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Abstract. A two-sided conditional confidence interval for the scale para-
meter θ of a Weibull distribution is constructed. The construction follows the
rejection of a preliminary test for the null hypothesis: θ = θ0 where θ0 is a
given value. The confidence bounds are derived according to the method set
forth by Meeks and D’Agostino (1983) and subsequently used by Arabatzis et
al. (1989) in Gaussian models and more recently by Chiou and Han (1994,
1995) in exponential models. The derived conditional confidence interval
also suits non large samples since it is based on the modified pivot statistic
advocated in Bain and Engelhardt (1981, 1991). The average length and the
coverage probability of this conditional interval are compared with whose
of the corresponding optimal unconditional interval through simulations.
The study has shown that both intervals are similar when the population
scale parameter is far enough from θ0. However, when θ is in the vicinity
of θ0, the conditional interval outperforms the unconditional one in terms
of length and also maintains a reasonably high coverage probability. Our
results agree with the findings of Chiou and Han and Arabatzis et al. which
contrast with whose of Meeks and D’Agostino stating that the unconditional
interval is always shorter than the conditional one. Furthermore, we derived
the likelihood ratio confidence interval for θ and compared numerically its
performance with the two other interval estimators.
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1. Introduction. The estimation following rejection of a preliminary

hypothesis used, for instance, in Chiou and Han[5, 6], Meeks and D’Agostino

[14], and, Arabatzis et al. [1] is certainly the closest inference procedure to the

one initiated in Bancroft [4]. The distinction between these two procedures has

been pointed out, among others, in Mahdi [9]. For a detailed account on the

use of preliminary test procedures, see, for instance, Jugde and Bock [8], Mahdi

[10, 12], Rai and Srivastava [15], Giles et al. [7] and reference therein. In Chiou

and Han [5, 6], the effect of the use of conditional interval estimation for the shape

and scale parameters, following rejection of a preliminary test, in a two-parameter

exponential population has been investigated. The inference is based on a type II

censored single sample. The authors have shown that the conditional confidence

interval is more accurate than the usual unconditional interval for some values of

the parameter space. On the other hand, the conditional interval estimation based

on two-sample data from exponential populations has been recently investigated

in Mahdi [9], and, the case of normal populations has been treated in Mahdi and

Gupta [11].

In this paper, we consider the problem of interval estimation for the scale

parameter θ of a Weibull distribution when it is suspected that θ = θ0 for some

given θ0. This interval is compared in terms of length and coverage probability to

the optimal corresponding unconditional interval with same targeted confidence

level. Furthermore, we compare these confidence intervals to the likelihood ratio

based confidence interval recommended in Meeker and Escobar [13] for the shape

parameter of the Weibull distribution. It is worth noting that the Weibull distri-

bution was introduced in 1939 by a Swedish scientist on empirical ground in the

statistical theory of the strength of materials. This law has proven, since then, to

be a successful analytical model for many phenomena in reliability engineering,

infant mortality and extreme value problems.

We organize this paper as follows. In Section 2, we state the considered

problem and in Section 3, we derive the bounds for the optimal unconditional

interval for θ. The bounds for the conditional confidence interval are derived

in Section 4. In Section 5, we compute the actual coverage probability of the

unconditional interval and in Section 6 we present the likelihood ratio based

confidence interval for θ. Simulations results are discussed in Section 7. Table 1

and Figure 1, illustrating the main simulation results, are displayed in Appendix.

We finally conclude in Section 8.
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2. Statement of the problem. Suppose that X1, · · · ,Xn constitute

a random sample from a Weibull distribution with shape parameter β and scale

parameter θ. It is suspected that θ ≥ θ0 where θ0 is a prefixed value. The null

hypothesis H0 : θ = θ0 versus the alternative H1 : θ > θ0 is then tested and

in the case of rejection a two sided confidence interval for θ is thus constructed.

