stratum because for some of them additional equalities between

roots of P and of its derivatives might hold, hence, the polynomial will belong to

a stratum of lower dimension.

2) Condition (∗ ∗ ∗) can be achieved by fixing k and l and by choosing n

sufficiently large w.r.t. k (one has δ = (n(2l − 1)/l) − k + (r1/l) − 1).

P r o o f. Condition (∗) provides n − k equalities between the roots of P

and of P (k), and condition (∗∗) provides q1(l − 1) + r1 such equalities; when

defining δ we subtract 1 because P and P (k) might have a common zero root and

one condition might be a corollary of the others. There remains to be applied

Remark 5. �
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Example 9. Use the notation from Example 6. Consider the set T of

complex polynomials P such that κP (x) = (xk +ax+ b)P (k)(x) (∗∗∗∗), a, b ∈ C∗

or a, b ∈ R∗.

Lemma 10. If k is large enough, then the set T consists of polynomials

belonging to overdetermined strata.

P r o o f. For k large enough many of the coefficients of P must be 0

(for such k one can say that xk + ax + b is a fewnomial). Namely, if P =

xn + a1x
n−1 + . . . + an, then one must have ai = 0 for

i = 1, 2, . . . , k−2, k+1, k+2, . . . , 2k−3, 2k+1, 2k+2, . . . , 3k−4, 3k+1, 3k+2, . . . ,

i.e. for k0 := (k − 2) + (k − 1) + . . . + 1 = (k − 2)(k − 1)/2 indices i. This means

that k0 of the derivatives of P vanish at 0 which implies that there are at least

k0 − 1 equalities between roots of P and its derivatives.

Equality (∗ ∗ ∗∗) provides n − k equalities between the roots of P and

P (k) of which at most one is a corollary of the previously found equalities (some

roots might equal 0). Hence, there are at least s := n − k + (k − 2)(k − 1)/2 − 2

equalities between roots of P and its derivatives and for s > n−2 (i.e. for k ≥ 5)

the set T consists of points belonging to overdetermined strata, see Remark 5. �

Remark 11. The above example is not valid for hyperbolic polynomials

because the fewnomial xk + ax + b is not hyperbolic for k > 3. (If it were

hyperbolic, then so would be its derivative kxk−1 + a which is the case only for

a = 0; hence, one must also have b = 0.)

Further we use the Gauss lemma, see [4]: For a complex polynomial P of

one complex variable the roots of P ′ belong to the convex hull of the roots of P .

A root of P ′ can belong to the border of this convex hull only if it is also a root

of P (hence, a multiple root of P ).

Lemma 12. Use again the notation from Example 6. If l = 2, if the

polynomials are real, and if Φ(.) is supposed to have only positive real roots, then

the set S contains only points belonging to overdetermined strata consisting of

hyperbolic polynomials (as l = 2, they are even or odd together with n).

P r o o f. Indeed, suppose that P has a complex non-real root x0, of mul-

tiplicity m0. One can choose x0 to be a vertex of the convex hull of the set of

roots of P . Hence, x0 is a root of P ′ of multiplicity m0 − 1. If m0 = 1, then x0

remains outside the convex hull of the set of zeros of P ′ and (by induction on k)
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of P (k) for 1 ≤ k < n. This means that equality (∗) is impossible (recall that all

roots of xrΦ(xl) are real). If m0 > 1, then in a similar way one shows that x0

is a root of P (k) of multiplicity < m0 or a non-root which makes (∗) impossible

again. �

3. Obtaining new examples by integrating old ones. There

is an almost evident way to obtain new overdetermined strata in Qn+1 by inte-

grating polynomials of degree n (which define overdetermined strata in Qn) and

by rescaling the x-axis. In such a way all equalities between roots of Qn and its

derivatives give rise to equalities between the roots of Q′
n+1 and its derivatives.

The codimensions c0 and c1 are preserved except for special values of the

constant of integration C for which there are new equalities, involving roots of

Qn+1. Hence, for such values of C the polynomial belongs to a stratum of lower

dimension than for generic values. For these special values of C, however, one

still has c1−c0 > 0, i.e. the polynomial belongs to an overdetermined stratum. If

the stratum in Qn which is being integrated is non-trivial, then so are the strata

in Qn+1 obtained from it by integration.

If one considers the case of hyperbolic polynomials, then one has to check

whether the given polynomial has a hyperbolic primitive which is not always the

case.

Notation 13. 1) For a continuous function W we set W (−1) =
∫ x

0 W (t)dt.

2) For a hyperbolic polynomial P of degree ≤ 5 we denote the roots of P ,

. . ., P (4) respectively by x1 ≤ . . . ≤ x5, f1 ≤ . . . ≤ f4, s1 ≤ s2 ≤ s3, t1 ≤ t2 and l1.

