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ABSTRACT. In this note we attempt to generalize a few statements drawn
from the 3-dimensional McKay correspondence to the case of a cyclic group
not in SL(3,C). We construct a smooth, discrepant resolution of the cyclic,
1

terminal quotient singularity of type —(1,1,r—1), which turns out to be iso-
morphic to Nakamura’s G-Hilbert scheme. Moreover we explicitly describe
tautological bundles and use them to construct a dual basis to the integral
cohomology on the resolution.

1. Introduction. In the case of a finite, abelian group G C SL(3,C),
Craw and Reid [2] construct explicitly a smooth, crepant toric resolution of
the quotient singularity C3/G. Moreover in [1] Craw shows that the integral
cohomology of the resolution has rank equal to the order of the group G and
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constructs a dual basis using tautological bundles. For finite G in GL(2,C)
the cohomology of the minimal resolution has rank smaller than the order of
G (compare [7]). Craw and Reid calculated G-Hilb for G = 1(1,a,r — a), and for
most values of a it is very discrepant and still singular, with ordinary double points
xy = zt. We show that in the case of a cyclic, terminal, quotient singularity of
type %(1, 1,7 —1) the G-Hilbert scheme is a smooth, discrepant resolution and its
integral cohomology has rank 2r—1. The dual basis to cohomology is constructed
using tautological bundles introduced by Gonzalez—Sprinberg and Verdier. We
assume that the reader is familiar with basic toric geometry ([4], [9]).
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the subject. For moral support I wish to thank Professors A. Biatynicki—Birula,
P. Pragacz and my supervisor Jarostaw Wisniewski. I am also grateful to Profes-
sor Dan Abramovich and the referee for numerous remarks concerning the final
version of this paper.

2. Toric resolution. Let us fix an integer r > 2 and the group G
generated by the element diag(e,e,e" 1), where ¢ = e, The group G has r
characters which may be identified with 1,¢,£2,...,e"!. To use toric geometry
methods introduce the lattice

1
N=7Z+-(1,1,r —1)Z,

,
and its dual M = Homgz(N,Z). Consider the cone o = R>pe; + Rx>pea + R>pes
generated by non-negative combinations of the standard basis vectors of Z3 in
N ®7 R and define X = C3/G. Then it is easy to see that

X = SpecClz,y, 2] ~ SpecClo¥ N M],
where
oV ={ueM : (u,v) > 0forallveco},

and the functions z,y, z are identified with the dual elements e7, 3, €5 (see [4] p.
3-8 for more details). This identification will be used in the rest of the paper.

Definition 2.1. Let p; = %(T—’i,T—i,i) fori=1,2,...,r be the points
in the lattice N (note that p, = es). Define Y as the toric variety given by the
fan A obtained from the cone o by the sequence of successive star subdivisions
along the rays R>op,—1,...,R>op1. Denote by f : Y — X the resulting proper,
birational toric morphism given by the identity map on the lattice N, and let



Cohomology of the G-Hilbert scheme for (1,1, — 1) 295

T

Ex(f) be the exceptional set of f (see [4] p. 48 and picture below showing the fan
A intersected with the hyperplane e} + e + 2e3 = 2).

€1

€ es3

Lemma 2.1. Y is a smooth toric variety.

Proof. Since the fan A is simplicial it is enough to check that the
primitive vectors along generating rays for every 3-dimensional cone in A form a
Z-basis for the lattice V. This follows easily as

1
detley, ea, p1] = det[e;, pi, pit1] = -

forj=1,2,¢i=1,....,r—1. O

Denote by 7; = R>op; the ray through p; for ¢« = 1,...,r — 1. The
irreducible components of exceptional set Ex(f) are in one-to-one correspondence
with the rays ;. Each component is a compact toric surface defined by the fan
Star(7;) in the quotient lattice N(7;) (details [4] p. 52). It is also useful to have
dual coordinates for every 3—dimensional cone in the fan A. They are:

i\

Oei,e0,p1 — O—ei‘Jr(lfr)eg,e;Jr(lfr)eg,re§)

0';/ = O % _p% jo* . * (i41)e* i+1— *
1,Pi:Pi+1 €1 627l62+(l r)537(l+ )62+(Z+ 1“)637

Oea,pipir1 — T —ei+esiei+(i—r)es,(i+1)ef+(i+1—r)e}
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for i = 1,...,7 — 1, where for example o0¢, ¢, ,, denotes the cone generated by
Rzoel,Rzoeg and T1.

