Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use.

Serdica

Mathematical Journal

Сердика

Математическо списание

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.
For further information on
Serdica Mathematical Journal
which is the new series of
Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

INVARIANTS OF UNIPOTENT TRANSFORMATIONS ACTING ON NOETHERIAN RELATIVELY FREE ALGEBRAS

Vesselin Drensky
Communicated by V. Brînzănescu

Abstract

The classical theorem of Weitzenböck states that the algebra of invariants $K[X]^{g}$ of a single unipotent transformation $g \in G L_{m}(K)$ acting on the polynomial algebra $K[X]=K\left[x_{1}, \ldots, x_{m}\right]$ over a field K of characteristic 0 is finitely generated. This algebra coincides with the algebra of constants $K[X]^{\delta}$ of a linear locally nilpotent derivation δ of $K[X]$. Recently the author and C. K. Gupta have started the study of the algebra of invariants $F_{m}(\mathfrak{V})^{g}$ where $F_{m}(\mathfrak{V})$ is the relatively free algebra of rank m in a variety \mathfrak{V} of associative algebras. They have shown that $F_{m}(\mathfrak{V})^{g}$ is not finitely generated if \mathfrak{V} contains the algebra $U T_{2}(K)$ of 2×2 upper triangular matrices (and $g \neq 1$). The main result of the present paper is that the algebra $F_{m}(\mathfrak{V})^{g}$ is finitely generated if and only if the variety \mathfrak{V} does not contain the algebra $U T_{2}(K)$. As a by-product of the proof we have established also the finite generation of the algebra of invariants $T_{n m}^{g}$ where $T_{n m}$ is the mixed trace algebra generated by m generic $n \times n$ matrices and the traces of their products.

[^0]Introduction. Let K be any field of characteristic 0 and let $X=$ $\left\{x_{1}, \ldots, x_{m}\right\}$, where $m>1$. Let $g \in G L_{m}=G L_{m}(K)$ be a unipotent linear operator acting on the vector space $K X=K x_{1} \oplus \cdots \oplus K x_{m}$. By the classical theorem of Weitzenböck [16], the algebra of invariants

$$
K[X]^{g}=\left\{f \in K[X] \mid f\left(g\left(x_{1}\right), \ldots, g\left(x_{m}\right)\right)=f\left(x_{1}, \ldots, x_{m}\right)\right\}
$$

is finitely generated. A proof in modern language was given by Seshadri [12]. An elementary proof based on the ideas of [12] was presented by Tyc [14]. Since $g-1$ is a nilpotent linear operator of $K X$, we may consider the linear locally nilpotent derivation

$$
\delta=\log g=\sum_{i \geq 1}(-1)^{i-1} \frac{(g-1)^{i}}{i}
$$

called a Weitzenböck derivation. (The K-linear operator δ acting on an algebra A is called a derivation if $\delta(u v)=\delta(u) v+u \delta(v)$ for all $u, v \in A$.) The algebra of invariants $\mathbb{C}[X]^{g}$ coincides with the algebra of constants $\mathbb{C}[X]^{\delta}(=\operatorname{ker}(\delta))$. See the book by Nowicki [10] for a background on the properties of the algebras of constants of Weitzenböck derivations.

Looking for noncommutative generalizations of invariant theory, see e. g. the survey by Formanek [8], let $K\langle X\rangle=K\left\langle x_{1}, \ldots, x_{m}\right\rangle$ be the free unitary associative algebra freely generated by X. The action of $G L_{m}$ is extended diagonally on $K\langle X\rangle$ by the rule

$$
h\left(x_{j_{1}} \cdots x_{j_{n}}\right)=h\left(x_{j_{1}}\right) \cdots h\left(x_{j_{n}}\right), h \in G L_{m}, x_{j_{1}}, \ldots, x_{j_{n}} \in X
$$

For any PI-algebra R, let $T(R) \subset K\langle X\rangle$ be the T-ideal of all polynomial identities in m variables satisfied by R. The class $\mathfrak{V}=\operatorname{var}(R)$ of all algebras satisfying the identities of R is called the variety of algebras generated by R (or determined by the polynomial identities of R). The factor algebra $F_{m}(\mathfrak{V})=K\langle X\rangle / T(R)$ is called the relatively free algebra of rank m in \mathfrak{V}. We shall use the same symbols x_{j} and X for the generators of $F_{m}(\mathfrak{V})$. Since $T(R)$ is $G L_{m}$-invariant, the action of $G L_{m}$ on $K\langle X\rangle$ is inherited by $F_{m}(\mathfrak{V})$ and one can consider the algebra of invariants $F_{m}(\mathfrak{V})^{G}$ for any linear group G. As in the commutative case, if $g \in G L_{m}$ is unipotent, then $F_{m}(\mathfrak{V})^{g}$ coincides with the algebra $F_{m}(\mathfrak{V})^{\delta}$ of the constants of the derivation $\delta=\log g$.