Otherwise, θ0 is substituted for θ. To test H0 and construct the confidence

interval bounds for θ we use the pivotal quantity derived in Bain and Engelhardt

[2, 3], that is,

√
n− 1

β̂ ln
θ̂

θ
c

∼ tn−1(1)

where c = 1.053, β̂ is the maximum likelihood estimator of β and θ̂ is the maxi-

mum likelihood estimator of θ. The critical region associated with the preliminary

test of H0 versus H1 performed at the significance level α is given by

R =

{

θ̂ : θ̂ > θ0 exp

[

ctn−1(α)√
n− 1β̂

]}

where tn−1(α) denote the quantile of order (1 − α)100% of the Student variable

with n− 1 degrees of freedom.

Remark 1. The value of the statistic β̂ is independent of θ and its

estimator θ̂.

P r o o f. The two-parameter Weibull probability density function is given

by

g(x; θ, β) = βθ−βxβ−1 exp

[

−
(x

θ

)β
]

(2)

for x > 0, β > 0 and θ > 0. The corresponding log-likelihood function based on

the observed random sample x1, · · · , xn is

LnL(θ, β) = n(ln(β) − β ln(θ)) + (β − 1)

n
∑

i=1

ln(xi) −
∑

(xi

θ

)β

.(3)

After some algebraic simplifications, we find that the maximum likelihood esti-
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mator of β is given by the solution β = β̂ of the non linear equation

β =





(

n
∑

i=1

xβ
i ln(xi)

)(

n
∑

i=1

xβ
i

)

−1

− 1

n

n
∑

i=1

ln(xi)





−1

.(4)

The maximum likelihood estimator for θ is then obtained as

θ̂ =

[

n−1
n
∑

i=1

x
β̂
i

]

1
β̂

.(5)

We derive below the bounds of the optimal length unconditional confi-

dence interval for θ. For the benefit of using optimal confidence intervals, see, for

instance, Wardell [16].

3. Optimal unconditional confidence interval. The upper bound

θU and lower bound θL of a 100(1− p)% unconditional confidence interval, based

on the pivot statistic (1) for θ are given by

θL = θ̂ exp

[

ctn−1(1 − p1)

β̂
√
n− 1

]

(6)

and

θU = θ̂ exp

[

ctn−1(p2)

β̂
√
n− 1

]

(7)

for all pi, i = 1, 2 satisfying 0 < p = p1 + p2 ≤ 1. However, we can state the

following result.

Theorem 1. For any positive p1 and p2 such that 0 < p = p1 + p2 <

1, the (1 − p)100% unconditional confidence interval for θ has optimal length

when p1 = p2 =
p

2
. In such a case, the lower and upper confidence bounds are,

respectively, given by

θL = θ̂ exp

[

−ctn−1(p/2)

β̂
√
n− 1

]

≤ θ̂(8)

and

θU = θ̂ exp

[

ctn−1(p/2)

β̂
√
n− 1

]

≥ θ̂.(9)
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P r o o f. Consider the intervals

I = θ̂ exp

[

ctn−1(1 − p/2)

β̂
√
n− 1

]

< θ < θ̂ exp

[

ctn−1(p/2)

β̂
√
n− 1

]

(10)

and

I
′

= θ̂ exp

[

ctn−1(1 − ((k − 1)p)/k)

β̂
√
n− 1

]

< θ < θ̂ exp

[

ctn−1(p/k)

β̂
√
n− 1

]

(11)

where k > 2. Both I and I ′ are (1 − p)100% confidence intervals for θ. Let LI

and LI ′ denote the length of I and I ′, respectively. To prove that LI ≤ LI ′, it

suffices to prove that

tn−1(p/2) − tn−1(1 − p/2) ≤ tn−1(p/k) − tn−1(1 − ((k − 1)p)/k)(12)

which is equivalent to prove the inequality,

tn−1(1 − ((k − 1)p)/k)) − tn−1(1 − p/2) ≤ tn−1(p/k) − tn−1(p/2).(13)

