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ABSTRACT. This paper is concerned with the oscillatory behavior of first-
order delay differential equation of the form

z (t) +pt)z(r(t) =0,

where p, 7 € C'[[tg,),R"], Rt =[0,00), 7 (t) is nondecreasing, 7 (t) < t
for ¢ >ty and tlim 7 (t) = oo. Let the numbers k and ! be defined by

— 00

t t
k = lim inf p(s)ds and [ = lim sup/ p(s)ds.

t—oo 7(t) t—o0 (t)

1
It is proved here that when [ < 1 and 0 < k < — all solutions of this equation

e
oscillate in several cases in which the condition
e—1 1 1
> k+— | ———,
e—2 ( + )\1> e—2
A

holds, where \; is the smaller root of the equation \ = e**.
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1. Introduction. The problem of establishing sufficient conditions for
the oscillation of all solutions of the differential equation

(1) i (t) +p(t)x(r(t) =0,

where p, 7 € C[[tg,0),RT], RT = [0,00), 7 (t) is nondecreasing, 7 (t) < t for
t > tg and tlggo 7 (t) = 00, has been the subject of many investigations. See, for
example, [1]-[26] and the references cited therein.

By a solution of Eq.(1) we understand a continuously differentiable func-
tion defined on [7(Tp),00) for some Ty > tp and such that (1) is satisfied for
t > Tp. Such a solution is called oscillatory if it has arbitrarily large zeros, and
otherwise it is called nonoscillatory.

The first systematic study for the oscillation of all solutions of Eq. (1)
was made by Myshkis [24]. In the 1950 paper [24] he proved that every solution
of (1) oscillates if

t—o00

1
(Ch) lim sup(t — 7(¢t)) < oo and lim inf(¢t — 7(¢)). lim inf p(¢) > —.
t—00 t—o0 e

In 1972 Ladas et al [19] proved that the same conclusion holds if

t
(Cq) lim sup/ p(s)ds > 1.

fmreo ®)

In 1979 Ladas [18] and in 1982 Koplatadze et al [13] improved (C1) to

t
(C5) lim inf / p(s)ds > .
oo Jr €

1
Concerning the constant — in (C3), it should be pointed out that if the
e

inequality

S~
2
Q| =

p(s)ds <
()

9

eventually holds, then, according to a result in [13] , Eq. (1) has a nonoscillatory
solution.

In 1984 Ladas et al [20] and in 1984 Fukagai et al [10] established the
oscillation criteria (of the type of conditions (C2) and (Cj3)) for Eq. (1) with
oscillating coefficient p(t).
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It is obvious that there is a gap between the conditions (Cs) and (Cj)
when the limit

t
lim p(s)ds,
oo Jr (o)
does not exist.How to fill this gap is an interesting problem which has been
recently investigating by several authors.
In 1988 Erbe et al [9] developed new oscillation criteria by employing the

z(7(t))
x(t

upper bound of the ratio for possible nonoscillatory solutions z(t) of Eq.

(1). Their result, when formulated in terms of the numbers k and [ defined by

t t
(@) k= lim inf/ p(s)ds and [ = lim sup/ p(s)ds,
oo Jrw free 7(t)
1
says that all the solutions of Eq. (1) are oscillatory, if 0 < £ < — and
e
,IC2

Since then several authors tried to obtain better results by improving the

t
upper bound for 3:(7(72))) In 1991 Jian Chao [2] derived the condition
x
k‘2
C [>1— ——
( 5) 2(1 — k)7

while in 1992 Yu et al [27] and [28] obtained the condition

1—k—+V1—-2k—k?
5 .

In 1990 Elbert et al [7] and in 1991 Kwong [16], using different techniques,

(Ce) [>1-—

improved (Cy), in the case where 0 < k < —, to the conditions
e

1 2
c I>1— (1 —| ,
(©7) [ ﬁ}
and
(Cx) l>ln/\1+1
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respectively, where A1 is the smaller root of the equation
(2) A =M

In 1994 Koplatadze et al [14] improved (Cg), while in 1999 Philos et al
[25], in 1998 Jaros et al [11], in 2000 Kon et al [17] and in 2003 Sficas et al [26]

derived new conditions.

k2 k2
l— =)

>1—|—ln)\1 1—k—+1-2k—k?

C l
(Cho) M 2
2
(C11) 1>2k+— —1,
A1
and
InA; — 1+ /5 —2X1 +2kX
(Cia) I nA; + . 1+ 17
1
respectively.

Following this historical (and chronological) review we also mention that
in the case where

¢ 1 K 1
/ p(s)ds > — and lim p(s)ds = —,
7(t) € oo Jr () €

this problem has been studied in 1995 by Elbert et al [8] and in 1995 by Koza-
kiewicz [15], Li [22, 23] and by Domshlak et al [5].

