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KNESER AND HEREDITARILY KNESER SUBGROUPS

OF A PROFINITE GROUP
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Abstract. Given a profinite group Γ acting continuously on a discrete
quasi-cyclic group A, certain classes of closed subgroups of Γ (radical, hered-
itarily radical, Kneser, almost Kneser, and hereditarily Kneser) having nat-
ural field theoretic interpretations are defined and investigated. One proves
that the hereditarily Kneser subgroups of Γ form a closed subspace of the
irreducible spectral space of all closed subgroups of Γ, and a hereditarily
Kneser criterion for hereditarily radical subgroups is provided.

Introduction. To any algebraic field extension E/F one can associate
a torsion Abelian group, called the Cogalois group of the field extension E/F
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and denoted Cog(E/F ), namely the torsion subgroup of the multiplicative factor
group E∗/F ∗. Thus Cog(E/F ) = T (E/F )/F ∗, where

T (E/F ) = {x ∈ E∗ |xn ∈ F for somen ∈ N≥1}

The lattices L(E/F ) and L(Cog(E/F )) = L(T (E/F ) |F ∗) of all intermediate
subfields of the field extension E/F , resp. of all subgroups of T (E/F ) lying over
F ∗, are related through the natural maps L 7→ L∩T (E/F ), G 7→ F (G). Roughly
speaking, the aim of the Cogalois Theory consists in the study of the properties
of these maps relating the lattices above. The roots of the Cogalois theory lie
in some classical works of Siegel [17], Kneser [12], and Schinzel [14] devoted
to particular classes of finite field extensions with Cogalois correspondence. A
more general approach for arbitrary algebraic field extensions was developed in
the 80’th by Greither-Harrison [10], Barrera-Mora, Rzedowski-Calderón, Villa-
Salvador [8], and still more recently by Albu and Nicolae [1], [6]–[7]. For the
actual state of art of the Cogalois Theory see Albu’s monograph [2].

Now, assuming that E/F is a Galois (not necessarily finite) extension, and
Γ = Gal(E/F ) its Galois group with Krull’s topology, the canonical morphism

Ψ : T (E/F ) −→ Z1(Γ, µE), x 7→ [σ 7→ (σx)x−1]

where µE denotes the multiplicative group of the roots of unity in E, induces by
Hilbert’s Theorem 90 an isomorphism Cog(E/F ) ∼= Z1(Γ, µE).

Thus it seems natural to consider a pure group theoretic approach starting
from an arbitrary profinite group Γ and a quasi-cyclic discrete group A, identified
with a subgroup of Q/Z, on which Γ acts continuously. For any such pair (Γ, A),
the objects to study are the lattices L(Γ) and L(Z1(Γ, A)) of all closed subgroups
of the profinite group Γ, resp. of all subgroups of the Abelian torsion discrete
group Z1(Γ, A) of continuous 1-cocycles from Γ to the discrete Γ-module A, which
are related through the canonical reversing maps

∆ ∈ L(Γ) 7→ ∆⊥ = Z1(Γ|∆, A) := {g ∈ Z1(Γ, A) | g |∆ = 0} ∈ L(Z1(Γ, A))

and
G ∈ L(Z1(Γ, A)) 7→ G⊥ := {σ ∈ Γ | g(σ) = 0 ∀ g ∈ G } ∈ L(Γ),

defining a Galois connection, i.e. ∆ 6 ∆⊥⊥ and G 6 G⊥⊥ for all ∆ ∈ L(Γ), G ∈
L(Z1(Γ, A)).

The lattices L(Γ) and L(Z1(Γ, A)) are equipped with natural topologies
defined by the bases of quasi-compact open sets

U∆ := L(∆) = {Λ ∈ L(Γ) |Λ 6 ∆}
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for ∆ ranging over all open subgroups of Γ, resp.

UF := {G ∈ L(Z1(Γ, A)) |F 6 G }

for F ranging over all finite subgroups of Z1(Γ, A).

Note that {Λ } = L(Γ |Λ) = {Λ′ ∈ L(Γ) |Λ 6 Λ′ } for all Λ ∈ L(Γ),
and {G } = L(G) for all G ∈ L(Z1(Γ, A)), so, w.r.t. the topologies above, L(Γ)
and L(Z1(Γ, A)) are irreducible spectral spaces with the generic point { 1 }, resp
Z1(Γ, A), and the unique closed point Γ, resp. { 0 }.

Moreover the both lattice operations on L(Γ) and L(Z1(Γ, A)) are con-
tinuous maps. However, in general, only the join Λ1 ∨ Λ2 := Λ1 ∪ Λ2 in L(Γ),
resp. the meet G1 ∧ G2 := G1 ∩ G2 in L(Z1(Γ, A)), is a coherent map; a map
f : X −→ Y between spectral spaces is coherent if f−1(U) is a quasi-compact
open subset of X for all quasi-compact open subsets U of Y . Note also that the
canonical actions of the profinite group Γ on the topological lattices L(Γ) and
L(Z1(Γ, A))

(σ,Λ) 7→ σΛσ−1,

resp.

(σ,G) 7→ σG := {σg | g ∈ G },

where

(σg)(τ) = σg(σ−1τσ) for σ, τ ∈ Γ, g ∈ Z1(Γ, A),

are coherent maps, in particular, continuous maps.

Some remarkable closed subspaces of the spectral space L(Z1(Γ, A)) con-
sisting of the so called Kneser and Cogalois groups of cocycles are introduced
and investigated in [4, 5]. In the present work the accent will be moved on the
spectral space L(Γ), more precisely on some of its subspaces consisting of closed
subgroups of the profinite group Γ with interesting algebraic and topological
properties. Thus, the following classes of closed subgroups of Γ having natural
field theoretic interpretations are defined and investigated : radical, hereditarily
radical, Kneser, almost Kneser, and hereditarily Kneser. The main results of
the paper are Corollary 2.15, stating that the hereditarily Kneser subgroups of Γ
form a closed subspace of the spectral space L(Γ), and Theorem 3.2, providing
a hereditarily Kneser criterion for hereditarily radical subgroups of Γ. A forth-
coming paper will be devoted to a particularly interesting subclass of hereditarily
Kneser subgroups – the Cogalois subgroups –, and to some applications of the
group theoretic approach from [4, 5] and the present paper to the field theoretic
Cogalois theory.
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1. Notation and preliminaries. Let Γ be a profinite group acting
continuously on a discrete quasi-cyclic group A identified with a subgroup of
Q/Z. The lattices L(Γ) and L(Z1(Γ, A)) of all closed subgroups of Γ, resp. of all
subgroups of Z1(Γ, A), are equipped with natural spectral topologies as defined
in Introduction. For Λ ∈ L(Γ), G ∈ L(Z1(Γ, A)), we denote by L(Γ |Λ)o the
sublattice of L(Γ |Λ) consisting of all open subgroups of Γ lying over Λ, and by
L(G)f the sublattice of L(G) consisting of the finite subgroups of G.

Recall that a topological space X is called spectral (or coherent) if the
family of quasi-compact open subsets of X is closed under finite intersections
(in particular, X itself is quasi-compact) and forms a base for the topology on
X, and every irreducible closed subset of X is the closure of a unique point
of X. A spectral space X becomes a profinite (or boolean or Stone) space, i.e.
a compact totally disconnected space, by taking the boolean lattice generated
by the distributive lattice of all quasi-compact open subsets of X as a base of
clopen sets for a finer topology on X. For more details concerning the spectral
and profinite spaces, which are duals by the Stone’s Representation Theorem to
(bounded) distributive lattices and boolean lattices (algebras), respectively, the
reader may consult [11, 13], and/or [9].

The natural reversing maps (−)⊥ : L(Γ) −→ L(Z1(Γ, A)) and (−)⊥ :
L(Z1(Γ, A)) −→ L(Γ) as defined in Introduction have the following properties
([4, Propositions 0.1 and 0.3])

(i) The map Λ 7→ Λ⊥ is a semi-lattice morphism (L(Γ),∨)−→(L(Z1(Γ, A)),
∧), i.e. (Λ1 ∪ Λ2)

⊥ = Λ⊥
1 ∩ Λ⊥

2 for Λi ∈ L(Γ), i = 1, 2. It is also a Γ-equivariant
coherent map, in particular, a continuous map.

(ii) The map G 7→ G⊥ is a semi-lattice morphism (L(Z1(Γ, A)),∨) −→
(L(Γ),∧), i.e. (G1 + G2)

⊥ = G⊥
1 ∩ G⊥

2 for Gi ∈ L(Z1(Γ, A)), i = 1, 2. It is also a
Γ-equivariant continuous map.

However, in general, the map G 7→ G⊥ from (ii) is not coherent, as we can

see from the following simple example. Let Γ = Ẑ, A =
∑

p∈P ′

(1/p)Z/Z, where P ′

consists of all odd prime numbers p for which the order fp|(p− 1) of the element
2mod p ∈ F∗

p is even. Consider the continuous action Γ × A −→ A, (σ, a) 7→ 2σa.

Setting ∆ = 2Ẑ, it follows that Z1(Γ, (1/p)Z/Z)⊥ = fpẐ 6 ∆ for all p ∈ P ′.
Thus the subgroups Z1(Γ, (1/p)Z/Z) ∼= Z/pZ of Z1(Γ, A), for p ranging over the
infinite set P ′, are the minimal elements of the poset ((−)⊥))−1(L(∆)), and hence
the open set ((−)⊥))−1(L(∆)) is not quasi-compact.

For G ∈ L(Z1(Γ, A)), set Ǧ := Hom (G,A) = Hom (G, Q/Z). Ǧ, the
Pontryagin dual of the discrete Abelian torsion group G, is an Abelian profi-
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nite group. Moreover Ǧ is a topological Γ-module w.r.t. the action defined
by (σχ)(g) = σχ(g) for σ ∈ Γ, χ ∈ Ǧ, g ∈ G. The canonical continuous map
ηG : Γ −→ Ǧ, σ 7→ (g 7→ g(σ)), is a 1-cocycle, inducing an injective continuous
map Γ/G⊥ −→ Ǧ, in particular, (Γ : G⊥) ≤ |G| for all G ∈ L(Z1(Γ, A))f .

