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Abstract. The classical theorem of Weitzenböck states that the algebra of
invariants K[X ]g of a single unipotent transformation g ∈ GLm(K) acting
on the polynomial algebra K[X ] = K[x1, . . . , xm] over a field K of charac-
teristic 0 is finitely generated. This algebra coincides with the algebra of
constants K[X ]δ of a linear locally nilpotent derivation δ of K[X ]. Recently
the author and C. K. Gupta have started the study of the algebra of in-
variants Fm(V)g where Fm(V) is the relatively free algebra of rank m in
a variety V of associative algebras. They have shown that Fm(V)g is not
finitely generated if V contains the algebra UT2(K) of 2× 2 upper triangu-
lar matrices (and g 6= 1). The main result of the present paper is that the
algebra Fm(V)g is finitely generated if and only if the variety V does not
contain the algebra UT2(K). As a by-product of the proof we have estab-
lished also the finite generation of the algebra of invariants T g

nm where Tnm

is the mixed trace algebra generated by m generic n × n matrices and the
traces of their products.
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Introduction. Let K be any field of characteristic 0 and let X =

{x1, . . . , xm}, where m > 1. Let g ∈ GLm = GLm(K) be a unipotent linear

operator acting on the vector space KX = Kx1 ⊕ · · · ⊕ Kxm. By the classical

theorem of Weitzenböck [16], the algebra of invariants

K[X]g = {f ∈ K[X] | f(g(x1), . . . , g(xm)) = f(x1, . . . , xm)}

is finitely generated. A proof in modern language was given by Seshadri [12]. An

elementary proof based on the ideas of [12] was presented by Tyc [14]. Since g−1

is a nilpotent linear operator of KX, we may consider the linear locally nilpotent

derivation

δ = log g =
∑

i≥1

(−1)i−1 (g − 1)i

i

called a Weitzenböck derivation. (The K-linear operator δ acting on an algebra

A is called a derivation if δ(uv) = δ(u)v + uδ(v) for all u, v ∈ A.) The algebra of

invariants C[X]g coincides with the algebra of constants C[X]δ (= ker(δ) ). See

the book by Nowicki [10] for a background on the properties of the algebras of

constants of Weitzenböck derivations.

Looking for noncommutative generalizations of invariant theory, see e. g.

the survey by Formanek [8], let K〈X〉 = K〈x1, . . . , xm〉 be the free unitary asso-

ciative algebra freely generated by X. The action of GLm is extended diagonally

on K〈X〉 by the rule

h(xj1 · · · xjn
) = h(xj1) · · · h(xjn

), h ∈ GLm, xj1, . . . , xjn
∈ X.

For any PI-algebra R, let T (R) ⊂ K〈X〉 be the T-ideal of all polynomial identities

in m variables satisfied by R. The class V = var(R) of all algebras satisfying the

identities of R is called the variety of algebras generated by R (or determined

by the polynomial identities of R). The factor algebra Fm(V) = K〈X〉/T (R)

is called the relatively free algebra of rank m in V. We shall use the same

symbols xj and X for the generators of Fm(V). Since T (R) is GLm-invariant,

the action of GLm on K〈X〉 is inherited by Fm(V) and one can consider the

algebra of invariants Fm(V)G for any linear group G. As in the commutative

case, if g ∈ GLm is unipotent, then Fm(V)g coincides with the algebra Fm(V)δ

of the constants of the derivation δ = log g.

Till the end of the paper we fix the integer m > 1, the variety V, the

unipotent linear operator g ∈ GLm and the derivation δ = log g.

The author and C. K. Gupta [6] have started the study of the algebra of

invariants Fm(V)g. They have shown that if V contains the algebra UT2(K) of
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2× 2 upper triangular matrices and g is different from the identity of GLm, then

Fm(V)g is not finitely generated for any m > 1. They have also established that,

if UT2(K) does not belong to V, then, for m = 2, the algebra F2(V)g is finitely

generated.

In the present paper we close the problem for which varieties V and which

m the algebra Fm(V)g is finitely generated. Our main result is that this holds,

and for all m > 1, if and only if the variety V does not contain the algebra

UT2(K).