Their arrangement can be described by a configuration vector whose components

indicate the relative positions of the roots (coinciding roots are put in square

brackets). E.g., the configuration vector (0, f, s, [0t], f, [0sl], f, [t0], s, f, 0) defines

the arrangement

(AR) : x1 < f1 < s1 < x2 = t1 < f2 < x3 = s2 = l1 < f3 < t2 = x4 < s3 < f4 < x5

Example 14. The polynomial W = x5−x3+9x/100 = x(x2−1/10)(x2−
9/10) is divisible by W ′′′ = 60(x2 − 1/10). It defines an overdetermined stratum

realizing the arrangement (AR). One has W (−1) = x2(x4/6−x2/4+9/200) which

is hyperbolic (to be checked directly) and has a double root (a local minimum) at 0

and simple roots elsewhere; hence, for b > 0 small enough the polynomial W (−1)−



382 Vladimir Petrov Kostov

b is strictly hyperbolic. It belongs to an overdetermined stratum (because so does

W and there hold the same equalities between roots of W and its derivatives,

hence, between roots of the derivatives of W (−1)). However, for different values

of b different arrangements, hence, different strata might be defined. Indeed,

denote the roots of W (−1) by p1 ≤ · · · ≤ p6.

A priori one can have exactly one of the three conditions (remember that

b can be varied):

a) p2 < f1 and p5 > f4;

b) p2 = f1 and p5 = f4;

c) p2 > f1 and p5 < f4.

In case c) one has a priori also three possibilities:

c1) p2 < s1 and p5 > s3;

c2) p2 = s1 and p5 = s3;

c3) p2 > s1 and p5 < s3.

One has also to study the three possibilities p3 < f2 and p4 > f3; p3 = f2

and p4 = f3; p3 > f2 and p4 < f3 and see how they interact with the possibilities

listed above.

We do not claim that all these possibilities are realized but only that they

a priori can exist. Notice that when one has equalities, then the corresponding

overdetermined stratum is of smaller dimension than the strata in which there

are inequalities, see part 1) of Remarks 8.

Remark 15. The above example can be given in the case of complex

polynomials as well (one has to forget about hyperbolicity and the inequalities

with > or < have to be replaced by inequalities with 6=). In Example 14 (in the

case of hyperbolic polynomials) we were lucky because there exist values of b > 0

for which W (−1) − b is strictly hyperbolic. This is not always the case, see part

1) of the next example.

Definition 16. For n ≥ 3 call Gegenbauer’s polynomial the unique

polynomial P with first three coefficients equal to 1, 0, −1 which is divisible by

its second derivative.

Remark 17. It turns out that P is even or odd together with n and

strictly hyperbolic. For n ≥ 4 it defines an overdetermined stratum because all

its derivatives which are odd polynomials vanish at 0 (and P ′′ divides P ).

Example 18. 1) Consider the case when n is even. Observe that for

Gegenbauer’s polynomial one has
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mP (−1) = (x2 − α)P ′ − 2xP, m = n(n − 1) − 2, α = (4n − 6)/n(n − 1).

Hence, P (−1) is the only primitive of P which is hyperbolic (and it is not strictly

hyperbolic). Indeed, P (−1)(0) = 0 and P (−1) changes sign at the non-zero roots

of P except at the biggest and the smallest one (they equal ±√
α) where P (−1)

has double roots. The left of these double roots is a local maximum and the right

one is a local minimum. Hence, for any b ∈ R∗ the polynomial P (−1) + b is not

hyperbolic.

2) If n is odd, then P1 := ((x2 − α)P ′ − 2xP )/m is a primitive of P

(different from P (−1)), with P1(0) < 0 for n = 4n1 + 1 and P1(0) > 0 for

n = 4n1−1; P1 changes sign at the roots of P except at ±√
α where it has double

roots which are local minima. Hence, for b > 0 small enough the polynomial

P1 − b is strictly hyperbolic.

3) The polynomials P (−1) from 1) and P1 from 2) (for n ≥ 5) belong to

overdetermined strata.

Lemma 19. Any natural power k > 1 of Gegenbauer’s polynomial P

with n ≥ 3 defines a non-trivial overdetermined stratum in Qkn.

P r o o f. The polynomial P k has n k-fold roots which gives n(k − 1)

equalities between roots of P k and its derivatives. There are n − 2 roots in

common between (P k)(k+1) and P k. Indeed, (P k)(k+1) is a sum of products of

k factors; each factor is either P or one of its derivatives. In each product the

sum of the orders of derivation equals k + 1. Hence, each product contains at

least one factor P or P ′′. Thus the common roots of P and P ′′ add n − 2 more

equalities and there remain to be added the equalities due to the vanishing of the

derivatives of odd order at 0. (These equalities make the stratum non-trivial.)