Definition 1.1 ([4, Definition 1.2]). G ∈ L(Z1(Γ, A)) is called a Kneser
subgroup of Z1(Γ, A) if the continuous cocycle ηG : Γ −→ Ǧ is onto, i.e. (Γ :
G⊥) = |Ǧ| as supernatural numbers (cf. [15, Ch. I, 1.4]).

Remark 1.2. One checks easily that the following statements are
equivalent for G ∈ Z1(Γ, A).

(i) G is a Kneser subgroup of Z1(Γ, A).

(ii) ηG(G) is a subgroup of Ǧ.

(iii) ηG(G) is a Γ-subspace of the Γ-space Ǧ.

(iv) ηG(G) is a Γ-submodule of Ǧ.

Denote by K(Z1(Γ, A)) the subset of L(Z1(Γ, A)) consisting of all Kneser
subgroups of Z1(Γ, A). According to [4], Corollary 1.8, K(Z1(Γ, A)) is a closed
subspace of the spectral space L(Z1(Γ, A)). To obtain a criterion for a subgroup
G of Z1(Γ, A) to be Kneser it suffices to describe the minimal members w.r.t.
inclusion of the open subset L(Z1(Γ, A))\K(Z1(Γ, A)). To do that, we introduced
in [4] some basic notation which will be also used in the sequel.

P denotes the set of prime natural numbers;

P = {p ∈ P | p 6= 2} ∪ {4};

PG = {p ∈ P |p| |G|} for G ∈ L(Z1(Γ, A));

r̂ ∈ Q/Z denotes the class of r ∈ Q;

P(Γ, A) = { p ∈ P | 1̂/p ∈ A \ AΓ};

For n ∈ N≥1 such that 1̂/n ∈ A, εn ∈ B1(Γ, A)

denotes the coboundary associated to 1̂/n;

g⊥ := G⊥ for g ∈ Z1(Γ, A), G = 〈g〉;

If 1̂/4 ∈ A \ AΓ, define ε′4 ∈ Z1(Γ, A) by

ε′4(σ) =

{
1̂/4 if σ 1̂/4 = − 1̂/4,

0̂ if σ 1̂/4 = 1̂/4.
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The abstract version of the field theoretic Kneser criterion [12] reads as
follows. Note that the place of the primitive roots of unity ζp, p odd prime, from
the Kneser criterion is taken in its abstract version by the coboundary εp, while
the cocycle ε′4 corresponds to 1 − ζ4.

Theorem 1.3 ([4, Theorem 1.20]). The following assertions are equiva-
lent for a subgroup G of Z1(Γ, A).

(1) G ∈ K(Γ, A).
(2) εp 6∈ G whenever 4 6= p ∈ P(Γ, A) and ε′4 6∈ G whenever 4 ∈ P(Γ, A).

From a logical point of view, the statement above can be interpreted as
a quantifier elimination result: the property of a subgroup G 6 Z1(Γ, A) to be
Kneser, described by a sentence (in a suitable language) involving quantifiers,
turns out to be equivalent with a (possible infinite) conjunction of very simple
quantifier-free sentences.

A particularly interesting subclass of Kneser groups of cocycles, intro-
duced and studied in [5], is defined below.

Definition 1.4 ([5, Definition 2.1]). A subgroup G of Z1(Γ, A) is said to
be a Cogalois subgroup of Z1(Γ, A) if it is a Kneser subgroup of Z1(Γ, A) and the
maps (−)⊥ : L(G) −→ L(Γ |G⊥) and G ∩ (−)⊥ : L(Γ |G⊥) −→ L(G) are lattice
anti-isomorphisms, inverse to one another.

Denote by C(Z1(Γ, A)) the subset of K(Z1(Γ, A)) consisting of all Co-
galois subgroups of Z1(Γ, A). According to [5], Corollary 2.7, C(Z1(Γ, A)) is a
closed subspace of the spectral space K(Z1(Γ, A)). One of the various equivalent
characterizations for the Cogalois groups of cocycles proved in [5] is mentioned
below.

Theorem 1.5 ([5, Theorem 2.5]). The following statements are equiva-
lent for a subgroup G of Z1(Γ, A).

(1) G ∈ C(Z1(Γ, A)).
(2) G⊥ 6⊆ ε⊥p for all p ∈ PG ∩ P(Γ, A).

2. Radical, Kneser and hereditarily Kneser subgroups. In
this section we study subgroups of a profinite group Γ acting continuously on a
discrete subgroup A of Q/Z, which are both closed in the topology of Γ and
closed under the closure operator ∆ 7→ ∆⊥⊥. The abstract versions of the field
theoretic notions of radical, G-Kneser, and Kneser field extensions (cf. [2, Ch.
11]) are introduced, and their main properties are investigated. On the other
hand, natural topological arguments are used to put in evidence new classes of
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subgroups of Γ (hereditarily radical, almost Kneser and hereditarily Kneser) with
suitable field theoretic interpretations.

The concept defined below is the abstract version of the concept of radical
field extension.

Definition 2.1. A subgroup ∆ of Γ is said to be G-radical if G ∈
L(Z1(Γ, A)) and ∆ = G⊥ . A radical subgroup of Γ is a subgroup which is
G-radical for some G 6 Z1(Γ, A).

Since Z1(Γ, A) is a torsion group and (Γ : g⊥) 6 ord(g) for all g ∈
Z1(Γ, A), it follows that for all G ∈ L(Z1(Γ, A)), G⊥ =

⋂
g∈G g⊥ is closed in

Γ as intersection of open subgroups, so any radical subgroup of Γ is necessarily
closed.

The next obvious lemma provides equivalent descriptions for radical sub-
groups.

Lemma 2.2. The following statements are equivalent for a subgroup ∆
of Γ.

(1) ∆ is radical.

(2) ∆ = ∆⊥⊥.

(3) ∆ is ∆⊥-radical.

We shall denote by R(Γ) the poset of all radical subgroups of Γ. Since

for any family (∆i)i∈I of radical subgroups of Γ,
⋂

i∈I

∆i =
( ∑

i∈I

∆⊥
i

)⊥
, it follows

that R(Γ) is a meet-subsemilattice of L(Γ). Observe that Γ is the last element
of R(Γ), while the closed normal subgroup {1}⊥⊥ = Z1(Γ, A)⊥ of Γ is the least
element of R(Γ). Also notice that the kernel ∆ of the action of Γ on A belongs
to R(Γ) since ∆ = B1(Γ, A)⊥.

Remark 2.3. If ∆ ∈ R(Γ) and Λ ∈ L(Γ|∆), then Λ is not necessarily
a radical subgroup of Γ, in other words, in general, R(Γ) is not an upper subset
of L(Γ), and hence, in general, R(Γ) is not a closed subset of the spectral space
L(Γ), i.e., R(Γ) ( R(Γ) = L(Γ|Z1(Γ, A)⊥).

To see that, consider the following simple example: let A = (1/2n)Z/Z,
n > 4, and Γ = (Z/2nZ)∗ ∼= Z/2Z × Z/2n−2Z, with the (faithful) canonical ac-
tion given by multiplication. If we consider the elements σ = −1 mod 2n and
τ = 5 mod 2n of Γ, then we obtain the following presentation Γ = 〈σ, τ |σ2 =
τ2n−2

= [σ, τ ] = 1 〉. The morphism Z1(Γ, A) −→ A × A, g 7→ (g(σ), g(τ) +
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2g(σ)), maps isomorphically Z1(Γ, A) onto ((1/2n−1)Z/Z) × ((1/2)Z/Z), send-
ing B1(Γ, A) onto (1/2n−1)Z/Z. It follows that ∆ := {1} = B1(Γ, A)⊥ =
Z1(Γ, A)⊥ ∈ R(Γ). But Λi := 〈σ, τ2i

〉 ∼= Z/2Z × Z/2n−2−iZ, 2 ≤ i ≤ n − 2, is
not a radical subgroup of Γ; indeed, since Λ⊥

i = 〈α〉 ∼= Z/2Z, where α is the

morphism of order 2 defined by α(σ) = 0, α(τ) = 1̂/2, we have Λ⊥⊥
i = α⊥ =

〈σ, τ2〉 ∼= Z/2Z × Z/2n−3Z, and hence Λ⊥⊥
i 6= Λi as n − 3 > n − 2 − i by

assumption. �

The following notion is justified by Remark 2.3.

Definition 2.4. A closed subgroup ∆ of Γ is said to be hereditarily
radical (abbreviated h-radical) if Λ is radical for any Λ ∈ L(Γ|∆).

Note that ∆ ∈ L(Γ) is h-radical iff the canonical map L(∆⊥) −→ L(Γ|∆),
G 7→ G⊥, is onto. In the sequel we shall denote by HR(Γ) the poset of all h-
radical subgroups of Γ. Thus HR(Γ) is an upper subset of L(Γ),Γ ∈ HR(Γ),
and, in general, HR(Γ) ( R(Γ) by Remark 2.3. Moreover, it follows easily that
∆ ∈ HR(Γ) iff Λ is radical for any open subgroup of Γ lying over ∆, and hence
HR(Γ) is a closed Γ-subspace of the spectral space L(Γ). The maximal elements
w.r.t. inclusion of the open set L(Γ)\HR(Γ) are exactly the (open) subgroups ∆
for which ∆ 6= ∆⊥⊥ and the canonical map L(∆⊥) −→ L(Γ|∆) \ {∆}, G 7→ G⊥,
is onto. In particular, the (possibly empty) set of the maximal proper open
subgroups ∆ satisfying ∆⊥ = {0} is a subset of the set above. Note that in the
situation described in Remark 2.3, L(Γ) \ HR(Γ) = L(〈σ, τ4〉).

Definition 2.5. A subgroup ∆ of Γ is said to be G-Kneser if ∆ is
G-radical and G is a Kneser subgroup of Z1(Γ, A). ∆ is said to be a Kneser
subgroup of Γ if ∆ is G-Kneser for some G 6 Z1(Γ, A).

