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Abstract. This paper is concerned with the oscillatory behavior of first-
order delay differential equation of the form

.

x (t) + p (t)x (τ (t)) = 0,

where p, τ ∈ C [[t0,∞) , R+], R+ = [0,∞), τ (t) is nondecreasing, τ (t) < t

for t ≥ t0 and lim
t→∞

τ (t) = ∞. Let the numbers k and l be defined by

k = lim
t→∞

inf

∫ t

τ(t)

p(s)ds and l = lim
t→∞

sup

∫ t

τ(t)

p(s)ds.

It is proved here that when l < 1 and 0 < k ≤ 1

e
all solutions of this equation

oscillate in several cases in which the condition

l >
e − 1

e − 2

(

k +
1

λ1

)

− 1

e − 2
,

holds, where λ1 is the smaller root of the equation λ = ekλ.
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1. Introduction. The problem of establishing sufficient conditions for

the oscillation of all solutions of the differential equation

ẋ (t) + p (t)x (τ (t)) = 0,(1)

where p, τ ∈ C [[t0,∞) , R+], R+ = [0,∞), τ (t) is nondecreasing, τ (t) < t for

t ≥ t0 and lim
t→∞

τ (t) = ∞, has been the subject of many investigations. See, for

example, [1]–[26] and the references cited therein.

By a solution of Eq.(1) we understand a continuously differentiable func-

tion defined on [τ (T0) ,∞) for some T0 ≥ t0 and such that (1) is satisfied for

t ≥ T0. Such a solution is called oscillatory if it has arbitrarily large zeros, and

otherwise it is called nonoscillatory.

The first systematic study for the oscillation of all solutions of Eq. (1)

was made by Myshkis [24]. In the 1950 paper [24] he proved that every solution

of (1) oscillates if

(C1) lim
t→∞

sup(t − τ(t)) < ∞ and lim
t→∞

inf(t − τ(t)). lim
t→∞

inf p(t) >
1

e
.

In 1972 Ladas et al [19] proved that the same conclusion holds if

(C2) lim
t→∞

sup

∫ t

τ(t)
p(s)ds > 1.

In 1979 Ladas [18] and in 1982 Koplatadze et al [13] improved (C1) to

(C3) lim
t→∞

inf

∫ t

τ(t)
p(s)ds >

1

e
.

Concerning the constant
1

e
in (C3), it should be pointed out that if the

inequality

∫ t

τ(t)
p(s)ds ≤ 1

e
,

eventually holds, then, according to a result in [13] , Eq. (1) has a nonoscillatory

solution.

In 1984 Ladas et al [20] and in 1984 Fukagai et al [10] established the

oscillation criteria (of the type of conditions (C2) and (C3)) for Eq. (1) with

oscillating coefficient p(t).
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It is obvious that there is a gap between the conditions (C2) and (C3)

when the limit

lim
t→∞

∫ t

τ(t)
p(s)ds,

does not exist.How to fill this gap is an interesting problem which has been

recently investigating by several authors.

In 1988 Erbe et al [9] developed new oscillation criteria by employing the

upper bound of the ratio
x(τ(t))

x(t)
for possible nonoscillatory solutions x(t) of Eq.

(1). Their result, when formulated in terms of the numbers k and l defined by

(C) k = lim
t→∞

inf

∫ t

τ(t)
p(s)ds and l = lim

t→∞

sup

∫ t

τ(t)
p(s)ds,

says that all the solutions of Eq. (1) are oscillatory, if 0 < k ≤ 1

e
and

(C4) l > 1 − k2

4
.

Since then several authors tried to obtain better results by improving the

upper bound for
x(τ(t))

x(t)
. In 1991 Jian Chao [2] derived the condition

(C5) l > 1 − k2

2(1 − k)
,

while in 1992 Yu et al [27] and [28] obtained the condition

(C6) l > 1 − 1 − k −
√

1 − 2k − k2

2
.

In 1990 Elbert et al [7] and in 1991 Kwong [16], using different techniques,

improved (C4), in the case where 0 < k ≤ 1

e
, to the conditions

(C7) l > 1 −
[

1 − 1√
λ1

]2

,

and

(C8) l >
ln λ1 + 1

λ1
,
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respectively, where λ1 is the smaller root of the equation

λ = ekλ.(2)

In 1994 Koplatadze et al [14] improved (C6), while in 1999 Philos et al

[25], in 1998 Jaros et al [11], in 2000 Kon et al [17] and in 2003 Sficas et al [26]

derived new conditions.

