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DICKSON POLYNOMIALS THAT ARE PERMUTATIONS

Mihai Cipu∗

Communicated by P. Pragacz

Abstract. A theorem of S.D. Cohen gives a characterization for Dickson
polynomials of the second kind that permutes the elements of a finite field
of cardinality the square of the characteristic. Here, a different proof is
presented for this result.

1. Permutation polynomials of finite fields. In recent years cryp-
tographers became interested in finding polynomials that induce a bijection of
a finite field under substitution. This property has been used in several con-
structions of cryptographic systems for the secure transmission of data (see, for
instance, [19], [22, Ch. IX], [23]). Permutations of this type have also notable
applications in combinatorics (cf., e.g., [8], [28], [29]). However, the interest in
permutation polynomials (shortly, PP) is not as recent as it might seem. A
classical result of Hermite [17] provides a necessary and sufficient condition for
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a polynomial function to permute the elements of a finite field Fq, q = pd, p a
prime and d a positive integer.

Theorem 1 ([17]). f ∈ Fq[X] is a permutation polynomial over Fq if and
only if

a) f has exactly one root in Fq, and

b) the reduction of f t mod (Xq −X), 1 ≤ t ≤ q− 2, with t 6≡ 0 (mod p),
has degree at most q − 2.

Brison [6] has generalized this criterion to polynomials that induce a per-
mutation on the elements of a finite subgroup of the multiplicative group of an
arbitrary field. Various other generalizations are given by many authors, in-
cluding Brawley, Carlitz, and Levine [4], Brawley and Schnibben [5], James and
Lidl [18].

Usually it is not possible to decide the permutation property directly. An
obvious exception is the monomial case: Xn permutes Fq if and only if gcd(n, q−
1) = 1. For each class of PP a specific approach was needed.

London and Ziegler [24] and Mollin and Small [27] gave criteria for f to
be a permutation in terms of the coefficients of f . Two sufficient conditions can
be found in [7].

In [29] there are given necessary and sufficient conditions for binomials
X(q+1)/2 + aX to be PP on Fq. Surprisingly enough, the PP in the class of
cyclotomic polynomials can easily be identified.

Theorem 2 ([27]). The cyclotomic polynomial Φm is a PP over Fq if
and only if m = 2 or m and q are powers of 2.

The class of “all one” polynomials 1+X + · · ·+Xn has been investigated
by Matthews [26]. His approach is based on a result of B. Segre on ovals in the
projective plane of odd order q.

Theorem 3 ([26]). If q is odd then 1 + X + · · · + Xn is a PP on Fq if
and only if n ≡ 1 mod p(q − 1).

The same technique yields several examples of polynomials of this shape
which induce permutations of finite fields of characteristic 2, but a complete
description has not appeared yet.

The permutation properties of the ubiquitous Chebyshev polynomials
(also known as Dickson polynomials) have been also analysed. For any posi-
tive integer n one defines the Dickson polynomial of the first kind (DPFK) gn

by
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gn(X) :=

⌊n/2⌋
∑

i=0

n

n − i

(

n − i

i

)

(−1)iXn−2i,

and the Dickson polynomial of the second kind (DPSK) fn by

fn(X) :=

⌊n/2⌋
∑

i=0

(

n − i

i

)

(−1)iXn−2i.

Dickson polynomials played a major role in the proof of the so-called
Schur conjecture concerning integral polynomials which induce permutations on
the field Fp for infinitely many primes p [13]. Their importance has been again
highlighted in the proof of Carlitz’s conjecture asserting that for each even posi-
tive integer k there is a constant Ck such that, for each finite field of odd order
q > Ck, there does not exist a PP of degree k over Fq. After several partial results
due to various authors, Fried, Guralnick, and Saxl [14] settled in the affirmative
Carlitz’s conjecture. Cohen [9] proved that, for p sufficiently large prime, all
permutations of small degree on Fp come from Dickson polynomials.