It is natural to expect such a result by two reasons. First, it follows from

the proofs of Seshadri [12] and of Tyc [14], see also the paper by Onoda [11],

that the algebra K[X]g is isomorphic to the algebra of invariants of certain SL2-

action on the polynomial algebra in m + 2 variables. One can prove a similar

fact for Fm(V)g and (K[y1, y2] ⊗K Fm(V))SL2 . Second, the results of Vonessen

[15], Domokos and the author [3] give that Fm(V)G is finitely generated for

all reductive G if and only if the finitely generated algebras in V are one-side

noetherian. For unitary algebras this means that V does not contain UT2(K)

or, equaivalently, V satisfies the Engel identity [x2, x1, . . . , x1] = 0. In our proof

we use the so called proper polynomial identities introduced by Specht [13], the

fact that the Engel identity implies that the vector space of proper polynomials

in Fm(V) is finite dimensional and hence Fm(V) has a series of ideals such that

the factors are finitely generated K[X]-modules. As a by-product of the proof we

have established also the finite generation of the algebra of invariants T g
nm, where

Tnm is the mixed trace algebra generated by m generic n×n matrices x1, . . . , xm

and and the traces of their products tr(xi1 · · · xik), k ≥ 1.

1. Preliminaries. We fix two finite dimensional vector spaces U and V ,

dim U = p, dim V = q, and representations of the infinite cyclic group G = 〈g〉:

ρU : G → GL(U) = GLp, ρV : G → GL(V ) = GLq,

where ρU (g) and ρV (g) are unipotent linear operators. Fixing bases Y = {y1, . . .,

yp} and Z = {z1, . . . , zq} of U and V , respectively, we consider the free left

K[Y ]-module M(Y,Z) with basis Z. Then g acts diagonally on M(Y,Z) by the

rule

g :

q
∑

j=1

fj(y1, . . . , yp)zj →

q
∑

j=1

fj(g(y1), . . . , g(yp))g(zj), fj ∈ K[Y ],

where, by definition, g(yi) = ρU (g)(yi) and g(zj) = ρV (g)(zj). Let M(Y,Z)g be

the set of fixed points in M(Y,Z) under the action of g. Since ρU(g) and ρV (g)
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are unipotent operators, the operators δU = log ρU (g) and δV = log ρV (g) are

well defined. Denote by δ the induced derivation of K[Y ]. We extend δ to a

derivation of M(Y,Z), denoted also by δ, i. e. δ is the linear operator of M(Y,Z)

defined by

δ :

q
∑

j=1

fj(Y )zj →

q
∑

j=1

δ(fj(Y ))zj +

q
∑

j=1

fj(Y )δ(zj).

It is easy to see that δ = log g on M(Y,Z) and M(Y,Z)g coincides with the kernel

of δ, i. e. the set of constants M(Y,Z)δ . Changing the bases of U and V , we may

assume that δU and δV have the form

δU =















Jp1
0 · · · 0 0

0 Jp2
· · · 0 0

...
...

. . .
...

...
0 0 · · · Jpk−1

0
0 0 · · · 0 Jpk















, δV =















Jq1
0 · · · 0 0

0 Jq2
· · · 0 0

...
...

. . .
...

...
0 0 · · · Jql−1

0
0 0 · · · 0 Jql















,

where Jr is the (r + 1) × (r + 1) Jordan cell

Jr =



















0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 1 0
0 0 0 · · · 0 1
0 0 0 · · · 0 0



















(1)

with zero diagonal.

We denote by Wr the irreducible (r + 1)-dimensional SL2-module. It is

isomorphic to the SL2-module of the forms of degree r in two variables x, y. This

is the unique structure of an SL2-module on the (r+1)-dimensional vector space

which agrees with the action of δ (and hence of g) as the Jordan cell (1): We can

think of δ as the derivation of K[x, y] defined by δ(x) = 0, δ(y) = x. We fix the

“canonical” basis of Wr

u(0) = xr, u(1) =
xr−1y

1!
, u(2) =

xr−2y2

2!
, . . . , u(r−1) =

xyr−1

(r − 1)!
, u(r) =

yr

r!
.(2)

We give U and V the structure of SL2-modules

U = Wp1
⊕ · · · ⊕ Wpk

, V = Wq1
⊕ · · · ⊕ Wql

,(3)

and extend it on K[Y ] and M(Y,Z) via the diagonal action of SL2. Again,

this agrees with the action of g and δ. Then K[U ] and M(Y,Z) are direct
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sums of irreducible SL2-modules Uri ⊂ K[Y ] and Wrj ⊂ M(Y,Z) isomorphic to

Wr, i, j = 1, 2, . . ., r = 0, 1, 2, . . ., with canonical bases {u
(0)
ri , u

(1)
ri , . . . , u

(r)
ri } and

{w
(0)
rj , w

(1)
rj , . . . , w

(r)
rj }, respectively.