Clearly, any Kneser subgroup ∆ of Γ is the intersection of all open
Kneser subgroups (and hence of all Kneser subgroups of type g⊥) of Γ lying over
∆. In the sequel we shall denote by K(Γ) the poset of the Kneser subgroups of
Γ. Observe that Γ ∈ K(Γ) ⊆ R(Γ).

Remarks 2.6. (1) If ∆ ∈ L(Γ) is simultaneously G-Kneser and H-
Kneser, then G and H are not necessarily isomorphic. For instance, let Γ =

〈σ, τ〉 ∼= Z/2Z×Z/2Z and A = (1/4)Z/Z, with the action given by σ 1̂/4 = − 1̂/4

and τ 1̂/4 = 1̂/4. The morphism Z1(Γ, A) −→ A × A, g 7→ (g(σ), g(τ)) maps
isomorphically Z1(Γ, A) onto (1/4)Z/Z × (1/2)Z/Z. The trivial subgroup {1}
of Γ is simultaneously G-Kneser and H-Kneser, where G = 〈α〉 ∼= Z/4Z, with

α(σ) = 1̂/4, α(τ) = 1̂/2, and H = 〈ε4, β〉 ∼= Z/2Z × Z/2Z, with β(σ) =

0, β(τ) = 1̂/2.
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(2) Note that, in general, K(Γ) is not an upper subset of L(Γ), and
hence not necessarily a closed subset of the spectral space L(Γ). Indeed let
Γ and A be as defined in Remark 2.3. Then ∆ = {1} is B1(Γ, A)-Kneser,
while 〈σ〉 6∈ R(Γ) as we have already seen, and hence 〈σ〉 6∈ K(Γ) . However
〈σ〉⊥⊥ = 〈σ, τ2〉 ∈ K(Γ). �

Though, in general, K(Γ) is not a closed subspace of the spectral space
L(Γ), it is closed w.r.t. the profinite topology of L(Γ) as image of the profinite
space K(Z1(Γ, A)) through the continuous map L(Z1(Γ, A)) −→ L(Γ), G 7→ G⊥.
As a consequence, we obtain the following characterisation of the Kneser sub-
groups of Γ.

Lemma 2.7. A necessary and sufficient condition for a closed subgroup
Λ of Γ to be Kneser is that L(Γ|Λ)o ∩ K(Γ) is cofinal in the poset L(Γ|Λ)o of all
open subgroups of L(Γ|Λ).

P r o o f. The “only if” part is obvious since, assuming Λ = G⊥ for some
G ∈ K(Z1(Γ, A)), {F⊥ |F ∈ L(G)f } ⊆ K(Γ) ∩ L(Γ|Λ)o is cofinal in L(Γ|Λ)o.
Conversely, assuming Λ 6∈ K(Γ), since K(Γ) is closed in the profinite space L(Γ),
it follows that there exists an open normal subgroup ∆ of Γ such that {Λ′ ∈
L(Γ) |Λ′∆ = Λ∆ } ∩ K(Γ) = ∅, so Λ∆ ∈ L(Γ|Λ)o and ∆′ 6∈ K(Γ) for all ∆′ ∈
L(Λ∆|Λ)o, since ∆′∆ = Λ∆. �

Definition 2.8. A closed subgroup Λ of Γ is said to be almost Kneser,
abbreviated a-Kneser, if Λ belongs to K(Γ), the closure of K(Γ) in the spectral
space L(Γ).

The next lemma provides a characterisation of the a-Kneser subgroups of Γ.

Lemma 2.9. The following statements are equivalent for a closed sub-
group Λ of Γ.

(1) Λ is a-Kneser.

(2) L(Λ) ∩ K(Γ) 6= ∅.

P r o o f. (1) =⇒ (2): Assuming that Λ is a-Kneser, it follows that L(∆)∩
K(Γ) 6= ∅ for all ∆ ∈ L(Γ|Λ)o. As for any such ∆, L(∆) is clopen and K(Γ)
is closed in the profinite space L(Γ), it follows that the non-empty set X∆ :=
L(∆)∩K(Γ) is closed too. Since the family (X∆)∆∈L(Γ|Λ)o

has finite intersection

property, it follows by compactness that L(Λ) ∩ K(Γ) =
⋂

∆∈L(Γ|Λ)o

X∆ 6= ∅, as

required.
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The implication (2) =⇒ (1) is obvious. �

Corollary 2.10. The posets K(Γ) and K(Γ) have the same minimal
members.

Similarly with the notion of h-radical, we define a subclass of Kneser
subgroups of Γ as follows:

Definition 2.11. A closed subgroup ∆ of Γ is said to be hereditarily
Kneser, abbreviated h-Kneser, if any closed subgroup Λ lying over ∆, in particular,
∆ itself, is Kneser.

Remark 2.6, (2) provides examples of Kneser subgroups which are not h-
Kneser. On the other hand, basic examples of h-Kneser subgroups are provided
by the next result.

Lemma 2.12.

(1) Let A = (1/pnr)Z/Z, where p is an odd prime number, n ≥ 1, and 2 ≤

r|(p − 1). Let Γ = Z/pkZ ⋊u Z/rZ = 〈σ, τ |σr = τpk

= στσ−1τ−u = 1 〉,
where 0 ≤ k ≤ n and u ∈ (Z/pnrZ)∗ satisfies : u mod pn ∈ (Z/pnZ)∗

has order r, and u ≡ 1 mod l for l ∈ P, l|r. Consider the action of Γ on
A given by σa = ua, τa = a for a ∈ A. Then, ∆ := {1} is a h-Kneser
subgroup of Γ.

(2) Let A = (1/2n)Z/Z, n ≥ 3,Γ = 〈σ, τ |σ2 = τ2k−1

= (στ)2 = 1〉 ∼= D2k , 1 ≤

k ≤ n − 2, σ1̂/2n−1 = −1̂/2n−1, τ 1̂/2n = 1̂/2n. Then, ∆ := {1} is a h-
Kneser subgroup of Γ.

P r o o f. (1) By assumption it follows that B1(Γ, A)⊥ = ε⊥p = 〈τ〉 6

B1(Γ, (1/r)Z/Z)⊥, Γ ∼= ε⊥p ⋊ Γ/ε⊥p , and
r−1∑

i=0

ui ≡ 0mod pnr. The morphism

Z1(Γ, A) −→ A × A, g 7→ (g(σ), g(τ)), maps isomorphically Z1(Γ, A) onto
A × pn−krA ∼= Z/pnrZ × Z/pkZ ∼= Z/pnZ ⊕ Z/pkrZ, and hence the maximal
Kneser subgroups of Z1(Γ, A) are the direct summands of the cyclic subgroup

B1(Γ, (1/pn)Z/Z) = 〈α〉 ∼= Z/pnZ, where α(σ) = 1̂/pn, α(τ) = 0. Setting

β(σ) = 1̂/r, β(τ) = 1̂/pk, it follows that there are exactly pk maximal Kneser sub-
groups of Z1(Γ, A), namely the conjugates 〈τ iβ〉, i ∈ Z/pkZ, of the cyclic group
〈β〉 ∼= Z/pkrZ through the canonical action of Γ on Z1(Γ, A). Let Λ ∈ L(Γ). If
Λ 6 ε⊥p , i.e., Λ = 〈τpj

〉, 0 ≤ j ≤ k, then Λ = (pk−jrβ)⊥ ∈ K(Γ) as required.

If Λ 66 ε⊥p , then Λ ∼= (Λ ∩ ε⊥p ) ⋊ (Λ/(Λ ∩ ε⊥p )), so Λ = 〈τpj

, τ tσs〉 for some
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0 ≤ j ≤ k, 0 ≤ t < pk, s|r, s 6= r. Note that τ tσs = τ iσsτ−i, where i ∈ Z/pkZ is
uniquely determined by the condition i(1 − us) ≡ t mod pk, since us 6≡ 1mod p.

As
s−1∑

µ=0

uµ ≡ 0mod s since u ≡ 1mod l for l ∈ P, l|s, by assumption, it follows

that Λ = (pk−j(r/s)τ iβ)⊥ ∈ K(Γ) as desired.

(2) We distinguish the following two cases:

(i) σ1̂/2n = −1̂/2n: The map Z1(Γ, A) −→ A×A, g 7→ (g(σ), g(τ)), maps
isomorphically Z1(Γ, A) onto (1/2n)Z/Z⊕ (1/2k−1)Z/Z. Define α ∈ Z1(Γ, A) by

α(σ) = 0, α(τ) = 1̂/2k−1. Let Λ ∈ L(Γ). If Λ 6 〈τ〉, then Λ = 〈τ2i

〉, 0 ≤ i ≤ k−1,
and hence Λ = H⊥

i , where Hi = 〈ε4, 2
iα〉 ∼= Z/2Z ⊕ Z/2k−i−1Z ∈ K(Z1(Γ, A)).

If Λ 66 〈τ〉, then τ jσ ∈ Λ for some 0 ≤ j ≤ 2k−1 − 1, and hence Λ ∈ L(Γ|β⊥),

where β ∈ Z1(Γ, A) is defined by β(σ) = −j1̂/2k−1, β(τ) = 1̂/2k−1. As β⊥ =
〈τ jσ〉 66 〈τ〉 = ε⊥4 , it follows by Theorem 1.5 that 〈β〉 ∼= Z/2k−1Z is a Cogalois
subgroup of Z1(Γ, A), and hence Λ = (2iβ)⊥ for some 0 ≤ i ≤ k − 1, so Λ is a
Kneser subgroup of Γ as required. Note that the result remains also true in the
case k = n − 1.

(ii) σ1̂/2n = −(1 + 2n−1)1̂/2n = −1̂/2n + 1̂/2 : We are reduced to the
case (1) since Z1(Γ, A) = Z1(Γ, (1/2n−1)Z/Z) as 0 = g(σ2) = 2n−1g(σ) and

0 = g(τ2k−1

) = 2k−1g(τ) for all g ∈ Z1(Γ, A). �

In the sequel we shall denote by HK(Γ) the poset of all h-Kneser sub-
groups of Γ. Thus HK(Γ) is un upper subset of HR(Γ), Γ ∈ HK(Γ), and, in
general, HK(Γ) ( K(Γ) by Remarks 2.6, (2). One may ask whether for arbitrary
pairs (Γ, A), HK(Γ) is a closed subspace of the spectral space HR(Γ), or, in
other words, does any ∆ ∈ L(Γ) belong to K(Γ) whenever Λ ∈ K(Γ) for all open
subgroups of Γ lying over ∆ ? The affirmative answer to the question above will
be an immediate consequence of the following result.