It has been proved by Dickson [12] (see also [30] or [22]) that gn permutes
Fq if and only if n is coprime to q2−1. The proof is easy. It is much more difficult
to ascertain the permutation properties of DPSK. In his thesis, Mathews [25]
pointed out a sufficient condition: if n satisfies the system of congruences

C(q) :































n + 1 ≡ ±2 mod p ,

n + 1 ≡ ±2 mod
1

2
(q − 1) ,

n + 1 ≡ ±2 mod
1

2
(q + 1) ,

then fn(x) = ±x for all elements x of Fq, so fn is a PP of Fq. Several authors (see,
for instance, [18], [20]) conjectured that condition C(q) is also necessary in order
that fn permute Fq. S. D. Cohen [10] solved in the affirmative this conjecture.
Refining the proof ideas, he obtains a stronger result:

Theorem 4 ([11]). Assume fn permutes the elements of Fq, where q = p
is an odd prime or q = p2, p ≥ 7 prime. Then the condition C(q) holds.

Cohen’s result is quite satisfactory since, for p = 3 or 5 and q composite
(d ≥ 2), there are known examples of DPSK which are PP on Fq and do not
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satisfy C(q). By extensive computer search, James and Lidl [18] established the
permutation properties of several DPSK. For instance, f21 is a PP on F3 and F9,
f177 is a PP on F3, F9, and F27, though Matthews’ conditions C(9) and C(27)
are not fulfilled. Computer experiments showed that f57 is a PP on F5 and F25,
despite the fact that the congruences C(25) do not hold.

Henderson and Matthews [16] describe classes of DPSK which are PP
on fields of characteristic not covered by Cohen’s theorem. The conditions they
found is expressed in terms of residues of the degree modulo appropriate moduli.
For p odd and q = pd, let n + 1 be congruent to N , M and L to the moduli p,
1

2
(q − 1) and

1

2
(q + 1), respectively. The sign class of n consists of all triples of

the form (±N,±M,±L), where each component and each negative is interpreted
modulo the appropriate modulus. For p = 2, the definition of sign classes refers

to the moduli 2, q − 1, q + 1 instead of p,
1

2
(q − 1) and

1

2
(q + 1), respectively.

With this terminology, one has the next result.

Theorem 5 ([16]). 1) If q = 2d, then fn is a PP of Fq if n belongs to
any of the following classes:

a) {0, 2e, 2e}, with gcd(n, e) = 1,

b) {1, 2(2s − 1)−1 + 1, 2(2t − 1)−1 + 1}, with gcd(t, d) = gcd(s, 2d) = 1.

2) For p = 3, fn is a PP of Fq in the following cases:

a) {2, 10, 10} and d = 3,

b) {2, 4, 4} and d odd,

c) {1, ((3t − 1)/2)−1 + 1, ((3s − 1)/2)−1 + 1}, where gcd(t, d) = gcd(s, 2d) = 1.

3) Let q = 5d. Then fn is a PP of Fq if the sign class of n contains either {2, 2, 2}
or {2, 2, (q − 1)/4}.

Some results on the permutation behaviour of generalized Chebyshev
polynomials (obtained by homogenising with respect to a variable of weight twice
the weight of X) are also known. We refer the reader to [21, Chapter 2] for DPFK
and respectively to [15] for DPSK.

Our purpose in this paper is to provide a new approach to Theorem 4
that we feel is more transparent and, moreover, capable of generalizations. In
the next Section we will present a sketch of Cohen’s proof of Theorem 4 because,
on the one hand, some of the results needed in his proof will be also used in
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the new proof, and, on the other hand, in order to appreciate the novelty of our
approach. Section 3 is devoted to details of our treatment of Theorem 4.

2. Sketch of the proof of Theorem 4. It is well-known that Cheby-
shev polynomials take a particularly simple form by substituting Y +Y −1 for X:

(1) fn(Y + Y −1) = Y n + Y n−2 + Y n−4 + · · · + Y −n =
Y n+1 − Y −n−1

Y − Y −1
.

From this identity it should be clear why, in the study of Dickson polynomials,
n + 1 rather than the degree n is relevant.