The purpose of this paper is to improve the methods previously used to
show that the conditions (C2) and (C4) — (C12) may be weakened to

e—1 1 1
l k+— ) — .
(C13) >e—2< +/\1> e—2
One has to notice that as k — 0, then all conditions (Cy) — (C11) and also
our condition (Cj3) reduce to the condition (C3). However the improvement is
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1
clear as k — —. For illustrative purpose, we give the values of the lower bound
e

1
on [ under these conditions, when k = —, are
e

(Cs) :1.000000000
(Cy) :0.966166179
(Cs) :0.892951367
(Cg) :0.863457014
(C7) :0.845181878
(Cs) :0.735758882
(Co) :0.709011646
(C1p) : 0.599215896
(C11) : 0471517764
(C12) : 0.459987065
(C13) : 0.367879441

We see that our condition (C13) essentially improves all the known results
in the literature.

2. Main results. In what follows we will denote by k& and [ the lower
t
and upper limits of the average / p(s)ds as t — oo, respectively, see (C).
(1)
Set

We begin with the preliminary analysis of asymptotic behavior of the function
1
w (t) for a possible nonoscillatory solution z (¢) of Eq.(1) in the case when k < —.

e
For this purpose, assume that (1) has a solution z (¢) which is positive for all
large t. Dividing first Eq. (1) by x (¢) and then integrating it from 7 (¢) to t, we
get the integral equality

t
3) o) =ew [ s ()ds,
7(t)
which holds for all sufficiently large ¢.
Also set
iy - 20,
u(t)
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where the function p (t) satisfies the following conditions:
(7) p (t) is nonincreasing,
(i)
1
e—2'

1 < N := lim inf p(t) <
t—o00

For the next lemma see [11].

Lemma 1 [11]. Suppose that k > 0 and Eq. (1) has an eventually positive
solution x(t). Then

k <

o

and A < lim infw(t) < A9
t—o0

where \1 and Ao are the roots of the equation \ = e**.

1
Lemma 2. Let 0 < k < — and x(t) be an eventually positive solution of
e
Eq. (1). Assume that there exists 8 > 0 such that

7(t) t
(4) / F(s)ds > 0/ F(s)ds forallT(t) <u<t,
7(u) u
then
. 2
(5) lim supw(t) < ,

t—o0

N(l—k:— (1—k:)2—4B)

where B is given by

MOk N0k — 1

(6) B = 5 .
(A16)

and \y is the smaller root of the equation \ = e**.

Proof. Lett >ty > 1 be large enough so that 7(t) > tgand t; = t1(t) >t
such that

where 6 : 0 < § < k is arbitrary close to k.
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Integrating (1) from ¢ to ¢;, we obtain

£(t) = x(ty) + / " p(s)a (7(s)) ds,

t1

x(t) = x(t) + t F(s)u(s)z (1(s)) ds,

Integrating (1) from 7 (s) to ¢ for s < ¢, we have

t
w(r(s) = a(t)+ / P ()
t

= z(t) + F(u)p(u)x (7(u)) du.

7(s)
Combining the last two equalities, we obtain
t1 t
@ a) =)+ [ Fowe) o0+ [ Pt r)du ) ds.
t T(s
Let 0 < A < A1, then the function
A ft F(s)ds
(8) ¢(t) = x(t)e ,
is decreasing for large t > to since x(t) is also decreasing. Indeed, by Lemma 1,
t
2T ®) S ) since p(t) > 1 fort >t > 1,
x(t)
then
PO (1)
x(t)

for all sufficiently large t, and consequently
0=2'(t) + Fi)ut)z (7 (1)) > 2" (t) + A\F () z (t),

which implies ¢'(¢) < 0 for sufficiently large ¢.
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Substituting into (7), we get for sufficiently large ¢ the inequality

z(t) >z (t1) + 0z (t)

From (8), we have

()
t A [ OF(©)dE

t1
9) @(t) > a(tr)+62(t)+u(t)a(r(L) /t F(s) / Flue "™ dul ds.

In view of (4) we obtain

7(t)
; AT PE)de ¢ 20 [ F(€)de
F(u)e 7 du > / F(u)e du
T(s) 7(s)
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Thus
7(t) t
t1 t A [ F(&)d¢ Y 1 t1 X0 [ F(€)dE
/t F(s) /T(S)F(u)e (W du | ds > 0 + A F(s)e ™® ds
s 1 gt N (f)F(é)d&AefF(é)dé
—_ _ F T(s
o te ) Fe
— 1 —)\9 F
> —5 + ! ’\66/ ! ds

and (9) yields

(10) x(t) >z (t1) + 0z (t) + B u(t) z (1 (1)),
where
L e N5 —1
()