Theorem 2.13. The canonical map (−)⊥ : K(Z1(Γ, A)) −→ L(Γ), G 7→
G⊥, is coherent.

P r o o f. By [4], Corollary 1.8, K(Z1(Γ, A)) is a spectral space as a closed
subspace of the spectral space L(Z1(Γ, A)). For any open subgroup ∆ of Γ, let
W∆ := {G ∈ K(Z1(Γ, A)) |G⊥ 6 ∆ } denote the inverse image of the basic quasi-
compact open set U∆ of the spectral space L(Γ). We may assume that W∆ is
non-empty since otherwise we have nothing to prove. Let W∆ denote the (non-
empty) subset of W∆ consisting of its minimal members w.r.t. inclusion. We have
to show that the set W∆ is finite and all its members are finite Kneser subgroups
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of Z1(Γ, A), since then, by Zorn’s lemma, it follows that W∆ =
⋃

F∈W∆

UF , so W∆

is quasi-compact open as a finite union of basic quasi-compact open subsets of
the spectral space K(Z1(Γ, A)).

Assuming that some G ∈ W∆ is infinite, we deduce by minimality that
F⊥ 6⊆ ∆ for all finite subgroups F of G, which are Kneser too as subgroups of
G ∈ K(Z1(Γ, A)). Since the family of non-empty closed subsets F⊥ \ ∆ of Γ for
F ranging over all finite subgroups of G has finite intersection property, it follows

by compactness of Γ that G⊥ \ ∆ =
⋂

F

(F⊥ \ ∆) 6= ∅, i.e. G⊥ 6⊆ ∆, which is a

contradiction. Thus it remains only to show that the set W∆ is finite.

Let T∆ denote the set of all Kneser subgroups of Z1(Γ, A) which are
contained in ∆⊥. The set T∆ is finite and all its members are finite groups.
Indeed, for any H ∈ T∆, we obtain ∆ 6 ∆⊥⊥ 6 H⊥, and hence |H| = (Γ :
H⊥)|(Γ : ∆) < ∞, so H is a subgroup of the finite group ∆⊥[n] = Z1(Γ|∆, A[n]),
where n = (Γ : ∆).

Thus it suffices to show that for any H ∈ T∆, the set W∆,H := {G ∈
W∆|G ∩ ∆⊥ = H} is finite. Moreover we claim that it suffices to show that for
any pair (Γ, A) and any open subgroup ∆ of Γ, the set W∆,0 is finite. Indeed,

assuming that H ∈ T∆ and G ∈ W∆,H , let G̃ = res Γ
H⊥(G). As ∆ 6 H⊥, we

obtain H 6 G∩H⊥⊥ 6 G∩∆⊥ = H, and hence G̃ ∼= G/H is a Kneser group of
Z1(H⊥, A) by [4], Corollary 1.12, and G̃⊥ = G⊥ ∩H⊥ = G⊥ 6 ∆ 6 H⊥. On the
other hand, it follows that G̃∩Z1(H⊥|∆, A) = resΓ

H⊥(G∩∆⊥) = resΓ
H⊥(H) = {0}

and G̃ ∈ K(Z1(H⊥, A)) is minimal with the property that G̃ 6 ∆ since for any

proper subgroup G̃′ of G̃ its inverse image G′ through the canonical projection

G −→ G̃ is a proper subgroup of G lying over H, so G̃′
⊥

= G′⊥∩H⊥ = G′⊥ is not
contained in ∆ by the minimality property of G. As G⊥ = G̃⊥ for all G ∈ W∆,H ,

the fibers of the canonical map W∆(6Γ),H −→ W∆(6H⊥),0, G 7→ G̃ = resΓ
H⊥(G),

are finite sets, and hence the proof of the finiteness of W∆(6Γ),H is reduced to the
proof of the finiteness of the set W∆(6H⊥),0, as claimed.

Thus it remains to show that for any pair (Γ, A) and any open subgroup ∆
of Γ, the set W∆,0 as defined above is finite. We shall proceed by induction on the
index n := (Γ : ∆). The case n = 1, i.e., ∆ = Γ, is trivial as WΓ = {{0}}. Given
Γ, A,∆, assume n > 1, i.e., ∆ 6= Γ, and let G ∈ W∆,0. Setting G̃ = resΓ∆(G), it

follows by [4], Corollary 1.12 that G̃ ∼= G/(G ∩ ∆⊥) ∼= G 6∈ K(Z1(∆, A)) since
G⊥ 6 ∆ and (∆⊥ ∩ G)⊥ = {0}⊥ = Γ 6= ∆. Consequently, by Theorem 1.3, there
exists p ∈ P(∆, A) ⊆ P(Γ, A) such that ε|∆ ∈ G̃, where
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ε =

{
εp if p 6= 4
ε′4 if p = 4

As G ∼= G̃, it follows that there exists a unique element g ∈ G such that g|∆ = ε|∆,
in particular ord (g) = ord (ε|∆) = p since p ∈ P(∆, A). Thus G⊥ 6 ∆ ∩ g⊥ =
∆∩ε⊥ = ∆∩ε⊥p 6= ∆. Clearly, G ∈ W∆p,H , where ∆p = ∆∩ε⊥p and H = G∩∆⊥

p .
Thus W∆,0 is covered by the union of the sets W∆p,H as above, so it remains to
show that any such set W∆p,H is finite and the set of possible pairs (p,H) is finite
too. As for any p,H belongs to the finite set T∆p , we have only to show that the
p’ s range over a finite subset of P(∆, A).

First let us show that the set W∆p,H above is finite. By the reduction
step above and the induction hypothesis we have to show that (H⊥ : ∆p) < n =
(Γ : ∆). As H 6 ∆⊥

p , we obtain ∆p 6 ∆⊥⊥
p 6 H⊥, and hence ∆p 6 H⊥ ∩ ∆.

On the other hand, since g ∈ H, we obtain H⊥ ∩ ∆ 6 g⊥ ∩ ∆ = ε⊥p ∩ ∆ = ∆p,

so H⊥ ∩ ∆ = ∆p, i.e., the set H⊥/∆p is identified with a subset of the finite set
Γ/∆, and hence (H⊥ : ∆p) ≤ (Γ : ∆). Since g ∈ H and g|∆ = ε|∆, it follows
that res Γ

∆(H) 6∈ K(Z1(∆, A)). As H ∩ ∆⊥ 6 G ∩ ∆⊥ = {0}, it follows by [4],
Proposition 1.11 that H⊥∆ 6= Γ, and hence (H⊥ : ∆p) < (Γ : ∆) as required.

Finally observe that the subgroup D generated by the element g − ε
belonging to ∆⊥[p] is Kneser since otherwise ε ∈ D by Theorem 1.3, and hence
〈ε〉 = 〈g〉 6 G as ord (g) = p, contrary to the assumption that G ∈ K(Z1(Γ, A)).
Consequently, ord (g−ε) = (Γ : D)| (Γ : ∆). As ord (g−ε) = p if p 6= 4, it follows
that the set of possible p’s is finite as desired. �

Corollary 2.14 A closed subgroup ∆ of Γ is Kneser whenever any open
subgroup of Γ lying over ∆ is Kneser. In particular, the following statements are
equivalent for a closed subgroup ∆ of Γ.

(1) ∆ is h-Kneser.

(2) Any open subgroup of Γ lying over ∆ is Kneser.

P r o o f. Let ∆ ∈ L(Γ) be such that any open subgroup Λ ∈ L(Γ|∆) is
Kneser. Since {∆} = L(Γ|∆) is a closed subset of the spectral space L(Γ), its
inverse image X := {G ∈ K(Z1(Γ, A))|∆ 6 G⊥} through the continuous map
(−)⊥ : K(Z1(Γ, A)) −→ L(Γ), G 7→ G⊥, is a closed subset of the spectral space
K(Z1(Γ, A)), and hence also closed w.r.t. the profinite topology of K(Z1(Γ, A)).
As the map (−)⊥ is coherent by Theorem 2.13, the image (−)⊥(X) ⊆ L(Γ|∆) is
closed w.r.t. the profinite topology of L(Γ). Consequently, ∆ ∈ (−)⊥(X), i.e.,
∆ ∈ K(Γ), since by assumption L(Γ|∆)o ⊆ (−)⊥(X) and L(Γ|∆) is obviously
the closure of L(Γ|∆)o w.r.t. the profinite topology of L(Γ). �
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Corollary 2.15. HK(Γ) is a closed Γ-subspace of the spectral Γ-space
HR(Γ).

Remark 2.16. Let E/F be a Galois extension with Γ := Gal(E/F )
acting continuously on the discrete multiplicative quasi-cyclic group A := µE of
all roots of unity in E. For L ∈ L(E/F ), set ∆ := Gal(E/L). We obtain

(i) ∆ ∈ R(Γ) iff L/F is radical (cf. [2, Ch. 2]).
(ii) ∆ ∈ HR(Γ) iff K/F is radical for all (finite) subextensions of L/F .
(iii) ∆ ∈ K(Γ) iff L/F is Kneser (cf. [2, Ch. 11]).

(iv) ∆ is a-Kneser iff there exists a Kneser subextension K of E/F such
that L ⊆ K.

(v) ∆ ∈ HK(Γ) iff every subextension K of L/F is Kneser iff every finite
subextension K of L/F is Kneser.

3. A criterion for hereditarily Kneser subgroups. To obtain an
analogue of Theorem 1.3 (Abstract Kneser Criterion) providing a characterisation
of the h-Kneser groups inside HR(Γ), we have to describe the set (HR(Γ) \
HK(Γ))max of the maximal elements w.r.t. inclusion of the open subset HR(Γ) \
HK(Γ) of the spectral space HR(Γ). Note that the set above consists of all open
radical subgroups ∆ 6 Γ which are not Kneser but any Λ ∈ L(Γ|∆) \ {∆} is
Kneser.