Although the problem we discuss makes sense when n is even, we shall
assume it is odd because f2n ∈ Fq[X

2]. Another obvious remark is: If fn is a
PP of Fq, then fn is a PP of Fp. In particular, the first congruence of C(q) is a
general constraint on the degree of a PP of Fq.

From now on we suppose that fn is a PP of Fq, where q = pd and n are
odd integers. It is not difficult to see that C(7) is a consequence of the congruence
n + 1 ≡ ±2 mod 7, so we shall assume for the rest of the paper that p ≥ 11.

Cohen shows [11, Section 4] that for q ≥ 11 we may proceed with the
following normalisation:

(2) n + 1 ≡ ±M mod
1

2
(q − 1), 2 ≤ M ≤ (q − 3)/4,

(3) n + 1 ≡ ±L mod
1

2
(q + 1), 2 ≤ L ≤ (q − 1)/4.

The first of Mathews’ congruences is proved in [11, Lemma 3.1], so Theo-
rem 4 is established (for prime fields) if we show that relations (2)–(3) only hold
for M = L = 2. Cohen’s strategy for the proof is to generate integer polynomials
in D and P , and show that the unique solution in Fp of this system is D = 0,
P = 4, where D and P denotes the difference and respectively the product of
M and L. Indeed, note that D ≡ 0, P ≡ 4 mod p imply M ≡ ±2 mod p; but
M ≡ −2 is forbidden since M = p− 2 contradicts the restriction M ≤ (p− 3)/4.
Such subtle transfers back and forth from integers M and L in the specified
ranges to their residue classes modulo (q − 1)/2 and (q + 1)/2, respectively, play
a prominent role throughout the proof.

To implement this idea, we need an equation-producing machinery. The
technology is based on the next result, proved in [11, Section 4].
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Key-Lemma. Let ζ and η be primitive root of the unity of order q − 1

and q + 1, respectively. For each r = 1, 2, . . .,
1

2
(q − 3)

q−2
∑

i=0

[

fM−1(ζ
i + ζ−i)

]2r
+

q
∑

j=0

[

fL−1(η
j + η−j)

]2r
+ 22r+2 = 2(M2r + L2r).

So we have to compute the coefficients of the Laurent polynomial obtained
by expanding even powers of DPSK evaluated in Y + Y −1. We find the relevant
information in the result below, known to people working in invariant theory.

Proposition ([1]).

(1 + X + · · · + Xs)r =
rs

∑

m=0

∑

j≥0

(−1)j
(

r

j

)(

m − j(s + 1) + r − 1

r − 1

)

Xm.

As usual, a binomial coefficient whose upper index is smaller than the
lower index has zero value.

As a consequence of the fact that a primitive root of unity generates a
cyclic group, one has

Well-known Lemma. Let s be an integer and ε a primitive root of unity
of order s. For any integer t

s−1
∑

i=0

εit =

{

−1 if s divides t,
0 otherwise.

Combining this result with the Proposition above and the Key-Lemma
we are actually left with very few coefficients.

Let us start the machinery. The square of DPSK, as computed according
to Proposition, has the form

ft(Y +Y −1)2=Y 2t + 2Y 2t−2+· · ·+tY 2+(t + 1)+tY −2+· · ·+2Y −2t+2+Y −2t.

Having in view the values permitted to M , only the constant term has a
non-zero contribution to the first sum in the Key-Lemma, so that

q−2
∑

i=0

fM−1(ζ
i + ζ−i)2 = M(q − 1) = −M in Fq.
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Similarly, the second sum is congruent to L mod p. So we get a quadratic poly-
nomial in M and L

(4) Pol1 := 2(M2 + L2) + M − L − 16.

Since this polynomial is symmetrical in M and −L, it can be expressed polyno-
mially in terms of D and P , which results in

(5) Q1 := 2D2 + D + 4P − 16.

Repeat the procedure for r = 2. From

ft(Y +Y −1)4 = Y 4t + 4Y 4t−2+· · ·+
1

3
(t + 1)(2t2 + 4t + 3)+· · ·+4Y −4t+2 + Y −4t

and 4(M − 1) < q − 1 and 4(L − 1) < q, it follows again that only the constant
terms may have a non-zero contribution to the sums in the left side of the equality
from the Key-Lemma. The polynomial generated is

(6) Pol2 := 6(M4 + L4) + 2M3 + M − 2L3 − L − 192.