Inequality (13) is true since the intervals (tn−1(1−p/2), tn−1(1−((k−1)p)/k)) and

(tn−1(p/2), tn−1(p/k)) intercept the same area
(k − 2)p

2k
under the even probabil-

ity density function of Tn−1 and that the curve of this probability density function

is higher above the interval (tn−1(1 − p/2), tn−1(1 − ((k − 1)p)/k)). This proves

then inequality (13) and therefore Theorem 1 in the case k > 2. The proof in the

case 1 < k < 2 can be done in a similar way. �

Corollary 1. The two-sided optimal length unconditional (1 − p)100%

confidence interval for θ has a smaller length than the usual one-sided uncondi-

tional interval of the form

(

0, θ̂ exp

[

ctn−1(p)

β̂
√
n− 1

])

.

P r o o f. The intervals (0, tn−1(1−p/2)) and (tn−1(p), tn−1(p/2)) have the

same probability value but the length of the former is larger according to the

position of the points 0, tn−1(1 − p/2), tn−1(p) and tn−1(p/2) under the curve

of the probability density function of the Student variable with n− 1 degrees of

freedom. �
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4. Conditional confidence interval. The bounds θC
L and θC

U of the

(1 − p)100% conditional confidence interval for θ are computed using the condi-

tional sampling distribution of the statistic T =

√
n− 1 β̂ ln

θ̂

θ
c

given rejection of

H0, that is, T > tn−1(α) +

√
n− 1β̂ ln(ψ)

c
where ψ =

θ0
θ

. The conditional cu-

mulative function of T , given rejection of H0, is FC(t) = P [T ≤ t|T > t1] where

t1 = tn−1(α) +

√
n− 1β̂ ln(ψ)

c
. Thus,

FC(t) =















0 if t < t1

F (t) − F (t1)

1 − F (t1)
if t ≥ t1

(14)

where F is the cumulative function of a Student variable with n − 1 degrees of

freedom. The corresponding probability density function is

fC(t) =











0 if t < t1

f(t)

1 − F (t1)
if t ≥ t1

(15)

where f denote the probability density function of a Student variable with n− 1

degrees of freedom. The bounds of the conditional confidence set are solutions of

the system of inequations

FC

(

√
n−1β̂ ln

θ̂

θ
c

)

=

F

(

√
n−1β̂ ln

θ̂

θ
c

)

−F
(

tn−1(α)+

√
n−1β̂ ln(ψ)

c

)

1 − F

(

tn−1(α) +

√
n− 1β̂ ln(ψ)

c

)(16)

≥ p1

FC

(

√
n−1β̂ ln

θ̂

θ
c

)

=

F

(

√
n−1β̂ ln

θ̂

θ
c

)

− F

(

tn−1(α)+

√
n−1β̂ ln(ψ)

c

)

1 − F

(

tn−1(α) +

√
n− 1β̂ ln(ψ)

c

)(17)
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≤ 1 − p2

such that p1 + p2 = p. Now from the monotony property of the function ξ(θ) =

FC(

√
n− 1β̂ ln

θ̂

θ
c

), the above system reduces to simplified following system of

equations

1 − F

(

√
n− 1β̂ ln

θ̂

θc
U

c

)

1 − F

(

tn−1(α) +

√
n− 1β̂ ln(ψ)

c

) = p1(18)

and

1 − F

(

√
n− 1β̂ ln

θ̂

θc
L

c

)

1 − F

(

tn−1(α) +

√
n− 1β̂ ln(ψ)

c

) = 1 − p2(19)

which gives the upper and lower conditional confidence bounds. In the case α = 1,

that is, we always reject H0, the above system reduces to the following system

F

(

√
n− 1β̂ ln

(

θ̂

θc
U

)

c

)

= p2(20)

and

F

(

√
n− 1β̂ ln(

θ̂

θc
L

)

c

)

= 1 − p2(21)
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which also guarantees that the conditional confidence set to be an interval since

dF

(

√
n− 1β̂ ln

(

θ̂

θ

)

c

)

dθ
= −−β̂

√
n− 1

c θ
f

(

√
n− 1β̂ ln

(

θ̂

θ

)

c

)

≤ 0(22)

for any value θ > 0. Note that the conditional confidence bounds are the same

as the unconditional confidence bounds in this case. Setting again p1 = p2 =

p/2 in the above system of equations yields the bounds of the minimum length

unconditional confidence interval.