Hence, there are more than kn − 2 independent equalities between roots of Qkn

and its derivatives. There remains to use Remark 5. �

Open questions 20. 1) Characterize all overdetermined strata in Qn.

2) Call an overdetermined stratum in Qn new if it is not obtained from

an overdetermined stratum in Qn−1 as a result of integration. Is it true or not

that in the case of strictly hyperbolic polynomials all new overdetermined strata

contain only polynomials which are even or odd together with n ?

4. Another example. The following example shows that overdeter-
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mined strata are not always defined as in Examples 6 and 9, i.e. when P is

divisible by P (k) for some 1 < k (we nevertheless exclude the trivial case when

k = n − 1 and n is odd), or by integrating such examples, see Example 18. In

order to better visualize the arrangement of the roots of a polynomial of degree

6 and of its derivatives we represent them in a triangle. We denote the roots of

P , P ′, . . ., P (5) respectively by xi, fi, si, ti, Fi, l (to match “first”, “second”,

“third”, “fourth” and “last”). The places of the roots in the triangle reveal the

fact that the roots of P (k) are between the roots of P (k−1):

l

F1 F2

t1 t2 t3

s1 s2 s3 s4

f1 f2 f3 f4 f5

x1 x2 x3 x4 x5 x6

Lemma 21. Set P = x6 − x4 + ax2 + b, a, b ∈ R. The coefficients a, b

can be chosen such that P be strictly hyperbolic and

a) t1 = x2, t3 = x5, s2 = x3, s3 = x4;

b) for 0 ≤ i < j ≤ 4, P (i) is not divisible by P (j).

By Remark 5, for the given a, b the polynomial P belongs to an overde-

termined stratum. Indeed, except the four equalities from a) all derivatives of

odd order vanish at 0 which adds two more equalities.

P r o o f o f L e m m a 21. 10. One has P ′′′ = 120x(x2 − 1/5). Hence,

t1,3 = ±1/
√

5 and one has t1 = x2, t3 = x5 only if P (±1/
√

5) = 0, i.e. only if

b = 4/125 − a/5 (A).

20. Next, one has P ′′ = 30x4 − 12x2 + 2a and

P = (x2/30 − 1/50)P ′′ + R where R = (14a/15 − 6/25)x2 + b + a/25 .

The roots s2,3 must be roots of R as well as of P ′′. Hence, one must have

s2
2,3 = − b + a/25

14a/15 − 6/25
=

30a − 6

175a − 45
(we use (A) here).

The condition P ′′(s2,3) = 0 is equivalent to
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15(30a − 6)2 − 6(30a − 6)(175a − 45) + a(175a − 45)2 = 0

30. Set c = 5a. The last equation takes the form

U(c) := 49c3 − 270c2 + 441c − 216 = 0

One has U ′(x) > 0 for x ∈ [0, 1]. Indeed, for x ∈ [0, 1] one has U ′′ < 0; as

U ′(1) > 0, one has U ′(x) > 0 for x ∈ [0, 1]. As U(0) < 0, U(1) > 0, the last

equation has a single real root in (0, 1). For this root one has a ∈ (0, 1/5). For

the given value of a (hence, of a, b)

– the polynomials P ′′ and P ′ are strictly hyperbolic (follows from a ∈
(0, 1/5));

– conditions a) hold.

40. As x2 = t1 < s2 = x3 < s3 = x4 < t3 = x5, all roots x2, x3, x4, x5 are

real. The polynomial P is even and x2 = −x5, x3 = −x4 because P ′′ is even and

P ′′′ is odd. So either x1, x2 are real, one has x1 < x2, x5 < x6 and P is strictly

hyperbolic (equalities are impossible because x2 = t1 < x3, x4 > t3 = x5), or x1,6

are complex conjugate. The last possibility must be excluded because in this case

x1 and x6 must be purely imaginary, x2 and x3 must be vertices of the convex

hull of the set of roots of P and f1, f5 must lie outside this convex hull which

contradicts the Gauss lemma. Hence, P is strictly hyperbolic.

50. There remains to check that condition b) also holds. One cannot

have P (j)|P (i) if j is odd and i is even. It is also clear from condition a) that

one does not have P ′′|P , P ′′|P ′ or P ′′′|P ′. One has P (4)|P ′′ (resp. P (4)|P ′) only

if a = 1/3 6∈ (0, 1/5) (resp. a = 3/25, hence, c = 3/5, which is not a root of U).

One cannot have P (4)|P because either F1 = x2, F2 = x5 (impossible by a)) or

F1 = x3 = s2, F2 = x4 = s3 and P (4)|P ′′ which possibility is already excluded. �
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