Passing to variables D and P , one finds the corresponding polynomial

(7) Q2 := 6D4 + 24PD2 + 12P 2 + 2D3 + 6PD + D − 192.

Invoke the Key-Lemma with the next value of r. This time, the normal-
isation no longer guarantees that we need only regard the constant term in the
expansion of f6

t ; the coefficient of Y ±(q±1) can also be significant. Accordingly,
we have to distinguish four cases:

a) M < (q + 5)/6 and L < (q + 7)/6,

b) (q + 5)/6 ≤ M ≤ (q − 3)/4 and (q + 7)/6 ≤ L ≤ (q − 1)/4,

c) (q + 5)/6 ≤ M ≤ (q − 3)/4 and L < (q + 7)/6,

d) M < (q + 5)/6 and (q + 7)/6 ≤ L ≤ (q − 1)/4.

a) We first examine the case M and L are both so small that the expansion
only involves powers smaller than q−1. In this situation, only the constant terms
in f6

t (Y +Y −1) (t = M−1, L−1) matter. Thus, for M < (q+5)/6, L < (q+7)/6
we get the polynomial

h3a := 40M6 + 40L6 + M(11M4 + 5M2 + 4) − L(11L4 + 5L2 + 4) − 5120.
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Let me briefly present the arguments Cohen uses to exclude the primes
that occur this way. First, he finds the common root of the two polynomials in
the prime field. Cohen rewrites equation Q1 = 0 as

(8) P = 4 −
1

4
D −

1

2
D2.

Introducing this into equation Q2 = 0 results in

(9) 12D4 + 16D3 − 189D2 − 4D = 0.

Hence, we get either D = 0 (so that, by equation (8), P ≡ 4 mod p and we are
done), or a polynomial over Fp

(10) 12D3 + 16D2 − 189D − 4.

Similarly from h3a one gets

40D6 + 240PD4 + 360P 2D2 + 80P 3 + 11D5 + 55PD3

+ 55P 2D + 5D3 + 15PD + 4D − 5120,

so, eliminating again P by means of (8), one concludes that

(11) 196D5 − 3600D4 − 7685D3 + 60580D2 − 256D ≡ 0 mod p.

Therefore, either D is multiple of p or its residue mod p is a root in Fp of

(12) 196D4 − 3600D3 − 7685D2 + 60580D − 256.

The proof is complete if the only common root of equations (9) and (11)
in Fp is D ≡ 0 mod p. Otherwise the polynomials (10) and (12) have a common
root mod p. This only happens if the characteristic p divides their resultant

1493463162316800 = 211 · 3 · 52 · 5569 · 1745927.

Thus we have to further examine the situation for p = 5569 or 1 745 927. For
p = 5569, the common root in Fp is D ≡ 14 mod p, so, by (8), P ≡ 2687 mod p.
By direct computation one finds D2 + 4P ≡ 5375 mod p, which is not a square
residue mod 5569. Hence integers M , L do not exist with (M +L)2 ≡ D2 +4P ≡
5375 mod p. The same argument works for p = 1 745 927. Thus is case a) one
obtains the desired conclusion.
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b) Let us examine what happens when M and L are both big. Here
“big” means that in the expansion of fM−1(Y + Y −1)6 and fL−1(Y + Y −1)6 one
encounters the powers Y ±(q±1). For (q + 5)/6 ≤ M ≤ (q − 3)/4 and (q + 7)/6 ≤
L ≤ (q − 1)/4, the Key-Lemma yields

(13) 2(M6 + L6) + c0(M) − c0(L) + 2cq−1(M) − 2cq+1(L) = 256,

where cj(t) is the coefficient of Y j in ft−1(Y +Y −1)6. By Proposition above, one
has for these values of M and L

c0(T ) =

(

3T + 2

5

)

− 6

(

2T + 2

5

)

+ 15

(

T + 2

5

)

=
11T 5 + 5T 3 + 4T

20
,

cq−1(M) =

(

3M + 5−q
2

5

)

,

cq+1(L) =

(

3L + 3−q
2

5

)

.