5. Coverage probability of the unconditional interval. The

coverage probability of the conditional interval is 1 − p since it is derived under

this nominal level. However, the actual coverage probability of the unconditional

confidence interval has to be computed under the conditional probability function

of the pivot statistic (1), given rejection of H0. This yields the following result.

Theorem 2. The coverage probability CP of the unconditional inter-

val (θL, θU ) is given by CP = 0 if tn−1(p/2) < t1; CP =
1 − p/2 − F (t1)

1 − F (t1)
if

−tn−1(p/2) < t1 < tn−1(p/2) and by CP =
1 − p

1 − F (t1)
if t1 < −tn−1(p/2) <

tn−1(p/2) where t1 is the previously defined quantity.

P r o o f. The coverage probability is given by

CP =

∫

A

fC(t)dt(23)

where fC is defined in formula (15) and A = {t : {−tn−1(p/2) < t < tn−1(p/2)}
and {t > t1}}. Now, if tn−1(p/2) < t1, then A = Ø and therefore CP = 0. On

the other hand, if −tn−1(p/2) < t1 < tn−1(p/2), then A = (t1, tn−1(p/2)) and

the formula (23) gives CP =
F (tn−1(p/2)) − F (t1)

1 − F (t1)
=

1 − p/2 − F (t1)

1 − F (t1)
. Finally,

when t1 < −tn−1(p/2) < tn−1(p/2), then A = (−tn−1(p/2), tn−1(p/2)) and thus

CP =
F (tn−1(p/2)) − F (−tn−1(p/2))

1 − F (t1)
=

1 − p

1 − F (t1)
≥ 1 − p. �
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Remark 2. The coverage probability CP may exceed the confidence

level 1 − p when 1 − F (t1) < 1 and this occurs over a significant region of the

parameter space.

We derive below the likelihood ratio confidence interval.

6. Likelihood ratio based confidence interval. The likelihood

function based on the two parameter Weibull distribution and the random sample

x1, . . . , xn is given by

Lw(θ, β) = βnθ−nβ

n
∏

i=1

xβ−1
i exp−

[

n
∑

i=1

(
xi

θ
)β

]

.(24)

For a fixed value θ, the maximum likelihood estimator of β is given by the solution

β̃ of the profile likelihood gradient equation

∂ln(Lw(θ, β))

∂β
= β

[

n
∑

i=1

ln(
xi

θ
)
[

(
xi

θ
)β − 1

]

]

− n = 0.(25)

which has the following property.

Theorem 3. The profile likelihood gradient equation

β

[

n
∑

i=1

ln
(xi

θ

)

[

(xi

θ

)β

− 1

]

]

− n = 0.(26)

admits a unique solution.

P r o o f. Consider the function

g(β) =

n
∑

i=1

ln(yβ
i )[yβ

i − 1] − n(27)

where yi =
xi

θ
for i = 1, · · · , n. The derivative of the function g is given by

g′(β) =
n
∑

i=1

ln(yi)[y
β
i [ln(yβ

i ) + 1] − 1](28)

which is greater or equal to zero as sum of non negative terms. Indeed, in the

case, 0 < yi < 1, ln(yi) < 0 and yβ
i ln(yβ

i ) + yβ
i − 1 ≤ 0 since yβ

i ln(yβ
i ) < 0 and
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yβ
i − 1 ≤ 0. Thus ln(yi)[y

β
i [ln(yβ

i ) + 1] − 1] ≥ 0 for 0 < yi < 1. Now in the case

yi > 1, we have that ln(yi) > 0, yβ
i ≥ 1 and ln(yβ

i ) > 0. Thus

ln(yi)[y
β
i [ln(yβ

i ) + 1] − 1] ≥ 0.