Definition 2.2. Let S; be the i-th irreducible divisor in Ex(f) defined by
the fan Star(r;), that is

S; = V(TZ)

Lemma 2.2. The exceptional irreducible divisors in Ex(f) are S; ~ P?
and S; ~F; fori=2,...,r —1 where F; is a Hirzebruch surface (see [4] p. 7).

Proof. For the surface .S; pick two dual coordinates in an adjacent 3-
dimensional cone in A vanishing on 7;. Evaluating them on primitive vectors
along rays generating 2-dimensional cones containing 7; gives generators of rays

in the fan Star(r;). That is for the surface S; choose the cone o¢, ¢, p, and set
X=ei+(1—-r)efand Y =e5+ (1 —r)ej. Then

(X(e1),Y (e1)) = (1,0),
(X(e2),Y (e2)) = (0,1),

(X(p2),Y(p2)) = (=1,-1),

so 81 ~ P2, Analogously from o/  pick X =idef+(i—r)es and Y = —ej+e5.

€2,Di,Di+
Then

(X(e1),Y(e1)) = (4,—1),
(X(pi-1), Y (pi-1)) = (1,0),
(X(e2),Y(e2)) = (0,1),

(X (pit1), Y (piy1)) = (=1,0),

hence the lemma follows. O

From the toric picture it is easy to see that Ex(f) consists of a tower of P
and Hirzebruch rational scrolls, that is S; N S; 41 = P! for i = 1,....,7 — 2, where
P! corresponds to the cone spanned by 7; and 7;,1. Using homotopy  — tx of
C3 we can contract X to a singular point. The homotopy lifts via f to Y. Since
the exceptional set lies over the singularity on X one sees that Y is homotopic
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to a tubular neighborhood of Ex(f) so that H*(Y,Z) ~ H*(Ex(f),Z). The basis
of H%(F;,Z) consists of rational curves L; and M; satisfying the relations L? = 0,
L;M; =1, and M? = —i (see [10], Lemma 2.7). By induction on r and using the
Mayer-Vietoris sequence it is clear that the basis of H*(Ex(f),Z) is given by the
class of a point in degree 0, the classes of the curves L; in degree 2 (L; stands
for P! in S1) and by the classes of S; in degree 4.

Definition 2.3 Nakamura. The G-Hilbert scheme G-HilbC? is the
moduli space of G-clusters, that is 0-dimensional, G-invariant subschemes Z C C3
such that H(Z,0yz) is the reqular representation C[G] of the group G.

For working with G- Hilb C? schemes following Nakamura [8] it is conve-
nient to introduce the notion of a G-set.

Definiton 2.4. A subset I' of monomials in Clz,y, 2] is called a G-set if

(1) 1t contains the constant monomial 1,
(2) ifpgeTl thenpeTl and g €T,

(3) there is a 1-to—1 correspondence between I' and irreducible representations
of G with respect to the induced action of G on Clz,y, z].

We can identify G-Hilb C3 with a moduli space for ideals I in C[x,y, 2]
such that Clz,y,z]/I = C[G]. The monomials in a basis of Clz,y,z|/I give
elements of a G-set.