Lemma 1. The elements u ∈ K[Y ] and w ∈ M(Y,Z) belong to K[Y ]δ

and M(Y,Z)δ, respectively, if and only if they have the form

u =
∑

r,i

αriu
(0)
ri , w =

∑

r,j

βrjw
(0)
rj , αri, βrj ∈ K.(4)

P r o o f. Almkvist, Dicks and Formanek [1] translated in the language

of g-invariants results of De Concini, Eisenbud and Procesi [2] and proved that,

in our notation, g(u) = u and g(w) = w if and only if u and w have the form

(4). Since g(u) = u if and only if δ(u) = 0, and similarly for w, we obtain that

(4) holds if and only if u and w are δ-constants. (The same fact is contained in

the paper by Tyc [14] but in the language of representations of the Lie algebra

sl2(K).) �

In each component Wr of U in (3), using the basis (2), we define a linear

operator d by

d(u(k)) = (k + 1)(r − k)u(k+1), k = 0, 1, 2, . . . , r,

i. e., up to multiplicative constants, d acts by u(0) → u(1) → u(2) → · · · → u(r) →

0. We extend d to a derivation of K[Y ]. As in the case of δ, again we can think

of d as the derivation of K[x, y] defined by d(x) = y, d(y) = 0.

Lemma 2. (i) The derivation d acts on each irreducible component Uri

of K[Y ] by

d(u
(k)
ri ) = (k + 1)(r − k)u

(k+1)
ri , k = 0, 1, . . . , r.

(ii) If f = f(Y ) ∈ K[Y ], then δs+1(f) = 0 if and only if f belongs to the

vector space

K[Y ]s =

s
∑

t=0

dt(K[Y ]δ).(5)

P r o o f. Part (i) follows from the fact that the SL2-action on U is the

only action which agrees with the action of δ as well as with the action of d (as

the derivations of K[x, y] defined by δ(x) = 0, δ(y) = x and d(x) = y, d(y) = 0,

respectively), and the extension of this SL2-action to K[U ] also agrees with the

action of δ and d on K[U ].
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(ii) Since the irreducible SL2-submodules of K[Y ] are δ- and d-invariant,

it is sufficient to prove the statement only for f ∈ Wr ⊂ K[Y ]. Considering the

basis (2) of Wr, we have that δs+1(f) = 0 if and only if

f = α0u
(0) + α1u

(1) + · · · + αsu
(s), αk ∈ K.

Since W δ
r = Ku(0) and dt(u(0)) ∈ Ku(t), we obtain that Wr ∩ K[Y ]s is spanned

by u(0), u(1), . . . , u(s) and coincides with the kernel of δs+1 in Wr. �

In principle, the proof of the following proposition can be obtained fol-

lowing the main steps of the proof of Tyc [14] of the Weitzenböck theorem. The

proof of the three main lemmas in [14] uses only the fact that the ideals of the

algebra K[Y ] are finitely generated K[Y ]-modules. Instead, we shall give a direct

proof, using the idea of the proof of Lemma 3 in [14].

Proposition 3. The set of constants M(Y,Z)δ is a finitely generated

K[Y ]δ-module.

P r o o f. Let Ni be the K[Y ]-submodule of M(Y,Z) generated by the

basis elements zj of V = Kz1 ⊕ · · · ⊕ Kzq corresponding to the i-th Jordan cell

Jqi
. Since M(Y,Z) = N1 ⊕· · ·⊕Nl and M(Y,Z)δ = N δ

1 ⊕· · ·⊕N δ
l , it is sufficient

to show that each N δ
i is a finitely generated K[Y ]δ-module. Hence, without

loss of generality we may assume that q = r + 1 and δ(z0) = 0, δ(zj) = zj−1,

j = 1, 2, . . . , r. Let

f = f0(Y )z0 + f1(Y )z1 + · · · + fr(Y )zr ∈ M(Y,Z)δ, fj(Y ) ∈ K[Y ].(6)

Then

δ(f) = (δ(f0) + f1)z0 + (δ(f1) + f2)z1 + · · · + (δ(fr−1) + fr)zr−1 + δ(fr)zr

and this implies that

δ(fj) = −fj+1, j = 0, 1, . . . , r − 1,

δ(fr) = δ2(fr−1) = · · · = δr(f1) = δr+1(f0) = 0.