Finally in the case yi = 1, it is easy to see that

ln(yi)[y
β
i [ln(yβ

i ) + 1] − 1] = 0.

We conclude then that the continuous function g is non decreasing for β ≥ 0

provided that not all yi worth 1; which occurs almost surely. On the other

hand, we have that lim
β→∞

g(β) = ∞ since not all yi = 1 almost surely. Thus

lim
β→∞

g(β) = ∞ as sum of almost sure infinite positive quantities. Futhermore,

for β = 0, g(β) = −n < 0. Consequently, the equation g(β) = 0 admits a unique

positive root β̃ by virtue of the intermediate property of continuous functions.

The profile likelihood ratio for θ is then given by

PLR(θ) =
Lw(θ, β̃)

Lw(θ̂, β̂)
,(29)

where (θ̂, β̂) denote the unrestricted maximum likelihood estimate of (θ, β). Thus

(1−p)100% likelihood ratio confidence interval for θ is then given by the solution

set of the inequation

PLR(θ) > exp−
[

χ2
(1−p,1)

2

]

(30)

where χ2
(1−p,1) is the (1− p)100% percentile of the chi-squared distribution whith

one degree of freedom. �

7. Simulation results. To illustrate the performance of the con-

ditional interval over the corresponding unconditional one and the likelihood

ratio interval, we present simulation results obtained in the cases of n = 50,

α = .05, 0.10, 0.20, 0.40, 0.80, 1.0, Ψ = 0.90(0.1)1, β = 5 and p = .10. Note that

the scale parameter θ is often set to unity in real life applications. We therefore

took θ0 = 1 without loss of generality. Probability plots, as illustrated in Figure1,

have confirmed the fit accuracy of the pivot (1) statistic by the Student variable
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with n− 1 degrees of freedom for moderate and large sample sizes and for suffi-

ciently large β in the case of small samples. We have therefore chosen β = 5. The

chosen values for α and ψ = 0.01(0.01)1 account for small to large possible val-

ues. Now, under each possible value of the parameter space, we randomly selected

1000 times random samples of size n and for each sample we carried out the test-

ing of H0 and the computation of the conditional, unconditional and likelihood

ratio confidence bounds in the case of rejection of H0. The Newton-Raphson

procedure using the starting point for the scale parameter advocated in Zanakis

[18] has been successfully used to solve equations (4) and (5). Furthermore, the

bisection method has been used for solving equations (18) and (19) in order to

find the bounds of the conditional interval. The Newton-Raphson method has

also been used to compute the bounds of the likelihood ratio interval. The results

have shown that for α < 1, the respective ratios of the coverage probability and

length of the conditional interval and the likelihood ratio interval to the uncon-

ditional interval are just slightly smaller than unity, with equality, when α = 1.

Therefore, these ratios are not significantly affected by the parameter α. Further-

more, ψ values below .89 yielded similar lengths and coverage probabilities for the

conditional and unconditional confidence intervals, see, Table1 in Appendix. The

likelihood ratio confidence interval has a slighly smaller average length but also

a smaller coverage probability with respect to the unconditional interval which

always maintain a coverage probability close to the nominal level. However, when

.90 ≤ ψ ≤ 1.0, the length of the conditional interval i s significantly smaller than

the length of the unconditional one. Furthermore, the coverage probability of

the conditional confidence interval is reasonably close to the nominal level when

Ψ < .95 as illustrated in Table 1 displayed in Appendix. Thus the unconditional

confidence interval does not always outperform the corresponding conditional in-

terval. Note that the critical region R can also be expressed using the estimator

Ψ̂ =
θ0

θ̂
as

R =

{

Ψ̂ : Ψ̂ < exp

[

− ctn−1(α)√
n− 1β̂

]