With this aim, we introduce the following four types of open subgroups
∆ of Γ:

(A) ∆ = ε⊥p , where p ∈ P(Γ, A)\{4}, (Γ : ∆) = lm |(p−1), l is a prime number,

m ≥ 1, A∆(l) = (1/lm−1)Z/Z (in particular, 1̂/2 6∈ A if l = 2,m = 1), and

1̂/4 ∈ AΓ if l = 2,m ≥ 3.

(B) The normalizer NΓ(∆) of ∆ in Γ is ε⊥p , where p ∈ P(Γ, A) \ {4}, ε⊥p /∆ ∼=

Z/pkZ, k ≥ 1, 1̂/pn ∈ A for some n ≥ k + 1 ≥ 2, (1/(pn−1r))Z/Z 6 Aε⊥p ,

where r = (Γ : ε⊥p ) | (p − 1), 1̂/l ∈ AΓ for l ∈ P, l | r, ∆′ := ∆ ∩ ε⊥pn ⊳ Γ,
and

Γ/∆′ ∼= (ε⊥pn/∆′) ⋊ (Γ/ε⊥pn).

(C) ∆ ⊳ Γ, 4 ∈ P(Γ, A),∆ 6 ε⊥4 , ε⊥4 /∆ ∼= Z/2kZ, k ≥ 1, 1̂/2n ∈ Aε⊥4 for some

n ≥ k + 2 ≥ 3 , σ 1̂/2n = − 1̂/2n + 1̂/2 for σ ∈ Γ \ ε⊥4 , and

Γ/∆ ∼= 〈σ, τ |σ4 = 1, σ2 = τ2k−1

, στσ−1 = τ−1〉.
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(D) 4 ∈ P(Γ, A), NΓ(∆) = ε⊥4 , ε⊥4 /∆ ∼= Z/2kZ, k ≥ 1, 1̂/2n ∈ A for some n ≥

k + 2 ≥ 3, 1̂/2n−1 ∈ Aε⊥4 ,∆′ := ∆ ∩ ε⊥2n ⊳ Γ, and Γ/∆′ ∼= (ε⊥4 /∆′) ⋊ (Γ/ε⊥4 )
has the presentation

Γ/∆′ ∼= 〈σ, τ, δ |σ2 = τ2k

= δ2 = 1, δτ = τδ, στσ−1 = τ−1, σδσ−1 = δτ2k−1

〉,

with the action of Γ/∆′ on (1/2n)Z/Z given by σ1̂/2n = −1̂/2n, τ 1̂/2n =

1̂/2n, δ1̂/2n = 1̂/2n + 1̂/2.

Lemma 3.1. The necessary and sufficient condition for an open subgroup
∆ 6 Γ to belong to (HR(Γ)\HK(Γ))max is that ∆ is of one of the types (A)–(D)
above.

P r o o f. Let ∆ ∈ (HR(Γ) \ HK(Γ))max. Since ∆ is an open radical
subgroup of Γ, there exists a finite subgroup G ∈ L(Z1(Γ, A)) \ K(Z1(Γ, A))
such that ∆ = G⊥. Choose such a subgroup G 6 Z1(Γ, A) of minimal order
|G|. Assuming that G has proper direct summands, say G = G1 ⊕ G2, with
0 6= Gi 6 G, i = 1, 2, it follows that Gi ∈ K(Z1(Γ, A)), i = 1, 2. Indeed, assuming
G1 6∈ K(Z1(Γ, A)), i.e. (Γ : G⊥

1 ) < |G1|, it follows by the minimality of |G|
that G⊥

1 ∈ L(Γ |∆) \ {∆ }, so G⊥
1 ∈ K(Γ) by assumption, i.e. there exists

G′ ∈ K(Z1(Γ, A)) such that G⊥
1 = G′⊥. Consequently, ∆ = G⊥ = G⊥

1 ∩ G⊥
2 =

G′⊥ ∩ G⊥
2 = (G′ + G2)

⊥, and |G′ + G2| ≤ |G′||G2| = (Γ : G′⊥)|G2| = (Γ :
G⊥

1 )|G2| < |G1||G2| = |G|, contrary to the minimality of |G|.
In particular, G is a p-group for some prime number p, since otherwise

it follows by the fact above and [4], Corollary 1.16 (the local-global principle for
Kneser groups of cocycles) that G ∈ K(Z1(Γ, A)), and hence ∆ = G⊥ ∈ K(Γ),

which is a contradiction. Set exp(G) = pn, so 1̂/pn ∈ A.

We distinguish the following two cases:

Case 1 : p 6= 2.

As G 6∈ K(Z1(Γ, A)), it follows by Theorem 1.3, that εp ∈ G, and hence
∆ = G⊥ 6 ε⊥p . Set 2 ≤ r := (Γ : ε⊥p ) | (p − 1).

We claim that G is cyclic of order pn, n ≥ 1. If ∆ = ε⊥p , then G = 〈εp〉 ∼=

Z/pZ, by the minimality of |G|. Thus we may assume ∆ 6= ε⊥p and hence G 6= 〈εp〉.

Let G̃ := resΓ
ε⊥p

(G) 6 Z1(ε⊥p , (1/pn)Z/Z). As a p-group, G̃ is a Kneser subgroup

of Z1(ε⊥p , (1/pn)Z/Z) by Theorem 1.3, and hence Cogalois by [5], Corollary 2.9,

since p 6= 2. In particular, the canonical map L(G̃) −→ L(ε⊥p |∆), U 7→ U⊥, is a
lattice anti-isomorphism.
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First let us show that the p-group G̃ is cyclic. Assuming G̃ = G̃1 ⊕ G̃2,
with 0 6= G̃i 6 G̃, i = 1, 2, we obtain G̃⊥

i ∈ L(ε⊥p |∆) \ {∆, ε⊥p }, i = 1, 2, and

G̃⊥
1 ∩ G̃⊥

2 = ∆. On the other hand, G̃⊥
1 and G̃⊥

2 are Kneser subgroups of Γ

as proper overgroups of ∆. Let Gi ∈ K(Z1(Γ, A)), i = 1, 2, be such that G̃⊥
i =

G⊥
i , i = 1, 2. Since |Gi| = (Γ : G⊥

i ) = (Γ : ε⊥p )(ε⊥p : G⊥
i ) = r|G̃i|, and (r, |G̃i|) = 1,

it follows that |Gi(p)| = |G̃i|, i = 1, 2. As r = (Γ : ε⊥p ) | (Γ : (ε⊥p ∩ Gi(p)⊥)),

|G̃i| = (Γ : Gi(p)⊥) | (Γ : (ε⊥p ∩ Gi(p)⊥)), and (r, |G̃i|) = 1, we obtain r|G̃i| | (Γ :

(ε⊥p ∩ Gi(p)⊥)) | (Γ : G⊥
i ) = r|G̃i|, and hence G⊥

i = Gi(p)⊥ ∩ ε⊥p , i = 1, 2. As a

proper overgroup of ∆ , ε⊥p ∈ K(Γ), so there exists H ∈ K(Z1(Γ, A)) such that

ε⊥p = H⊥, in particular, |H| = r. Consequently, G⊥
i = (Gi(p) ⊕ H)⊥, i = 1, 2,

and ∆ = G⊥ = (G1(p) + G2(p) + H)⊥. By the minimality of |G|, we obtain
|G1(p)| |G2(p)| |H| ≥ |G1(p) + G2(p) + H| ≥ |G| > (Γ : G⊥) =
(Γ : ε⊥p )(ε⊥p : G̃⊥) = |H| |G̃| = |H| |G̃1| |G̃2| = |H| |G1(p)| |G2(p)| , which is a

contradiction. Thus G̃ is cyclic, as required.
Choose some g ∈ G such that G̃ = 〈g|ε⊥p 〉, so G⊥ = G̃⊥ = g⊥ ∩ ε⊥p =

〈g, εp〉
⊥, and hence G = 〈g, εp〉 by the minimality of |G|. Assuming 〈g〉∩〈εp〉 = 0,

i.e. G = 〈g〉⊕〈εp〉, it follows that 〈εp〉 ∈ K(Z1(Γ, A)) as a proper direct summand
of G, which is a contradiction. Consequently, the cocycle εp of prime order p
belongs to 〈g〉, so G = 〈g〉 ∼= Z/pnZ, as claimed.

We may assume that pn−1g = εp. Note also that ord (g(σ)) = pn for all
σ ∈ Γ \ ε⊥p , since for any such σ, pn−1g(σ) = εp(σ) 6= 0.

We distinguish the following subcases:

Subcase 1.1: n = 1, i.e. ∆ = ε⊥p 6∈ K(Γ), but Λ ∈ K(Γ) for Λ ∈
L(Γ|∆) \ {∆}.

First let us show that r = (Γ : ∆) = lm | (p − 1) for some prime number

l and some m ≥ 1. Assuming the contrary, let r =
k∏

i=1

lmi

i , k ≥ 2, li pairwise

distinct prime numbers, and mi ≥ 1. Let Λi, i = 1, .., k, denote the unique

subgroup of Γ of index lmi

i lying over ∆, so Γ/∆ ∼=

k∏

i=1

Γ/Λi
∼= Z/rZ. As Λi 6=

∆, Λi ∈ K(Γ), so Λi = G⊥
i for some Gi ∈ K(Z1(Γ, A)), i.e. |Gi| = (Γ : Λi) = lmi

i .

Thus ∆ =

k⋂

i=1

Λi =

k⋂

i=1

G⊥
i = G⊥, where G = (

k⊕

i=1

Gi)
⊥. As (|Gi|, |Gj |) = 1 for

i 6= j, it follows by [4], Corollary 1.16, that G ∈ K(Z1(Γ, A)) and hence ∆ ∈ K(Γ),
which is a contradiction.
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To conclude that ∆ is of type (A), it remains to show that A∆(l) =

(1/lm−1)Z/Z and 1̂/4 ∈ AΓ if l = 2,m ≥ 3.