Hence, fixing any element f0(Y ) from K[Y ]r, we determine all the coefficients

f1, . . . , fr from (6). By Lemma 2 it is sufficient to show that the K[Y ]δ-module

generated by dt(K[Y ]δ) is finitely generated. By the theorem of Weitzenböck,

K[Y ]δ is a finitely generated algebra. Let {h1, . . . , hn} be a generating set of

K[Y ]δ. Then dt(K[Y ]δ) is spanned by the elements dt(ha1

1 · · · han

n ). Since d is a

derivation, dt(K[Y ]δ) is spanned by elements of the form

hc1
1 · · ·hcn

n

(

∏

dti1 (h1)
)

· · ·
(

∏

dtin (hn)
)

,
∑

ti1 + · · · +
∑

tin = t.
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There is only a finite number of possibilities for ti1 , . . . , tin , and we obtain that

dt(K[Y ]δ) generates a finitely generated K[Y ]δ-module. �

Corollary 4. Let, in the notation of this section, U and V be poly-

nomial GLm-modules, let g ∈ GLm be a unipotent matrix and let M(Y,Z) be

equipped with the diagonal action of GLm. Then, for every GLm-submodule M0

of M(Y,Z), the natural homomorphism M(Y,Z) → M(Y,Z)/M0 induces an epi-

morphism M(Y,Z)g → (M(Y,Z)/M0)
g, i. e. we can lift the g-invariants of

M(Y,Z)/M0 to g-invariants of M(Y,Z).

P r o o f. The lifting of the constants was established in [6] in the case

of relatively free algebras and the same proof works in our situation. Since

U and V are polynomial GLm-modules, the module M(Y,Z) is completely re-

ducible. Hence M(Y,Z) = M0 ⊕ M ′ for some GLm-submodule M ′ of M(Y,Z)

and M(Y,Z)/M0
∼= M ′. If w + M0 = w ∈ (M(Y,Z)/M0)

g, then w = w0 + w′,

w0 ∈ M0, w′ ∈ M ′, and g(w) = g(w0) + g(w′). Since g(w) = w, we obtain that

g(w′) = w′ and the g-invariant w is lifted to the g-invariant w′. �

Remark 5. The proof of Proposition 3 gives also an algorithm to

find the generators of M(Y,Z)δ in terms of the generators of K[Y ]δ. The latter

problem is solved by van den Essen [7] and his algorithm uses Gröbner bases

techniques.

2. The main results. The following theorem is the main result of our

paper. For m = 2 it was established in [6] using the description of the g-invariants

of K〈x, y〉.

Theorem 6. For any variety V of associative algebras which does not

contain the algebra UT2(K) of 2 × 2 upper triangular matrices, the algebra of

invariants Fm(V)g of any unipotent g ∈ GLm is finitely generated.

P r o o f. We shall work with the linear locally nilpotent derivation δ =

log g instead with g.

It is well known that any variety V which does not contain UT2(K) sat-

isfies some Engel identity [x2, x1, . . . , x1] = 0. By the theorem of Zelmanov [17]

any Lie algebra over a field of characteristic zero satisfying the Engel identity is

nilpotent. Hence we may assume that V satisfies the polynomial identity of Lie

nilpotency [x1, . . . , xc+1] = 0. (Actually, this follows from much easier and much

earlier results on PI-algebras.)

Let us consider the vector space Bm(V) of so called proper polynomials in

Fm(V). It is spanned by all products [xi1 , . . . , xik ] · · · [xj1, . . . , xjl
] of commutators
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of length ≥ 2. One of the main results of the paper by the author [4] states that

if {f1, f2, . . .} is a basis of Bm(V), then Fm(V) has a basis

{xp1

1 · · · xpm

m fi | pj ≥ 0, i = 1, 2, . . .}.

Let B
(k)
m (V) be the homogeneous component of degree k of Bm(V). It follows

from the proof of Theorem 5.5 in [4], that for any Lie nilpotent variety V, and

for a fixed positive integer m, the vector space Bm(V) is finite dimensional.