From (10), we have
z(t) > dyp (t) z (7(1)),

where

dy

—_
|
(=%

Observe that

x(t1) = dip (t) z (7(t1)) = dix(t),

79

ds
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since pu(t) > 1 for t > tg > 1 and therefore (10) yields

w(t) = dap (t) @ (7(¢))

where
B*

dy= ——
2T 1 d =5

Following this iterative procedure (cf. [26, 27]), we obtain

z(t) 2 dpap (8) z (7(1))

where
B*

—,n=123,....
1_dn_57n 7737

dnJrl =

It is easy to see that the sequence {d,} is strictly increasing and bounded.
Therefore

tlim d, = d,
exists and satisfies
d>—-(1-6)d+B*=0,

since {dy,} is strictly increasing it follows that

1—6—4/(1-06)°>—4B*

d=
2
Observe that for large t one has
(1) 1—6—4/(1—06)°—4B*
p(t)z (r(t)) — 2 ’

and since 0 < § < k is arbitrarily close to k, by letting A\ — A; the last inequality
leads to (5).

The proof is complete. O

Remark 1. Assume that 7 (¢) is continuously differentiable and that
there exists # > 0 such that

(11) F(r(t) 7' (t) = 0F ()
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eventually for all £. Then it is easy to see that (11) implies (4). Indeed, the
function

satisfies the conditions

and
v (u) = —F (7 (u)) 7 (u) + 0F (u) <0.
If F (t) > 0 eventually for all ¢ and

tlirgoinf%(i;(t) — 6y >0,
then 0 can be any number satisfying 0 < 8 < 6q.

Our main result can now be stated as follows:

Theorem 1. Consider the differential equation (1), Assume that I < 1,

1
0 < k < — and there exist @ > 0 such that (4) is satisfied. Assume that
e

M\ +1 NA-k—y/(1-k)?*>-4B)

12 l
(12) > 5

where A1 the smaller root of the equation A\ = e** and B is given by (6). Then
every solution of (1) oscillates.

Proof. Assume, for the sake of contradiction, that x(¢) is an eventually
positive solution of equation (1).

1
Let ¢ be any number in </\—, 1). From Lemma 1, there is a T7 > tg such
1

that
(13) 95;7(51;)) > o\, t>T,
and
x (t)
(14) T @) >oM, t>11,
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where

= lim in z (t)
M= fim inf 70y
(7 (1))

x (s)

o1 and g (t) > oAy, there is a t* (t) € (7 () ,t) such that

Now let t > Tj. Since the function g (s) = is continuous, g (7 (t)) =1 <

= 0')\1.

z(r(t)

(¢ (1))
Dividing (1) by z (¢), integrating from 7 (¢) to ¢*(¢), and taking into account
(13) yields

() 170 (s) In (o))
15 s§)ds < ——— ds = .
(15) /T(t) pls)ds < oA Sy x(s) oA

Integrating (1) over [t* (¢),t] and using (14) and the fact that = (7 (s)) > = (7 (¢))
if s <t yields

t z(t (1) x(b)
/t*@p(s)ds S 20w 2@
IR
o\ x (7(1))
(16) < %_JM.
O Al

Adding (15) and (16) yields

t

®) 0')\1
Letting t — oo yields
| 1
< n(oA) + oM.
o\
Letting ¢ — 1 we obtain
I Inx\ +1 s
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The last inequality, in view of Lemma 2 contradicts (12). O

Corollary 1. Assume that the hypotheses of Theorem 1 hold with 0 = 1
1
and N = Pt Then its conclusion holds with (Ci3).

1
Proof. When § =1 and N = T get from (6) and (12) that
6 —_—

M- Mk

B :
M

and

1 , 4
1-k—/Q1-k)—= A —-—Mk-1
o o3 \/< = 55 (= hak =)

A1 2
e—1 1 1
= B+ — ) —
e—2< +)\1> e—2’

respectively. O
Remark 2. Provided that k =

one has A\{ = e and

Q| ==

(Ch3) leads to I > 0.367879441 =

Example 1. Consider the delay differential equation

b

(17) &(t) 4+ px(t — asin® Vi — 2_?) =0,
1 2 ) 1

where p > 0, a > 0, b = —, pa = E b and by taking u(t) = p—t Hence
e e—

1
N = . Then
e—2

t t
1
k= lim inf/ p(s)ds = lim inf/ pds = lim inf p <asin2 Vit + é) = -,

t—o00 () t—o0 (t) t—o00 P (&

and

t t

b

I = lim sup/ p(s)ds = lim sup/ pds = lim supp (a sin? v/t + —)
t—o00 7(t) t—00 () t—00 p

2
= pa—l—b:g<1.
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1
In the case that k = —, then Ay = e and we find
e

e-1(, 1 L1 2,
e—2 A e—2 e 5

Then

e—1 1 1
l E+— |- .
>e—2< +/\1> e—2

Hence, the conditions of Theorem 1 and using the Corollary 1 are satisfied and
therefore every solution of equation (17) oscillates. Observe that none of the
results mentioned in the introduction can be applied to this equation.

1]

2]
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