≤ 1

}

where the bound Ψ̃ = exp

[

− ctn−1(α)√
n− 1β̂

]

increases rapidly towards 1 as n becomes

large. We have noticed that the region over which the conditional interval per-

forms very well corresponds to the vicinity of the point Ψ = Ψ̃ in the critical
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region R. This agrees with the results of Chiou and Han [5, 6]. There is then

indeed a gain in using the conditional interval based on the technique advocated

in Meeks and D’Agostino [14]. Contrarily to the finding of Meeks and D’Agostino

[14], the length of the obtained conditional confidence interval never exceeds the

length of the unconditional confidence interval. On the other hand, the condi-

tional interval also performs better than the likelihood ratio interval over the

region .90 ≤ Ψ < .95. However, as ψ increases from Ψ = .95, the coverage prob-

ability of the conditional interval decreases significantly and the unconditional

interval and the likelihood ratio interval become very similar in terms of length

and coverage probability. We recommand then to just use the unconditional in-

terval in such a case since it is less computational. Consequently, we recommand

to always use the unconditional confidence interval based on Bain and Engelhardt

statistic expect when Ψ or its estimate Ψ̂ is close to the critical point Ψ̃.

8. Conclusion. We have investigated here the conditional estimation

by confidence interval of the scale parameter θ in Weibull model. The case of

shape parameter will be treated in a separate paper. The confidence interval is

constructed only after rejection of a one-sided preliminary test of significance for

the null hypothesis H0 : θ = θ0. Conditional confidence bounds are obtained

following the procedure set forth by Meeks and D’Agostino [14]. This interval

is compared in terms of coverage probability and average length to the optimal

corresponding unconditional interval and to the likelihood ratio confidence in-

terval. The simulation study has also shown that the likelihood ratio interval,

recommended in Meeker and Escobar for the estimation of the shape parameter,

is not very appropriate for the estimation of the scale parameter. The coverage

probability of the unconditional confidence interval, evaluated under the condi-

tional distribution of the pivot statistic (1) is also given. It has been noticed that

as the values of ψ move away from the vicinity of Ψ = Ψ̃ both intervals become

similar in terms of average length and coverage probability. However, in the

neighborhood of ψ = Ψ̃, the study has shown that the length of the conditional

confidence interval is significantly smaller than the length of the unconditional

one. Moreover, it has a reasonably high coverage probability. It is then worth

using the conditional interval in such situations. The study has also shown that

none of these two intervals outperforms completely the other over the whole pa-

rameter space. Therefore, the always use of unconditional confidence intervals
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independently of the preliminary test outcome may lead to inaccurate estimates.

The numerical study has been carried out with Gauss, SPSS and Mathe-

matica [17].

Acknowledgments. The financial support of UWI is gratefully acknowl-

edged.

Appendix A – Table

Table 1. Empirical length and coverage probability ratios of 90% confi-

dence intervals based on 1000 simulations. LCCI/LUCI and LLRCCI/LUCI

represent, respectively, the average length ratios of the conditional confidence in-

terval and the likelihood ratio confidence interval to the unconditional confidence

interval. CPCI/CPUCI and CPLLRCI/CPUCI represent, respectively, the

average coverage probability ratios of the conditional confidence interval and the

likelihood ratio confidence interval to the unconditional confidence interval.

Ψ LCCI/LUCI CPCI/CPUCI LLRCCI/LUCI CPLLRCI/CPUCI

≤ .89 .999 1.000 .910 .940

.90 .984 .999 .911 .940

.91 .960 .999 .911 .940

.92 .917 .997 .911 .940

.93 .860 .991 .920 .940

.94 .781 .954 .931 .940

.95 .711 .883 .959 .947

.96 .657 .611 .990 .974

.97 .617 .210 .911 1.001

.98 .602 .210 .999 .999

.99 .574 .210 .999 1.000

1.00 .560 .209 1.001 1.000
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Appendix B – Figure

Fig. 1. Student t Q-Q Plot Pivot
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