(C9) l > 1 − k2

2(1 − k)
− k2

2
λ1,

(C10) l >
1 + ln λ1

λ1
− 1 − k −

√
1 − 2k − k2

2
,

(C11) l > 2k +
2

λ1
− 1,

and

(C12) l >
ln λ1 − 1 +

√
5 − 2λ1 + 2kλ1

λ1
,

respectively.

Following this historical (and chronological) review we also mention that

in the case where
∫ t

τ(t)
p(s)ds ≥ 1

e
and lim

t→∞

∫ t

τ(t)
p(s)ds =

1

e
,

this problem has been studied in 1995 by Elbert et al [8] and in 1995 by Koza-

kiewicz [15], Li [22, 23] and by Domshlak et al [5].

The purpose of this paper is to improve the methods previously used to

show that the conditions (C2) and (C4) − (C12) may be weakened to

(C13) l >
e − 1

e − 2

(

k +
1

λ1

)

− 1

e − 2
.

One has to notice that as k → 0, then all conditions (C4)− (C11) and also

our condition (C13) reduce to the condition (C2). However the improvement is
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clear as k → 1

e
. For illustrative purpose, we give the values of the lower bound

on l under these conditions, when k =
1

e
, are

(C2) : 1.000000000

(C4) : 0.966166179

(C5) : 0.892951367

(C6) : 0.863457014

(C7) : 0.845181878

(C8) : 0.735758882

(C9) : 0.709011646

(C10) : 0.599215896

(C11) : 0.471517764

(C12) : 0.459987065

(C13) : 0.367879441

We see that our condition (C13) essentially improves all the known results

in the literature.

2. Main results. In what follows we will denote by k and l the lower

and upper limits of the average

∫ t

τ(t)
p(s)ds as t → ∞, respectively, see (C).

Set

ω (t) =
x (τ (t))

x (t)
.

We begin with the preliminary analysis of asymptotic behavior of the function

ω (t) for a possible nonoscillatory solution x (t) of Eq.(1) in the case when k ≤ 1

e
.

For this purpose, assume that (1) has a solution x (t) which is positive for all

large t. Dividing first Eq. (1) by x (t) and then integrating it from τ (t) to t, we

get the integral equality

ω (t) = exp

∫ t

τ(t)
p(s)ω (s) ds,(3)

which holds for all sufficiently large t.

Also set

F (t) =
p(t)

µ(t)
,
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where the function µ (t) satisfies the following conditions:

(i) µ (t) is nonincreasing,

(ii)

1 ≤ N := lim
t→∞

inf µ(t) ≤ 1

e − 2
.

For the next lemma see [11].

Lemma 1 [11]. Suppose that k > 0 and Eq. (1) has an eventually positive

solution x(t). Then

k ≤ 1

e
and λ1 ≤ lim

t→∞

inf ω(t) ≤ λ2

where λ1 and λ2 are the roots of the equation λ = ekλ.

Lemma 2. Let 0 < k ≤ 1

e
and x(t) be an eventually positive solution of

Eq. (1). Assume that there exists θ > 0 such that

∫ τ(t)

τ(u)
F (s)ds ≥ θ

∫ t

u

F (s)ds for all τ (t) ≤ u ≤ t,(4)

then

lim
t→∞

supω(t) ≤ 2

N

(

1 − k −
√

(1 − k)2 − 4B

) ,(5)

where B is given by

B =
eλ1θk − λ1θk − 1

(λ1θ)2
.(6)

and λ1 is the smaller root of the equation λ = ekλ.

P r o o f. Let t > t0 ≥ 1 be large enough so that τ(t) > t0 and t1 ≡ t1(t) > t

such that

τ(t1) = t, δ =

∫ t1

t

F (s)ds ≤
∫ t1

t

p(s)ds,

where δ : 0 < δ < k is arbitrary close to k.
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Integrating (1) from t to t1, we obtain

x(t) = x(t1) +

∫ t1

t

p(s)x (τ(s)) ds,

and F (s) =
p(s)

µ(s)
,

x(t) = x(t1) +

∫ t1

t

F (s)µ(s)x (τ(s)) ds,

Integrating (1) from τ (s) to t for s < t1, we have

x(τ(s)) = x(t) +

∫ t

τ(s)
p(u)x (τ(u)) du

= x(t) +

∫ t

τ(s)
F (u)µ(u)x (τ(u)) du.