Let Λ denote the unique subgroup of Γ lying over ∆ such that (Γ : Λ) =
lm−1. By assumption, Λ ∈ K(Γ), so Λ = H⊥ for some H ∈ K(Z1(Γ, A)), i.e.
|H| = (Γ : Λ) = lm−1.
As Γ/Λ ∼= Z/lm−1Z is cyclic, it follows by [5], Theorem 2.19, that H is a Cogalois
subgroup of Z1(Γ, A), and hence H = 〈h〉 ∼= Z/lm−1Z for some h ∈ Z1(Γ, A).

Consequently, 1̂/lm−1 ∈ AΛ 6 A∆ as h⊥ = Λ ⊳ Γ. Assuming 1̂/lm ∈ A∆ too, it
follows by Lemma 2.12, (1), that ∆ is h-Kneser, which is a contradiction. Thus
A∆(l) = (1/lm−1)Z/Z, as desired. On the other hand, assuming l = 2,m ≥ 3

and 1̂/4 6∈ AΓ, it follows that 4 ∈ P(Γ, A) ∩ PH , and hence Λ = H⊥ 66 ε⊥4 by
Theorem 1.5, since H = 〈h〉 ∼= Z/2m−1Z is a Cogalois subgroup of Z1(Γ, A).

However we have seen above that 1̂/4 ∈ (1/2m−1)Z/Z 6 AΛ, so Λ 6 ε⊥4 , which is
a contradiction.

Subcase 1.2: n ≥ 2, i.e. ∆ = G⊥ ( ε⊥p , L(Γ|∆) \ K(Γ) = {∆}, G =
〈 g 〉 ∼= Z/pnZ, and pn−1g = εp.

Let G̃ := res Γ
ε⊥p

(G), g̃ := g|ε⊥p , and pk, 1 ≤ k ≤ n − 1, be its order, so

(ε⊥p : ∆) = pk, as ∆ = G̃⊥ and G̃ is a Cogalois subgroup of Z1(ε⊥p , A). Recall

that ord (g(σ)) = pn for all σ ∈ Γ \ ε⊥p . As pG = 〈 pg 〉 6= G, it follows by the

minimality of |G| that (pG)⊥ is a proper overgroup of ∆, so (pG)⊥ ∈ K(Γ). Note
that (pG)⊥ 6 ε⊥p since εp = pn−2(pg) ∈ pG. As G̃ ∼= Z/pkZ is Cogalois, it follows

that ((pG)⊥ : ε⊥p ) = pk−1, so (Γ : (pG)⊥) = pk−1r. Let H ∈ K(Z1(Γ, A)) be

such that (pG)⊥ = H⊥ and hence |H| = pk−1r. Since pG̃ and H̃ := res Γ
ε⊥p

(H)

are Cogalois subgroups of Z1(ε⊥p , A), and H̃⊥ = (pG̃)⊥ = H⊥, it follows by [5],

Corollary 2.12, that H̃ = pG̃ ∼= Z/pk−1Z. Consequently, |H∩ε⊥⊥
p | = r | (p−1), so

H = (H ∩ ε⊥⊥
p )⊕H(p). As H ∈ K(Z1(Γ, A)), its subgroup H ′ := H ∩ ε⊥⊥

p is also

Kneser, and hence H ′⊥ = ε⊥p since ε⊥p 6 H ′⊥ and (Γ : H ′⊥) = |H ′| = r = (Γ : ε⊥p ).
Moreover H ′ is a Cogalois subgroup of Z1(Γ, A) by [5], Theorem 2.19, since

Γ/H ′⊥ = Γ/ε⊥p
∼= Z/rZ is cyclic, so H ′ ∼= Z/rZ, in particular 1̂/r ∈ Aε⊥p , as

H ′⊥ = ε⊥p ⊳ Γ, and hence 1̂/l ∈ AΓ for l ∈ P, l|r. By [5], Corollary 2.12, H ′ is

the unique Cogalois subgroup of Z1(Γ, A) satisfying H ′⊥ = ε⊥p .

Choose a generator h of H(p) ∼= H̃ = pG̃ ∼= Z/pk−1Z such that h̃ :=
h|ε⊥p = pg̃, so h− pg ∈ ε⊥⊥

p and hence ε⊥p 6 (h− pg)⊥. Moreover (h− pg)⊥ = ε⊥p .

Indeed, assuming τ ∈ (h − pg)⊥, we obtain pkg(τ) = pk−1h(τ) = 0, i.e. τ ∈
(pkG)⊥ = (G ∩ ε⊥⊥

p )⊥ = ε⊥p , as εp ∈ G.
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On the other hand, since ord (h) = pk−1 < pn−1 = ord ((pg)(σ)), σ ∈
Γ \ ε⊥p , it follows that ord ((h − pg)(σ)) = pn−1 for all σ ∈ Γ \ ε⊥p . Consequently,

1̂/pn−1 ∈ Aε⊥p , i.e. ε⊥
pn−1 = ε⊥p , since (h−pg)⊥ = ε⊥p ⊳ Γ. As ord (g̃) = pk ≤ pn−1,

it follows that g̃ = g|ε⊥p ∈ Hom (ε⊥p , (1/pk)Z/Z), so ∆ = g⊥ = Ker (g̃) ⊳ ε⊥p and

ε⊥p /∆ ∼= Z/pkZ. Thus ∆′ := ∆ ∩ ε⊥pn ⊳ ε⊥p . Moreover ∆′ ⊳ Γ since g(σδσ−1) =
g(σ) − δg(σ) = 0 for all σ ∈ Γ, δ ∈ ∆′.

It remains to consider the following three situations:

1.2.1: ε⊥pn = ε⊥p , i.e. 1̂/pn ∈ Aε⊥p .

It follows that ∆ = ∆′ ⊳ Γ, so we may assume without loss that ∆ = {1},

|Γ| = pkr, ε⊥p
∼= Z/pkZ, and A = Aε⊥p = (1/pnr)Z/Z. Thus Γ ∼= ε⊥p ⋊ Γ/ε⊥p

∼=

Z/pkZ ⋊ Z/rZ, and hence ∆ = {1} is h-Kneser by Lemma 2.12, (1), which is a
contradiction. Consequently, the situation 1.2.1 cannot occur.

1.2.2: ∆ 6 ε⊥pn 6= ε⊥
pn−1 = ε⊥p .

Thus ∆ ⊳ Γ, so we may assume ∆ = {1}, A = (1/pnr)Z/Z, ε⊥p
∼= Z/pkZ,

and Γ/ε⊥pn
∼= ε⊥p /ε⊥pn × Γ/ε⊥p

∼= Z/pZ × Z/rZ ∼= Z/prZ. Let σ ∈ Γ be such

that Γ/ε⊥pn = 〈σε⊥pn〉, and let u = uσ ∈ (Z/pnrZ)∗ defining the action of σ.

It follows that σr ∈ ε⊥p \ ε⊥pn , so 〈σr〉 = ε⊥p
∼= Z/pkZ. On the other hand,

g(σpr) = upr−1
u−1 g(σ) = 0 since ord (g) = pn, upr ≡ 1 mod pn but u 6≡ 1mod p. As

g⊥ = ∆ = {1}, it follows that σpr = 1, so k = 1 and Γ = 〈σ〉 ∼= Z/prZ. As we
have seen above, there exists a unique Cogalois subgroup H ′ ∼= Z/rZ of Z1(Γ, A)
such that ε⊥p = H ′⊥, so the monomorphism Z1(Γ, A) −→ A = (1/pnr)Z/Z, α 7→
α(σ), is onto, and Z1(Γ, A) = G ⊕ H ′ ∼= Z/pnrZ. In particular, H ′ is the
maximal Kneser subgroup of Z1(Γ, A), and hence ε⊥p = 〈σr〉 is the minimal
Kneser subgroup of Γ. Consequently, the proper subgroup 〈σp〉 ∼= Z/rZ of Γ is
not Kneser, which is a contradiction. Moreover note that the subgroup above
is not radical since 〈σp〉⊥ = 0, so 〈σp〉⊥⊥ = Γ 6= 〈σp〉. Thus the situation 1.2.2
cannot occur.

1.2.3: ∆ 66 ε⊥pn .

To conclude that ∆ is of type (B) we have only to check that NΓ(∆) = ε⊥p
and Γ/∆′ ∼= (ε⊥pn/∆′) ⋊ (Γ/ε⊥pn). As ∆ ⊳ ε⊥p and ∆′ ⊳ Γ it remains to show that

σδσ−1 6∈ ∆ = g⊥ whenever σ ∈ Γ \ ε⊥p and δ ∈ ∆ \ ∆′ = ∆ \ ε⊥pn . For σ and δ as
above, we obtain g(σδσ−1) = g(σ)−δ g(σ) 6= 0, as required, since ord (g(σ)) = pn.
On the other hand, choose σ ∈ Γ such that Γ/ε⊥pn = 〈σε⊥pn〉 ∼= Z/prZ, and let
u := uσ ∈ (Z/pnZ)∗ defining the action of σ on (1/pn)Z/Z. It follows that
g(σpr) = upr−1

u−1 g(σ) = 0 since ord (u) = pr, in particular, u 6≡ 1 mod p, and
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g(σ) ∈ (1/pn)Z/Z. Thus σpr ∈ ∆ ∩ ε⊥pn = ∆′, and hence Γ/∆′ ∼= (ε⊥pn/∆′) ⋊

(Γ/ε⊥pn) as desired.

Case 2: p = 2.

As G 6∈ K(Z1(Γ, A)), it follows by Theorem 1.3, that ε′4 ∈ G, and hence
∆ = G⊥ 6 ε′⊥4 = ε⊥4 . Note that 〈ε′4〉 6= G, since otherwise ∆ = ε⊥4 ∈ K(Γ), which
is a contradiction. In particular, |G| ≥ 8.

We claim that G is cyclic of order 2n, n ≥ 3. Let G̃ := res Γ
ε⊥
4

(G) 6

Z1(ε⊥4 , A). As P(ε⊥4 , A) ∩ P eG = ∅, G̃ is Cogalois by Theorem 1.5.