1
Lemma 2.3. The only possible G-sets in the case of —(1,1,7 — 1) are:
r
I = {227 L, " fori=0,...,r =2,
i i—1 2 —i—1 ~
Y ={z" 2", ..., Lyy...,y "} fori=0,...,r =2,

7= {1272 1}

Proof. If I is a G-set, then zz,yz ¢ I since 1 already represents trivial
character. Moreover xy ¢ I' because x and y represent the same character €, so
I' contains only monomials in one variable. If z* is the maximal power of z in T

then either "1 or 4" ~*~! must be in I', and the result follows. O

Lemma 2.4. The morphism f:Y — X is a resolution of singularities
and Y ~ G-Hilb C3.
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Proof. After Lemma 2.1 it is enough to compute all G-sets (in the spirit
of [8] or [1], Section 5.1) using dual coordinates for every cone in A and check

if all possible are present. For the cone o¢, ¢, p, the dual coordinates on the

0= %, v = 2". They give

corresponding affine open chart C? are o = —»
pr

generators  — az" "1,y — B2""1, 2" — v of the ideal defining a G-cluster. In this

case the corresponding G-set is given by I'*. Similarly for the cone o¢, p, p,,, We
get generators x — ay,y 1t — 3277171 2770 — 4yt and the G-set T'Y_, |, and for

the cone oe, p, p,., generators y — ax, z't1 — G271 277" — 42" and the G-set
re O

r—i—1-

3. Tautological bundles. Tautological bundles on the resolutions of
Kleinian singularities were defined by Gonzalez—Sprinberg and Verdier [5]. In the
two dimensional case they define a basis of the K—group of the minimal resolution
and have degree 1 on exactly one exceptional curve of the minimal resolution. In
the toric case we adapt an equivalent definition (see [1] Def. 4.7, [11] Section 4
and [5] p. 417 for original treatment).

Definiton 3.1. If p; : G — GL(V;) is an irreducible representation, let
R, = HOIH(C[G}(W) (C[.I‘, Y, Z])

be the Ox-module generated by monomials in the €'-character space. Define tau-
tological bundle R; as

Ri = [*R;/ Torsp,

.e. pullback modulo torsion.

Each R; is generated by the monomials z%,y% 2"~* € C[x,y,z] as an
Ox-module. Multiplying by z° we see that it is isomorphic to the ideal sheaf
(%2, yi2%, 2") € Ox. We claim that R; is an invertible sheaf. Indeed on the
toric picture it is represented as a Cartier divisor by the piecewise linear func-
tion on the fan A given by ie] + ie3 on the cone o, ¢, p,, t€5 + ie3 on the cone
Oey,esp; a0d by 7€3 on oy, ¢; e, (see [11] p. 5-8 and [2] Example 4.8). We note
that this Cartier divisor is equivalent to the Q-Cartier divisor corresponding to
(2%, 9, 2"7%) and it is more convenient to expand it in terms of linear equivalence
classes of exceptional surfaces:
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r—1 r—2 2 1
Ri=— S1— Sy — o= =50 — =51,
r r r
-2 2 2 2(r — 2.2 2
Ry= -8 — r )52— r 3)53_"'_—Sr—2__‘9r—1>
r r
Ri:_r—zsl_2(r—i)52_ —Z(T_i)Si—i(r_i_1)5i+1—~
r r r
2 ]
- r—2__Sr—17
1 2 -2 -1
Roi= =81 — =8y = =28, 5~ =5, .
r r

Observe that as a Q-Cartier divisor R, is the discrepancy divisor for f (see [12]
p. 373-374), that is f*(Kx) = Ky + R4 and the Cartier divisor rR; is linearly
equivalent to —r Ky (the equivalence is given by linear function rej + rej + rej).
In fact rKx is linearly trivial.

4. Main result.

Definition 4.1. Define virtual sheaves

Vi=(R1®R;i) e ((R1®R;) @ Oy).