Substituting in equation (13), one gets a sextic polynomial, symmetric in M and
−L.

h3b := 640(M6 + L6) + 1472(M5 − L5) + 1080(M4 + L4) − 280(M3 − L3)

− 300(M2 + L2) + 73(M −L)− 81905.

Passing to polynomials D and P , one gets

640D6 + 3840PD4 + 5760P 2D2 + 1280P 3 + 1472D5 + 7360PD3

+ 7360P 2D + 1080D4 + 4320PD2 + 2160P 2 − 280D3 − 840PD

− 300D2 − 600P + 73D − 81905.(14)

After eliminating P it results the polynomial

(15) 128D5 + 4140D4 + 7640D3 − 56665D2 − 94943D − 32175.

Let us call fn exceptional on Fq if it is PP on Fq and does not satisfy
Matthews’ condition C(q). Exceptional DPSK may only exist on fields whose
characteristic divides the resultant of polynomials (10) and (15). Using the com-
puter algebra package PARI/GP [2] one finds that this only happens for five
values of p ≥ 11, namely p = 11, p = 19, p = 47, p = 1 693 and p = 390 357 049.
These values do not coincide with those found in the original proof because Co-
hen’s calculations produced a sextic polynomial instead of the quintic (15).
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c) The next case is M big and L small, i.e. (q + 5)/6 ≤ M ≤ (q − 3)/4
and L < (q + 7)/6, so that

2(M6 + L6) + c0(M) − c0(L) + 2cq−1(M) = 256.

Performing the calculations, it results the polynomial

h3c := 1280(M6 + L6) + 352(M5 − L5) + 160(M3 − L3) + 128(M − L)

+ 2592M5 + 2160M4 − 720M3 − 600M2 + 18M − 163825.(16)

Since the resulting polynomial is no longer symmetric in M and −L,
one cannot obtain a polynomial in D and P . It is possible to rewrite h3c as a
polynomial Q3c in M and D. Similarly Q1 gives rise to a polynomials Q1c of M
and D. Cohen searches for primes for which Q1c, Q2, and Q3c are simultaneously
soluble mod p by successively computing R, the resultant of Q1c and Q3c with
respect to variable M , and then the resultant of R and the polynomial given by
relation (10) with respect to D. The computations performed with PARI/GP
yield a number with 52 digits and prime decomposition

251 · 34 · 55 · 11 · 31 · 424 928 167 · 70 588 464 402 288 705 233.

The prime numbers greater than 11 in this factorization are candidates for char-
acteristic of fields in which Matthews’ condition does not hold, and therefore
subsequent work is required in order to settle these cases.

d) Finally, one has to consider M < (q + 5)/6, (q + 7)/6 ≤ L ≤ (q − 1)/4.
This situation is similar to case c): just replace M by −L in the second line of
relation (16), as well as in the polynomial Q3c.

At this point we have a few polynomial systems and several primes p
such that these systems have solutions in the prime field of characteristic p. We
want to show that the only solution in the ranges permitted by normalisation is
M = L = 2. For prime fields, of characteristic p computed in case b), Cohen
explicitly finds the common root mod p of polynomials (10) and (15) and obtains
the desired conclusion by showing that no integers M , L in the indicated ranges
are congruent to this root mod p.

This task is considerably more difficult when q is composite. Cohen uses
the fact that C(p) and normalisation for q = p2 are simultaneously satisfied
only by four values of M . By ingenious, though ad-hoc, reasoning, the desired
conclusion is obtained in all but the following cases:

q = 312, M = 62, and L = 177, 208, or 239,

q = 312, M = 238, and L = 12, 105, or 136,

q = 1512, M = 2, and L = 2267.
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The specific arguments needed in order to complete the proof vary from
case a) to b) or c). The finishing touch is possible thanks to a p-adic version
of the Key-Lemma which permits to eliminate the unyielding cases listed above.
The approach sketched above has several drawbacks:

1. The necessity to find all solutions of quintic or sextic univariate polynomials
in large prime fields is a non-trivial task (for instance, recall that in case
b) occurs a prime with 9 decimal digits, while in case c) a prime with 20
digits made appearance).