Combining the last two equalities, we obtain

x(t) = x(t1) +

∫ t1

t

F (s)µ(s)

(

x(t) +

∫ t

τ(s)
F (u)µ(u)x (τ(u)) du

)

ds.(7)

Let 0 < λ < λ1, then the function

φ(t) = x(t)e
λ

tR
t0

F (s)ds

,(8)

is decreasing for large t ≥ t0 since x(t) is also decreasing. Indeed, by Lemma 1,

x(τ (t))

x(t)
> λ, since µ(t) ≥ 1 for t ≥ t0 ≥ 1,

then

µ(t)x (τ(t))

x(t)
> λ,

for all sufficiently large t, and consequently

0 = x′(t) + F (t)µ(t)x (τ (t)) ≥ x′ (t) + λF (t)x (t) ,

which implies φ′(t) ≤ 0 for sufficiently large t.
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Substituting into (7), we get for sufficiently large t the inequality

x (t) ≥ x (t1) + δx (t)

+

∫ t1

t

F (s)







∫ t

τ(s)
µ (u)F (u)φ (τ (u)) e

−λ
τ(u)R
t0

F (ξ)dξ

du






ds

≥ x (t1) + δx (t)

+µ (t) φ (τ (t))

∫ t1

t

F (s)







∫ t

τ(s)
F (u) e

−λ
τ(u)R
t0

F (ξ)dξ

du






ds

= x (t1) + δx (t)

+µ (t)φ (τ (t)) e
−λ

τ(t)R
t0

F (s)ds ∫ t1

t

F (s)







∫ t

τ(s)
F (u) e

λ
τ(t)R

τ(u)

F (ξ)dξ

du






ds.

From (8), we have

x(t) ≥ x(t1)+δx(t)+µ(t)x(τ(t))

∫ t1

t

F (s)







∫ t

τ(s)
F (u) e

λ
τ(t)R

τ(u)

F (ξ)dξ

du






ds.(9)

In view of (4) we obtain

∫ t

τ(s)
F (u) e

λ
τ(t)R

τ(u)

F (ξ)dξ

du ≥
∫ t

τ(s)
F (u) e

λθ
tR

u

F (ξ)dξ

du

=
1

λθ






e
λθ

tR
τ(s)

F (ξ)dξ

− 1






.
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Thus

∫ t1

t

F (s)







∫ t

τ(s)
F (u)e

λ
τ(t)R

τ(u)

F (ξ)dξ

du






ds ≥ −δ

λθ
+

1

λθ

∫ t1

t

F (s) e
λθ

tR
τ(s)

F (ξ)dξ

ds

=
−δ

λθ
+

1

λθ

∫ t

t1

F (s)e
λθ

sR
τ(s)

F (ξ)dξ−λθ
sR
t

F (ξ)dξ

ds

≥ −δ

λθ
+

1

λθ
eλθδ

∫ t1

t

F (s) e
−λθ

sR
t

F (ξ)dξ

ds

=
−δ

λθ
+

eλθδ

(λθ)2



1 − e
−λθ

t1R
t

F (ξ)dξ





=
−δ

λθ
+

eλθδ

(λθ)2

(

1 − e−λθδ
)

=
−δ

λθ
+

1

(λθ)2

(

eλθδ − 1
)

.

and (9) yields

x(t) ≥ x (t1) + δx (t) + B∗µ (t) x (τ (t)) ,(10)

where

B∗ =
eλθδ − λθδ − 1

(λθ)2
.

From (10), we have

x(t) ≥ d1µ (t)x (τ(t)) ,

where

d1 =
B∗

1 − δ
.

Observe that

x(t1) ≥ d1µ (t1)x (τ(t1)) ≥ d1x(t),
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since µ(t) ≥ 1 for t ≥ t0 ≥ 1 and therefore (10) yields

x(t) ≥ d2µ (t)x (τ(t))

where

d2 =
B∗

1 − d1 − δ
,

Following this iterative procedure (cf. [26, 27]), we obtain

x(t) ≥ dn+1µ (t) x (τ(t)) ,

where

dn+1 =
B∗

1 − dn − δ
, n = 1, 2, 3, . . . .

It is easy to see that the sequence {dn} is strictly increasing and bounded.

Therefore

lim
t→∞

dn = d,

exists and satisfies

d2 − (1 − δ) d + B∗ = 0,

since {dn} is strictly increasing it follows that

d =
1 − δ −

√

(1 − δ)2 − 4B∗

2
.

Observe that for large t one has

x(t)

µ(t)x (τ(t))
≥

1 − δ −
√

(1 − δ)2 − 4B∗

2
,

and since 0 < δ < k is arbitrarily close to k, by letting λ → λ1 the last inequality

leads to (5).

The proof is complete. �

Remark 1. Assume that τ (t) is continuously differentiable and that

there exists θ > 0 such that

F (τ (t)) τ ′ (t) ≥ θF (t)(11)
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eventually for all t. Then it is easy to see that (11) implies (4). Indeed, the

function

υ (u) =

∫ τ(t)

τ(u)
F (s)ds − θ

∫ t

u

F (s)ds, τ (t) ≤ u ≤ t,

satisfies the conditions

υ (t) = 0,

and

υ′ (u) = −F (τ (u)) τ ′ (u) + θF (u) ≤ 0.