First let us show that the 2-group G̃ is cyclic. Assuming G̃ = G′
1 ⊕ G′

2,

with 0 6= G′
i 6 G̃, i = 1, 2, we obtain G′⊥

i ∈ L(ε⊥4 |∆) \ {∆, ε⊥4 }, i = 1, 2, and
G′⊥

1 ∩ G′⊥
2 = ∆. As proper overgroups of ∆, G′⊥

1 and G′⊥
2 are Kneser subgroups

of Γ, so G′⊥
i = G⊥

i for some Gi ∈ K(Z1(Γ, A)), i = 1, 2. As (G1 + G2)
⊥ =

G⊥
1 ∩ G⊥

2 = G′⊥
1 ∩ G′⊥

2 = ∆, we obtain |G| ≤ |G1 + G2| by the minimality of
|G|. Thus |Gi| = (Γ : G⊥

i ) = (Γ : ε⊥4 )(ε⊥4 : G′⊥
i ) = 2 |G′

i|, i = 1, 2, and hence the

Gi ’s are 2-groups. Consequently, G̃i := res Γ
ε⊥
4

(Gi) ∈ K(Z1(ε⊥4 , A)), i = 1, 2, so

(Gi ∩ ε⊥⊥
4 )⊥ = ε⊥4 by [4], Corollary 1.12, in particular, Gi ∩ ε⊥⊥

4 is a non-trivial
2-group, i = 1, 2. Note that ε4 ∈ Gi ∩ ε⊥⊥

4 , i = 1, 2 since ε⊥⊥
4 [2] = 〈ε4〉. Thus

ε4 ∈ G1 ∩ G2, and hence 2 |G′
1| |G

′
2| = 2 |G̃| = (Γ : ε⊥4 ) (ε⊥4 : G̃⊥) = (Γ : G⊥) <

|G| ≤ |G1 + G2 | ≤
|G1| |G2|

2 = 2 |G′
1| |G

′
2|, which is a contradiction. Consequently,

G̃ is cyclic, as required.
Let g ∈ G be such that G̃ = 〈g|ε⊥4

〉, so G⊥ = G̃⊥ = g⊥ ∩ ε⊥4 = 〈g, ε4〉
⊥,

and hence G = 〈g, ε4〉 by the minimality of |G|. As ε′4 ∈ G and 2 ε′4 = ε4, we
obtain G = 〈g〉 ∼= Z/2nZ, n ≥ 3, as claimed.

Thus ∆ = g⊥ ( ε⊥4 , and we may assume that 2n−2g = ε′4. Setting g̃ =
g|ε⊥4

, it follows that ord (g̃) = (ε⊥4 : g⊥) = 2k for some k satisfying 1 ≤ k ≤ n− 2,

so (Γ : g⊥) = 2k+1. Note also that ord (g(σ)) = 2n for all σ ∈ Γ \ ε⊥4 since for any

such σ, 2n−1g(σ) = ε4(σ) = 1̂/2 6= 0.
As 2G = 〈2 g〉 6= G, it follows by the minimality of |G| that (2G)⊥ is a

proper overgroup of ∆, so (2G)⊥ ∈ K(Γ). Note also that (2G)⊥ 6 ε′⊥4 = ε⊥4 since

ε′4 = 2n−3(2 g) ∈ 2G. As G̃ ∼= Z/2kZ is Cogalois, it follows that ( (2G)⊥ : ε⊥4 ) =
2k−1, so (Γ : ( 2G)⊥) = 2k. Let H ∈ K(Z1(Γ, A)) be such that ( 2G)⊥ = H⊥,
in particular |H| = 2k. Since H̃ := res Γ

ε⊥
4

(H) and 2 G̃ are Cogalois subgroups

of Z1(ε⊥4 , A), and H̃⊥ = (2 G̃)⊥ = H⊥, it follows by [5], Corollary 2.12, that

H̃ = 2 G̃ ∼= Z/2k−1Z, and hence H ∩ ε⊥⊥
4 = ker(res Γ

ε⊥4
: H −→ H̃) = 〈ε4〉 ∼=

Z/2Z. Let h ∈ H be such that h̃ := h|ε⊥4
= 2 g̃, so ord (h) ∈ {2k−1, 2k}. Thus
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h − 2g ∈ ε⊥⊥
4 , and hence ε⊥4 6 (h − 2 g)⊥. Since ord (h) ≤ 2k < 2n−1 = ord (2 g)

and (Γ : ε⊥4 ) = 2, it follows that h 6= 2 g, so Γ 6= (h − 2 g)⊥ = ε⊥4 .

On the other hand, since for all σ ∈ Γ \ ε⊥4 , ord ((h − 2 g)(σ)) = 2n−1

and σ2 ∈ ε⊥4 , it follows that σ1̂/2n−1 = − 1̂/2n−1 for any such σ, and hence

1̂/2n−1 ∈ Aε⊥4 , i.e. ε⊥2n−1 = ε⊥4 . As ord (g̃) = 2k < 2n−1, it follows that g̃ = g|ε⊥4
∈

Hom (ε⊥4 , (1/2k)Z/Z), so ∆ = g⊥ = ker (g̃) ⊳ ε⊥4 and ε⊥4 /∆ ∼= Z/2kZ. Note also
that ∆′ := ∆ ∩ ε⊥2n ⊳ Γ since g(σδσ−1) = g(σ) − δg(σ) = 0 for all σ ∈ Γ, δ ∈ ∆′.

We distinguish the following three situations :

2.1: ε⊥2n = ε⊥4 , i.e. 1̂/2n ∈ Aε⊥4 .

It follows that ∆ = ∆′ ⊳ Γ, so we may assume without loss that ∆ =
{1}, |Γ| = 2k+1, ε⊥4

∼= Z/2kZ, and A = Aε⊥4 = (1/2n)Z/Z. Thus ε⊥4 = B1(Γ, A)⊥

is the kernel of the action of Γ on A, and hence there are only two possibilities:

2.1.1: σa = −a for σ ∈ Γ \ ε⊥4 , a ∈ A.

In this case Γ ∼= ε⊥4 ⋊ (Γ/ε⊥4 ) ∼= (Z/2kZ) ⋊ (Z/2Z) ∼= D2k+1 , and hence
∆ = {1} is h-Kneser by Lemma 2.12, (2), contrary to our assumption. Thus the
situation 2.1.1 cannot occur.

2.1.2: σa = −(1 + 2n−1)a for σ ∈ Γ \ ε⊥4 , a ∈ A.

As ord (g(σ)) = 2n, we obtain g(σ2) = 2n−1g(σ) = 1̂/2, and hence g(σ4) =
0, so ord (σ) = 4 since ∆ = g⊥ = {1}. Choosing a generator τ of ε⊥4

∼= Z/2kZ, we

obtain the presentation Γ ∼= 〈σ, τ |σ4 = 1, σ2 = τ2k−1

, στσ−1 = τ−1〉, concluding
that ∆ is of type (C).

2.2: ∆ 6 ε⊥2n 6= ε⊥2n−1 = ε⊥4 .

Thus ∆ ⊳ Γ, so we may assume that ∆ = {1}, A = (1/2n)Z/Z, ε⊥4
∼=

Z/2kZ, and Γ/ε⊥2n
∼= (ε⊥4 /ε⊥2n) × (Γ/ε⊥4 ) ∼= Z/2Z × Z/2Z. Let σ ∈ Γ \ ε⊥4 be

such that σa = −a for a ∈ A, and let τ ∈ ε⊥4 \ ε⊥2n , so τ generates ε⊥4 and
τa = (1 + 2n−1)a for a ∈ A. As ord (g(σ)) = 2n and ord (g(τ)) = 2k, it follows
that g(σ2) = 0 and g(στσ−1) = (1 − τ)g(σ) + σg(τ) = 2n−1g(σ) − g(τ) =

1̂/2 − g(τ) = g(τ2k−1−1). Consequently, k ≥ 2, i.e. ∆ 6= ε⊥2n , so n ≥ k + 2 ≥

4, and Γ ∼= 〈σ, τ |σ2 = τ2k

= 1, στσ−1 = τ2k−1−1〉 ∼= ε⊥4 ⋊ (Γ/ε⊥4 ) 6∼= D2k+1.
The monomorphism Z1(Γ, A) −→ A × A,α 7→ (α(σ), α(τ) − 2n−kα(σ)), maps
isomorphically Z1(Γ, A) onto ((1/2n)Z/Z) × ((1/2k−1)Z/Z), and hence 〈σ〉 6=

〈σ〉⊥⊥ = 〈σ, τ2k−1

〉, i.e. 〈σ〉 6∈ R(Γ), which is a contradiction. Consequently, the
situation 2.2 cannot occur.

2.3: ∆ 66 ε⊥2n .
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We may assume ∆′ = {1}, A = (1/2n)Z/Z, so ∆ = 〈δ〉 ∼= Z/2Z, ε⊥2n =
〈τ〉 ∼= Z/2kZ, and ε⊥4 = ε⊥2n−1 = ∆ ε⊥2n = 〈δ, τ〉 ∼= Z/2Z × Z/2kZ. We obtain
δa = (1 + 2n−1)a, τa = a, for a ∈ A. Choose σ ∈ Γ \ ε⊥4 satisfying σa = −a for
a ∈ A, so σ2 ∈ g⊥ ∩ ε⊥2n = {1}, i.e. ord (σ) = 2. Thus Γ ∼= ε⊥4 ⋊ (Γ/ε⊥4 ). As

g(στσ−1) = −g(τ) = g(τ−1), and g(σδσ−1) = (1 − δ)g(σ) = 2n−1g(σ) = 1̂/2 =

g(τ2k−1

δ), we obtain the presentation

Γ ∼= 〈σ, δ, τ |σ2 = τ2k

= δ2 = (στ)2 = [δ, τ ] = (σδ)2τ2k−1

= 1〉,

so ∆ is of type (D), as required.

Conversely, we have to show that ∆ ∈ (HR(Γ) \ HK(Γ))max whenever ∆
is an open subgroup of Γ of one of the types (A) – (D).