2. Performing elimination by successively taking resultants has the potential
of introducing fake factors. To the best of our knowledge, there is known
no general procedure to distinguish them from true factors.

3. The need to apply a p-adic version of the Key-Lemma is somewhat unsat-
isfactory.

3. Details of the alternate proof. Our approach is based on
Gröbner bases computations. Though still machine-dependent, it obviates so
many case-by-case arguments and confirms Cohen’s hope that his result can be
extended to higher d.

We generate one more polynomial Pol4) ∈ Z[M,L] applying the Key-
Lemma with r = 4. (This is legitimate only for q ≥ 11.) The coefficients vary
according to whether M is < or ≥ (q + 7)/8, and L is < or ≥ (q + 9)/8, see
Table 1.

The free term of fT−1(Y +Y −1)8 (T = M,L) is, according to Proposition
above,

c4
0(T ) =

(

4T + 3

7

)

− 8

(

3T + 3

7

)

+ 28

(

2T + 3

7

)

− 56

(

T + 3

7

)

=
151T 7 + 70T 5 + 49T 3 + 45T

315
.

Since 8M < 2(q − 1) by our normalisation (2), the only monomials in
the expansion of fM−1(Y + Y −1)8 with exponents divisible by q − 1 are Y ±(q−1).
As seen from Proposition, the formula for the coefficients of these powers of Y

involves one or two binomial coefficients, according to whether 3M +
1 − q

2
+ 3

is less than or greater than 7. Let us denote

c1
q−1(M) =

(

4M + 1−q
2 + 3

7

)

for M ≤ (q + 5)/6,
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c2
q−1(M) = c1

q−1(M) − 8

(

3M + 1−q
2 + 3

7

)

for (q + 7)/6 ≤ M ≤ (q − 3)/4,

and similarly

c1
q+1(L) =

(

4L − 1+q
2 + 3

7

)

for L ≤ (q + 7)/6,

c2
q+1(L) = c1

q+1(L − 1) − 8

(

3L − 1+q
2 + 3

7

)

for (q + 9)/6 ≤ L ≤ (q − 1)/4.

Clearly, c2
q−1(M) exists only for q ≥ 23, and c2

q+1(L) only for q ≥ 29.

The Key-Lemma yields one of the following primitive polynomials with
integer coefficients:

h41 := 315
(

2M8 + 2L8 − 210 + c4
0(M) − c4

0(L)
)

,

h42 := 1024
(

h41 + 630c1
q−1(M)

)

,

h43 := 1024
(

h41 + 630c2
q−1(M)

)

,

h44 := 1024
(

h41 − 630c1
q+1(L)

)

,

h45 :=
1

2
h44 + 1024 · 315c1

q−1(M),

h46 :=
1

2
h44 + 1024 · 315c2

q−1(M),

h47 := 1024
(

h41 − 630c2
q+1(L)

)

,

h48 :=
1

2
h42 − 1024 · 315c2

q+1(L),

h49 :=
1

2
h43 − 1024 · 315c2

q+1(L).

We consider the ideal I generated in the polynomial ring Z[M,L] by Pol1,
Pol2, Pol3, Pol4, given respectively by equations (4), (6) and Table 1.

In order to make computations depend as little as possible on the char-
acteristic of the field, we choose to compute Gröbner bases over integers. Thus
we need to keep track not only of the leading monomials, but also of the leading
coefficients of all polynomials entering the Gröbner bases. Magma [3] is one of
the computer algebra systems with such capabilities.