These virtual sheaves will be used to construct the dual basis to cohomol-
ogy. For any bundles F,G define
co(F
c(G)

~—

c(Feg) =

Theorem 4.1. The tautological bundles R; form the dual basis of H*(Y,7Z),
that is c1(R;)- Lj = 6;5 and the virtual sheaves V; form the dual basis of HNY,7Z),
that is co(V;) - S = 0ij.
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Proof. The divisor R; has degree 1 on the fiber L; of rational scroll F;
which corresponds to the line joining e; with p; in the toric picture. It has also
degree 0 on L; for i # j. This proves the first part of the theorem. The second
part is proven by inspecting the following table of first Chern classes computed
on every compact surface:

ci(R1) | a(Ra) c1(Rs3) c1(Ry-1)
P? Ly 0 0 0
s Lo My + 2L, 0 0
Fs | Ls 9Ly | Mg+ 3Ls 0
Fy Ly 204 3L4 0
Fr_1| Lyt 2L, 1 3L,_1 M, 1+ (r—1)L,—;

and by the equation co(F @ F') = ¢1(F)e1(F'), which holds for any line bundles
F,F'. The restriction of the bundle R; to the surface S; is computed by choosing
from the piecewise function for R; a linear function on one of the 3-dimensional
cones containing 7; and subtracting it from the functions on all the other cones.
Evaluating the resulting functions on primitive vectors in rays generating 2—
dimensional cones containing 7; gives minus coefficients for the desired torus
invariant Cartier divisor on the fan Star(7;) (see [9] for more details). Observe
also that ¢1(V;) = 0, so the second Chern class of V; is integral.

This result computes also
rank H*(Y,Z) = 2r — 1

(r — 1 for the second and fourth cohomology and 1 for the zeroth). It would be
also interesting to obtain similar results in the general case of %(1,@,7" —a) for
the ‘economic’, smooth resolution (see [12], Section 5). We note also that this
‘economic’ resolution is isomorphic to the G-Hilbert scheme only for a =1. O



1]

Cohomology of the G-Hilbert scheme for %(1, 1,r—1) 301

REFERENCES

A. Craw. The McKay correspondence and representations of
the McKay quiver. University of Warwick PhD thesis, 2001.
http://www.math.utah.edu/~craw/thesis.ps

A. Craw, M. REID. How to calculate A-Hilb C3. Séminaires et Congrés 6
(2002), 129-154.

W. FULTON. Intersection theory. Ergebnisse der Mathematik und ihrer
Grenzgebiete (3), Folge A, 2. Springer—Verlag, Berlin, 1998.

W. FuLTON. Introduction to toric varieties. Annals of Mathematics Studies,
vol. 131. The William H. Roever Lectures in Geometry. Princeton University
Press, Princeton, 1993.

G. GONZALEZ-SPRINBERG, J.-L.. VERDIER. Construction géométrique de
la correspondance de McKay. Ann. Sci. Ecole Norm. Sup. (4) 16, 3 (1983),
409-449.

R. HARTSHORNE. Algebraic geometry. Graduate Texts in Mathematics, No.
52. Springer-Verlag, New York-Heidelberg, 1977.

A. IsHIl. On the McKay correspondence for a finite small subgroup of
GL(2,C). J. Reine Angew. Math. 549 (2002), 221-233.

I. NAKAMURA. Hilbert schemes of abelian group orbits. J. Algebraic Geom.
10, 4 (2001), 757-779.

T. OpA. Convex bodies and algebraic geometry. An introduction to the
theory of toric varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete
(3), vol. 15, Springer-Verlag, Berlin, 1988.

M. REID. Chapters on algebraic surfaces. Complex algebraic geometry (Park
City, UT, 1993), 3-159, IAS/Park City Math. Ser., 3, Amer. Math. Soc.,
Providence, RI, 1997.

M. REID. McKay correspondence. In: Proc. of algebraic geometry sympo-
sium(Kinosaki, Nov 1996) (Ed. T. Katsura), 1997, 14-41.



302 Oskar Kedzierski

[12] M. REID. Young person’s guide to canonical singularities. Algebraic geome-
try, Bowdoin, 1985 (Brunswick, Maine, 1985), 345414, Proc. Sympos. Pure
Math., 46, Part 1, Amer. Math. Soc., Providence, RI, 1987.

Institute of Mathematics

Polish Academy of Sciences

ul. Sniadeckich 8

P.O.Box 21

00-956 Warszawa 10

Poland Received March 31, 2004
e-mail: oskar@impan.gov.pl Revised June 17, 2004