(A): Assume ∆ = ε⊥p , p ∈ P(Γ, A) \ {4}, (Γ : ∆) = lm, l a prime number,

m ≥ 1, A∆(l) = (1/lm−1)Z/Z , and 1̂/4 ∈ AΓ for l = 2,m ≥ 3. First we have to
show that ∆ 6∈ K(Γ). Assuming the contrary, let G ∈ K(Z1(Γ, A)) be such that
∆ = G⊥, so |G| = (Γ : ∆) = lm. If G is not cyclic, let 0 6= Gi 6 G, i = 1, 2 be
such that G = G1 ⊕ G2. As Γ/∆ ∼= Z/lmZ, and l is a prime number, L(Γ |∆)
is totally ordered, so we may assume G⊥

1 6 G⊥
2 , and hence ∆ = (G1 + G2)

⊥ =
G⊥

1 ∩ G⊥
2 = G⊥

1 . Consequently, (Γ : G⊥
1 ) = (Γ : ∆) = |G| > |G1|, which is a

contradiction. Thus G = 〈g〉 ∼= Z/lmZ, so ord (g(σ)) = lm for some σ ∈ Γ \ ∆,
in particular (1/lm)Z/Z 6 A. Since ∆ ⊳ Γ, it follows that for any such σ,

τg(σ) = g(τσ) = g(σ(σ−1τσ)) = g(σ) for all τ ∈ ∆ = g⊥, so 1̂/lm ∈ A∆,
contrary to the assumption that A∆(l) = (1/lm−1)Z/Z.

It remains to check that Λ ∈ K(Γ) whenever Λ is a proper overgroup
of ∆. For any such Λ, we obtain Λ ⊳ Γ and Γ/Λ ∼= Z/lkZ, 0 ≤ k ≤ m − 1.
We may assume k ≥ 1 for l 6= 2, resp. k ≥ 2 for l = 2, since otherwise either

Λ = Γ or (Γ : Λ) = 2 and 1̂/2 ∈ AΓ 6 AΛ. Let σ ∈ Γ be such that σ∆ is a
generator of Γ/∆ ∼= Z/lmZ. Since ∆ 6 ε⊥

lm−1 6 ε⊥
lk

, Γ/∆ acts on (1/lk)Z/Z.

Let u := uσ ∈ (Z/lkZ)∗ be such that σ1̂/lk = u1̂/lk. Obviously, u ≡ 1mod l if

l 6= 2, and u ≡ 1mod 4 if l = 2, as, by assumption, 1̂/4 ∈ AΓ for l = 2,m ≥ 3.
Consequently, Λ = g⊥ ∈ K(Γ), where the cocycle g ∈ Z1(Γ |∆, A∆) is defined by

g(σ) = 1̂/lk.

(B): Let ∆ be an open subgroup of type (B). We may assume without loss
that ∆′ := ∆ ∩ ε⊥pn = {1} and A = (1/(pnr)Z/Z. Thus ∆ = 〈δ〉 ∼= Z/pZ, ε⊥pn =

ε⊥pnr = 〈τ〉 ∼= Z/pkZ, and ε⊥p = ε⊥
pn−1r

= ∆ ε⊥pn
∼= Z/pZ × Z/pkZ. Let σ ∈ Γ

be such that σpr = 1 and Γ/ε⊥pn = 〈σ ε⊥pn〉. Note that such a σ exists since
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Γ ∼= ε⊥pn ⋊ (Γ/ε⊥pn) by assumption. As σr ∈ ε⊥p \ ε⊥pn , it follows that ε⊥p =
〈δ , τ〉 = 〈σr, τ〉 and 〈σr〉 ⊳ Γ. As ∆ 6⊳ Γ and ord (δ) = p, we may assume that

δ = σrτpk−1

. Let u := uσ ∈ A∗ be such that σa = ua for a ∈ A. By assumption,
it follows that ord (u mod pn) = pr, ord (u mod pj) = r for 1 ≤ j ≤ n − 1, and
u ≡ 1mod l for l ∈ P, l | r. Setting στσ−1 = τv, with v ∈ (Z/pkZ)∗, it follows that
ord (v mod pk) | r = ord (v mod p) since σrτ = τσr and the conjugates σiδ σ−i, 0 ≤

i < r, of the element δ = σrτpk−1

are pairwise distinct, as NΓ(∆) = ε⊥p by

assumption. Thus we may assume without loss that v ≡ umod pk, obtaining the
presentation

Γ ∼= 〈σ, τ |σpr = τpk

= στσ−1τ−u = 1〉

The monomorphism Z1(Γ, A) −→ A×A,α 7→ (α(σ), α(τ)), maps isomor-
phically Z1(Γ, A) onto ((1/(pnr))Z/Z) × ((1/pk)Z/Z). It follows that ∆ = 〈δ〉 =
g⊥ for a convenient g ∈ Z1(Γ, A) with ord (g(σ)) = pn and ord (g(τ)) = pk, so
∆ is a radical subgroup of Γ. However ∆ 6∈ K(Γ) since all the maximal Kneser
subgroups of Z1(Γ, A) are isomorphic to (Z/rZ) × (Z/pkZ) ∼= Z/pkrZ, so the
normal subgroup 〈σr〉 ∼= Z/pZ is the minimal Kneser subgroup of Γ, in particular
the unique Kneser subgroup of order p of Γ.

It remains to show that all proper overgroups of ∆ are Kneser. Let
Λ := 〈δ, σr〉 = 〈τpk−1

, σr〉 ∼= Z/pZ × Z/pZ. Note that Λ ⊳ Γ and L(ε⊥p |∆) \

{∆} ⊆ L(Γ |Λ) since ε⊥p /∆ ∼= Z/pkZ. Moreover L(Γ |∆) \ {∆} = L(Γ |Λ).

Indeed, for any γ ∈ Γ \ ε⊥p , γδγ−1 ∈ ε⊥p \ ∆ since NΓ(∆) = ε⊥p , and hence

∆ 6= 〈δ, γ〉 ∩ ε⊥p , as required. Applying Lemma 2.12, (1), to the induced action of

Γ/Λ ∼= (ε⊥p /Λ) ⋊ (Γ/ε⊥p ) ∼= (Z/pk−1Z) ⋊u (Z/rZ) on (1/pn−1r)Z/Z, we conclude
that Λ ∈ HK(Γ), so L(Γ |∆) \ {∆} ⊆ K(Γ), as desired.

(C): Let ∆ be an open subgroup of Γ of type (C). As ∆ ⊳ Γ, we may

assume that ∆ = {1} and A = Aε⊥4 = (1/2n)Z/Z, so ε⊥4 = ε⊥2n = 〈τ〉 ∼=

Z/2kZ, 1 ≤ k ≤ n − 2,Γ ∼= 〈σ, τ |σ4 = 1, σ2 = τ2k−1

, στσ−1 = τ−1〉, in par-
ticular, Γ = 〈σ〉 ∼= Z/4Z and τ = σ2 if k = 1, and σa = − (1 + 2n−1)a, τa = a
for a ∈ A. Note that Λ := 〈σ2〉 ⊳ Γ, Λ is the center of Γ if k ≥ 2, and
Γ/Λ ∼= (Z/2k−1Z) ⋊ (Z/2Z) ∼= D2k , and hence Λ ∈ HK(Γ) by Lemma 2.12, (2).
On the other hand, the monomorphism Z1(Γ, A) −→ A × A,α 7→ (α(σ), α(τ) −
2n−kα(σ)) maps isomorphically Z1(Γ, A) onto ((1/2n)Z/Z)×((1/2k−1)Z/Z). Set-

ting g(σ) = 1̂/2n, g(τ) = 1̂/2k, we obtain g ∈ Z1(Γ, A) and ∆ = {1} = g⊥, so
∆ is a radical subgroup of Γ. However ∆ 6∈ K(Γ) since the maximal Kneser
subgroups K of Z1(Γ, A) are all isomorphic to (Z/2Z) × (Z/2k−1Z), and hence
K⊥ = Λ = 〈σ2〉 ∼= Z/2Z is the minimal Kneser subgroup of Γ. It remains to
observe that L(Γ) \ {1} = L(Γ |Λ) = K(Γ) as desired.
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(D): Let ∆ be an open subgroup of Γ of type (D). Since ∆′ = ∆∩ε⊥4 ⊳ Γ,
we may assume that ∆′ = {1} and A = (1/2n)Z/Z. By assumption, Γ ∼= ε⊥4 ⋊

(Γ/ε⊥4 ) ∼= 〈σ, τ, δ |σ2 = τ2k

= δ2 = 1, δτ = τδ, στσ−1 = τ−1, σδσ−1 = δτ2k−1

〉,
and σa = −a, τa = a, δa = (1 + 2n−1)a for a ∈ A. In particular, NΓ(∆) =

ε⊥4 = ε⊥2n−1 , and the center Z(Γ) = 〈(σδ)2 = τ2k−1

〉 ∼= Z/2Z. The monomorphism
Z1(Γ, A) −→ A×A×A,α 7→ (α(σ), α(δ), α(τ)−2n−kα(σ)), maps isomorphically
Z1(Γ, A) onto ((1/2n)Z/Z) × ((1/2)Z/Z) × ((1/2k−1)Z/Z). It follows that ∆ =

〈δ〉 = g⊥, where g ∈ Z1(Γ, A) is defined by g(σ) = 1̂/2n, g(τ) = 1̂/2k, g(δ) = 0, so
∆ ∈ R(Γ). On the other hand, the maximal Kneser subgroups K of Z1(Γ, A) are
all isomorphic to (Z/2Z)×(Z/2Z)×(Z/2k−1Z), and hence K⊥ = Z(Γ) ∼= Z/2Z is
the (unique) minimal Kneser subgroup of Γ. Consequently, the normal subgroup

Λ := 〈δ, τ2k−1

〉 ∼= Z/2Z × Z/2Z is the (unique) minimal Kneser subgroup of Γ
lying over ∆, and Γ/Λ ∼= D2k , so Λ ∈ HK(Γ) by Lemma 2.12, (2). It remains to
observe that L(Γ |∆) \ {∆} = L(Γ |Λ) as required. �

As a consequence of Lemma 3.1, we obtain the following h-Kneser crite-
rion for h-radical subgroups.

Theorem 3.2. The following assertions are equivalent for Λ ∈ HR(Γ).

(1) Λ ∈ HK(Γ).

(2) Λ 66 ∆ whenever ∆ is an open subgroup of Γ of one of the types (A) - (D).
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