Let us number with Roman digits the 16 cases described in Table 1,
starting from the upper-left corner and going right and down. From the output of
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M ≤ (q + 5)/8 ≤ (q + 3)/6 = (q + 5)/6 ≤ (q − 3)/4
L ≤ (q + 7)/8 h3a, h41 h3a, h42 h3c, h42 h3c, h43

≤ (q + 5)/6 h3a, h44 h3a, h45 h3c, h45 h3c, h46
= (q + 7)/6 h3d, h44 h3d, h45 h3b, h45 h3b, h46
≤ (q − 1)/4 h3d, h47 h3d, h48 h3b, h48 h3b, h49

Table 1. The third and fourth generator of the ideal I

a Magma session we see that the ideal I is generated in Case I by six polynomials:

M2 + 8M + 31L2 − 8L − 128,

ML + 2M + 4L3 + 111L2 − 18L − 448,

15M + 60L2 − 15L − 240,

4L4 + 20L2 − 144,

8L3 + 72L2 − 32L − 288,

120L2 − 480.

In every polynomial ring over a field of characteristic greater than 5, these poly-
nomials generate the same ideal as the polynomials M − L and L2 − 4. This
means that in this case M ≡ L ≡ ±2 (mod p) for p > 5.

In Cases II–XVI the ideal I contains a constant polynomial (the largest
entry in the second column of Table 2). Therefore, the polynomials Pol1, Pol2,
Pol3, Pol4 we are interested in may have a common solution only in fields of
characteristic dividing one of the leading coefficients appearing in Gröbner bases.
Table 2 contains relevant information.

Case Coefficients > 1 Prime divisors
I 4, 8, 15, 120 2, 3, 5
II, V 15, 14549535, 15058768725 3, 5, 7, 11, 13, 17, 19, 23
III, VII 15, 45, 6435, 765765 3, 5, 7, 11, 13, 17
IV 15, 495, 6435, 2297295 3, 5, 7, 11, 13, 17
VI 15, 101846745 3, 5, 7, 11, 13, 17, 19
VIII 15, 495, 6435, 765765 3, 5, 7, 11, 13, 17
IX 15, 1035 3, 5, 23
X, XIV 15, 45 3, 5
XI, XII, XV, XVI 4095 3, 5, 7, 13
XIII 15, 405 3, 5

Table 2. Leading coefficients in bivariate Gröbner bases over Z
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A first remark is that exceptional DPSK may exist only on fields of very
small characteristic. These computations already suffice to conclude the necessity
of Matthews’ condition C(p) if p > 23. Moreover, the conclusion of Theorem 4
is reached in each of the Cases I, X, XIII, XIV. It remains to establish the same
conclusion when p is between 11 and 23.

For each prime p > 7 appearing in the last column of Table 2 we computed
a Gröbner basis of the image of the ideal I in the polynomial ring Fp[M,L]. A
synopsis of the output is given in Table 3 below.

Case Polynomials
II, V M ≡ L ≡ ±2 (mod p) (p ≤ 19), M ≡ L ≡ 2 (mod 23)
III, IV, VII, VIII M ≡ L ≡ ±2 (mod 13), M ≡ L ≡ 2 (mod 17)
VI M ≡ L ≡ ±2 (mod p), (13 ≤ p ≤ 19)
IX M ≡ L ≡ 2 (mod 23)
XI, XII, XV, XVI M ≡ L ≡ ±2 (mod 13)

Table 3. Gröbner bases over Fp, (p > 11)

It is obvious that these computations suffice for q = p > 11 but for q = p2

or q = p = 11 yield only congruences for M , L (mod p) and so require further
work.

For p = 11, in all cases but IV and VIII the computer delivered the same
Gröbner basis over Fp, namely M −L, M2 − 4. In the case IV or VIII we obtain
the polynomials M2 + 6M + 5L + 7, ML + 9M + 2L + 7, L2 + 7. It is easy
to find all solutions of this polynomial system: (2, 2), (3, 2), (−2,−2) ∈ F11.
The second entry in this list does not fulfil Matthews’ condition C(11). It is
perfectly legitimate in the realm of ideal theory, but not relevant in our initial
context. Indeed, the case IV, resp. VIII, is defined by the polynomial h43, resp.
h46, involving the coefficient c2

q−1(M). As remarked before, this value does not
actually appear for q < 23. Therefore, Theorem 1.4 is established for prime fields
of characteristic greater than 7. The considerations below refer to q composite.