If F (t) > 0 eventually for all t and

lim
t→∞

inf
F (τ (t)) τ

′

(t)

F (t)
= θ0 > 0,

then θ can be any number satisfying 0 < θ < θ0.

Our main result can now be stated as follows:

Theorem 1. Consider the differential equation (1) , Assume that l < 1,

0 < k ≤ 1

e
and there exist θ > 0 such that (4) is satisfied. Assume that

l >
ln λ1 + 1

λ1
−

N(1 − k −
√

(1 − k)2 − 4B)

2
(12)

where λ1 the smaller root of the equation λ = ekλ and B is given by (6). Then

every solution of (1) oscillates.

P r o o f. Assume, for the sake of contradiction, that x(t) is an eventually

positive solution of equation (1) .

Let σ be any number in

(

1

λ1
, 1

)

. From Lemma 1, there is a T1 > t0 such

that

x (τ (t))

x (t)
> σλ1, t ≥ T1,(13)

and

x (t)

x (τ (t))
> σM, t ≥ T1,(14)
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where

M = lim
t→∞

inf
x (t)

x (τ (t))
.

Now let t ≥ T1. Since the function g (s) =
x (τ (t))

x (s)
is continuous, g (τ (t)) = 1 <

σλ1 and g (t) > σλ1, there is a t∗ (t) ∈ (τ (t) , t) such that

x (τ (t))

x (t∗ (t))
= σλ1.

Dividing (1) by x (t) , integrating from τ (t) to t∗ (t) , and taking into account

(13) yields

∫ t∗(t)

τ(t)
p (s) ds ≤ − 1

σλ1

∫ t∗(t)

τ(t)

x′ (s)

x (s)
ds =

ln (σλ1)

σλ1
.(15)

Integrating (1) over [t∗ (t) , t] and using (14) and the fact that x (τ (s)) ≥ x (τ (t))

if s ≤ t yields

∫ t

t∗(t)
p (s) ds ≤ x (t∗ (t))

x (τ (t))
− x (t)

x (τ (t))

=
1

σλ1
− x (t)

x (τ (t))

≤ 1

σλ1
− σM.(16)

Adding (15) and (16) yields

∫ t

τ(t)
p (s) ds ≤ ln (σλ1) + 1

σλ1
− σM.

Letting t → ∞ yields

l ≤ ln (σλ1) + 1

σλ1
− σM.

Letting σ → 1 we obtain

l ≤ ln λ1 + 1

λ1
− M.
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The last inequality, in view of Lemma 2 contradicts (12). �

Corollary 1. Assume that the hypotheses of Theorem 1 hold with θ = 1

and N =
1

e − 2
. Then its conclusion holds with (C13).

P r o o f. When θ = 1 and N =
1

e − 2
, we get from (6) and (12) that

B =
λ1 − λ1k − 1

λ2
1

,

and

l >
kλ1 + 1

λ1
−

1

e − 2
(1 − k −

√

(1 − k)2 − 4

λ2
1

(λ1 − λ1k − 1))

2

=
e − 1

e − 2

(

k +
1

λ1

)

− 1

e − 2
,

respectively. �

Remark 2. Provided that k =
1

e
one has λ1 = e and

(C13) leads to l > 0.367879441 =
1

e
.

Example 1. Consider the delay differential equation

ẋ(t) + px(t − a sin2
√

t − b

p
) = 0,(17)

where p > 0, a > 0, b =
1

e
, pa =

2

5
− b and by taking µ (t) =

1

e − 2
, Hence

N =
1

e − 2
. Then

k = lim
t→∞

inf

∫ t

τ(t)
p(s)ds = lim

t→∞

inf

∫ t

τ(t)
pds = lim

t→∞

inf p

(

a sin2
√

t +
b

p

)

=
1

e
,

and

l = lim
t→∞

sup

∫ t

τ(t)
p(s)ds = lim

t→∞

sup

∫ t

τ(t)
pds = lim

t→∞

sup p

(

a sin2
√

t +
b

p

)

= pa + b =
2

5
< 1.
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In the case that k =
1

e
, then λ1 = e and we find

e − 1

e − 2

(

k +
1

λ1

)

− 1

e − 2
=

1

e
<

2

5
= l.

Then

l >
e − 1

e − 2

(

k +
1

λ1

)

− 1

e − 2
.

Hence, the conditions of Theorem 1 and using the Corollary 1 are satisfied and

therefore every solution of equation (17) oscillates. Observe that none of the

results mentioned in the introduction can be applied to this equation.
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