Hence B
(n)
m (V) = 0 for n sufficiently large, e. g. for n > n0. Let Ik be the

ideal of Fm(V) generated by B
(k+1)
m (V) + B

(k+2)
m (V) + · · · + B

(n0)
m (V). Since

wxi = xiw+[w, xi], w ∈ Fm(V), applying Lemma 2.4 [4], we obtain that Ik/Ik+1

is a free left K[X]-module with any basis of the vector space B
(k)
m (V) as a set of

free generators. Since δ is a nilpotent linear operator of U = KX = Kx1 ⊕ · · · ⊕

Kxm, it acts also as a nilpotent linear operator of Vk = B
(k)
m (V). Proposition 3

gives that (Ik/Ik+1)
δ is a finitely generated K[X]δ-module. Clearly, B

(0)
m (V) =

K, B
(1)
m (V) = 0, B

(2)
m (V) is spanned by the commutators [xi1 , xi2 ], etc. Hence

I0/I1
∼= K[X] and by the theorem of Weitzenböck (I0/I1)

δ is a finitely generated

algebra. We fix a system of generators f1, . . . , fa of the algebra (I0/I1)
δ and

finite sets of generators {fk1, . . . , fkbk
} of the K[X]δ-modules (Ik/Ik+1)

δ, k =

2, 3, . . . , n0. The vector space U is a GLm-module and its GLm-action makes Vk

a polynomial GLm-module. We apply Corollary 4 and lift all f i and fkj to some

δ-constants fi, fkj ∈ Fm(V)δ . The algebra S generated by f1, . . . , fa maps onto

(I0/I1)
δ and hence (Ik/Ik+1)

δ is a left S-module generated by fk1, . . . , fkbk
. The

condition In0+1 = 0 together with Corollary 4 gives that the fi and fkj generate

Fm(V)δ. �

Together with the results of [6] Theorem 6 gives immediately:

Corollary 7. For m ≥ 2 and for any fixed unipotent operator g ∈ GLm,

g 6= 1, the algebra of g-invariants Fm(V)g is finitely generated if and only if V

does not contain the algebra UT2(K).

We refer to the books [9] and [5] for a background on the theory of matrix

invariants. We fix an integer n > 1 and consider the generic n × n matrices

x1, . . . , xm. Let Cnm be the pure trace algebra, i. e. the algebra generated by

the traces of products tr(xi1 · · · xik), k = 1, 2, . . ., and let Tnm be the mixed

trace algebra generated by x1, . . . , xm and Cnm. It is well known that Cnm is

finitely generated. (For an explicit set of generators, the Nagata-Higman theorem

states that the nil polynomial identity xn = 0 implies the identity of nilpotency

x1 · · · xd = 0. If d(n) is the minimal d with this property, one may take as
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generators tr(xi1 · · · xik) with k ≤ d(n).) Also, Tnm is a finitely generated Cnm-

module.

Theorem 8. For any unipotent operator g ∈ GLm, the algebra T g
nm is

finitely generated.

P r o o f. Consider the vector space U of all formal traces yi = tr(xi1 · · · xik),

ij = 1, . . . ,m, 1 ≤ k ≤ d(n). Let Y be the set of all yi. It has a natural structure

of a GLm-module and hence δ = log g acts as a nilpotent linear operator on U .

Also, consider a finite system of generators f1, . . . , fa of the Cnm-module Tnm.

We may assume that the fj do not depend on the traces and fix some elements

hj ∈ K〈X〉 such that hj → fj under the natural homomorphism K〈X〉 → Tnm

extending the mapping xi → xi, i = 1, . . . ,m. Let V be the GLm-submodule of

K〈X〉 generated by the hj . Again, δ acts as a nilpotent linear operator on V . We

fix a basis Z = {z1, . . . , zq} of V . Consider the free K[Y ]-module M(Y,Z) with

basis Z. Proposition 3 gives that M(Y,Z)δ is a finitely generated K[Y ]δ-module

and the theorem of Weitzenböck implies that K[Y ]δ is a finitely generated alge-

bra. Since the algebra Cnm and the Cnm-module Tnm are homomorphic images

of the algebra K[Y ] and the K[Y ]-module M(Y,Z), Corollary 4 gives that K[Y ]δ

and M(Y,Z)δ map on Cδ
nm and T δ

nm, respectively. Hence T δ
nm is a finitely gen-

erated module of the finitely generated algebra Cδ
nm and, therefore, the algebra

T δ
nm is finitely generated. �
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