For each of the 16 cases described by Table 1 the computation ended in
less than 4 seconds. Subsequent computations described below are even easier.

Let us now suppose that q = p2. Recall that normalisation described by

equations (2) and (3) is in force. The fact that
1

2
(p2 − 1) is multiple of the two

consecutive integers
1

2
(p − 1) and

1

2
(p + 1) means that M is congruent to either

2 or −2 modulo
1

2
(p ± 1). These congruences are satisfied only by four integers

in the range 2 ≤ M ≤ (q − 3)/4, namely 2, 2p, (p2 − 8p − 1)/4 and (p2 − 9)/4.
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M = 2p M = (p2 − 8p − 1)/4 M = (p2 − 9)/4
Case Constant Case Constant Case Constant

I 48 VI 315 I–IV, VI–VIII 255
II–XVI 3 IX, X, XIII, XIV 9 V 1275

I–V, VII, VIII 63 IX, X, XIII, XIV 15
XI, XII, XV, XVI 63 XI, XII, XV, XVI 3

Table 4. Constant polynomials in univariate Gröbner bases over Z

We specialize Pol1, Pol2, Pol3, Pol4 by letting M take one of the last three
values in the list above and compute Gröbner bases of the resulting univariate
integer polynomial ideals. Each Gröbner basis contains a constant polynomial, cf.
Table 4. From the data given in Table 4 we conclude that the proof of Theorem 4
is completed, except when p = 17, M = (p2 − 9)/4 and L ≤ (q + 5)/6. From
Table 1 it is clear that, for these values of M and L, the ideal I is generated by
Pol1, Pol2, h3c and either h43 or h46. We apply once more the Key-Lemma
with r = 5. Since 2(q − 1) < 10M < 3(q − 1) and 10L < 2q, this means that we
have to consider a polynomial of the form

2(M10 + L10) − 212 + s0(M) − s0(L) + 2s1(M) + 2s2(M) − 2s3(L),

where

s0(T ) =

(

5T + 4

9

)

− 10

(

4T + 4

9

)

+ 45

(

3T + 4

9

)

− 120

(

2T + 4

9

)

+ 210

(

T + 4

9

)

(T = M,L),

s1(M) =

(

5M + 9−q
2

9

)

− 10

(

4M + 9−q
2

9

)

+ 45

(

3M + 9−q
2

9

)

,

s2(M) =

(

5M + 5 − q

9

)

,

and

s3(L) =



















(

5L + 7−q
2

9

)

for (q + 11)/10 ≤ L ≤ (q + 9)/8,

(

5L + 7−q
2

9

)

− 10

(

4L + 7−q
2

9

)

for (q + 11)/8 ≤ L ≤ (q + 5)/6.

The coefficients of the resulting primitive integer polynomial Pol5 vary
according to the location of L. Considerations similat to those detailed before
lead to distinguish four cases:
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A) Case IV for L ≤ (q + 9)/10,

B) Case IV for (q + 11)/10 ≤ L ≤ (q + 7)/8,

C) Case VIII for L = (q + 9)/8,

D) Case VIII for (q + 11)/8 ≤ L ≤ (q + 5)/6.

Magma computes Gröbner bases of the ideal generated by the specializa-
tions of the polynomials Pol1, Pol2, Pol3, Pol4, Pol5 to M = −9/4. The output
contains the constant polynomial 15 in cases A), B) and D), and the constant
polynomial 3 in case C). Therefore we conclude that polynomials Pol1, Pol2,
Pol3, Pol4, Pol5 have no common roots in F17.

As a result of these computations we obtain M = 2 and L ≡ 2 (mod p).
Cohen proves [11, Section 6] that equations obtained by applying the Key-Lemma
for r = (p + 1)/2 and r = p + 1 eliminates all possibilities but p = 443 and
L = 9305 or p = 151 and L = 2267. However, it turns out that each of these
putative solutions is incompatible with what results for r = 5.

This ends the proof of Theorem 4.
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