Till the end of the paper we fix the integer $m>1$, the variety \mathfrak{V}, the unipotent linear operator $g \in G L_{m}$ and the derivation $\delta=\log g$.

The author and C. K. Gupta [6] have started the study of the algebra of invariants $F_{m}(\mathfrak{V})^{g}$. They have shown that if \mathfrak{V} contains the algebra $U T_{2}(K)$ of
2×2 upper triangular matrices and g is different from the identity of $G L_{m}$, then $F_{m}(\mathfrak{V})^{g}$ is not finitely generated for any $m>1$. They have also established that, if $U T_{2}(K)$ does not belong to \mathfrak{V}, then, for $m=2$, the algebra $F_{2}(\mathfrak{V})^{g}$ is finitely generated.

In the present paper we close the problem for which varieties \mathfrak{V} and which m the algebra $F_{m}(\mathfrak{V})^{g}$ is finitely generated. Our main result is that this holds, and for all $m>1$, if and only if the variety \mathfrak{V} does not contain the algebra $U T_{2}(K)$.

It is natural to expect such a result by two reasons. First, it follows from the proofs of Seshadri [12] and of Tyc [14], see also the paper by Onoda [11], that the algebra $K[X]^{g}$ is isomorphic to the algebra of invariants of certain $S L_{2^{-}}$ action on the polynomial algebra in $m+2$ variables. One can prove a similar fact for $F_{m}(\mathfrak{V})^{g}$ and $\left(K\left[y_{1}, y_{2}\right] \otimes_{K} F_{m}(\mathfrak{V})\right)^{S L_{2}}$. Second, the results of Vonessen [15], Domokos and the author [3] give that $F_{m}(\mathfrak{V})^{G}$ is finitely generated for all reductive G if and only if the finitely generated algebras in \mathfrak{V} are one-side noetherian. For unitary algebras this means that \mathfrak{V} does not contain $U T_{2}(K)$ or, equaivalently, \mathfrak{V} satisfies the Engel identity $\left[x_{2}, x_{1}, \ldots, x_{1}\right]=0$. In our proof we use the so called proper polynomial identities introduced by Specht [13], the fact that the Engel identity implies that the vector space of proper polynomials in $F_{m}(\mathfrak{V})$ is finite dimensional and hence $F_{m}(\mathfrak{V})$ has a series of ideals such that the factors are finitely generated $K[X]$-modules. As a by-product of the proof we have established also the finite generation of the algebra of invariants $T_{n m}^{g}$, where $T_{n m}$ is the mixed trace algebra generated by m generic $n \times n$ matrices x_{1}, \ldots, x_{m} and and the traces of their products $\operatorname{tr}\left(x_{i_{1}} \cdots x_{i_{k}}\right), k \geq 1$.

1. Preliminaries. We fix two finite dimensional vector spaces U and V, $\operatorname{dim} U=p, \operatorname{dim} V=q$, and representations of the infinite cyclic group $G=\langle g\rangle$:

$$
\rho_{U}: G \rightarrow G L(U)=G L_{p}, \quad \rho_{V}: G \rightarrow G L(V)=G L_{q}
$$

where $\rho_{U}(g)$ and $\rho_{V}(g)$ are unipotent linear operators. Fixing bases $Y=\left\{y_{1}, \ldots\right.$, $\left.y_{p}\right\}$ and $Z=\left\{z_{1}, \ldots, z_{q}\right\}$ of U and V, respectively, we consider the free left $K[Y]$-module $M(Y, Z)$ with basis Z. Then g acts diagonally on $M(Y, Z)$ by the rule

$$
g: \sum_{j=1}^{q} f_{j}\left(y_{1}, \ldots, y_{p}\right) z_{j} \rightarrow \sum_{j=1}^{q} f_{j}\left(g\left(y_{1}\right), \ldots, g\left(y_{p}\right)\right) g\left(z_{j}\right), \quad f_{j} \in K[Y]
$$

where, by definition, $g\left(y_{i}\right)=\rho_{U}(g)\left(y_{i}\right)$ and $g\left(z_{j}\right)=\rho_{V}(g)\left(z_{j}\right)$. Let $M(Y, Z)^{g}$ be the set of fixed points in $M(Y, Z)$ under the action of g. Since $\rho_{U}(g)$ and $\rho_{V}(g)$
are unipotent operators, the operators $\delta_{U}=\log \rho_{U}(g)$ and $\delta_{V}=\log \rho_{V}(g)$ are well defined. Denote by δ the induced derivation of $K[Y]$. We extend δ to a derivation of $M(Y, Z)$, denoted also by δ, i. e. δ is the linear operator of $M(Y, Z)$ defined by

$$
\delta: \sum_{j=1}^{q} f_{j}(Y) z_{j} \rightarrow \sum_{j=1}^{q} \delta\left(f_{j}(Y)\right) z_{j}+\sum_{j=1}^{q} f_{j}(Y) \delta\left(z_{j}\right)
$$

It is easy to see that $\delta=\log g$ on $M(Y, Z)$ and $M(Y, Z)^{g}$ coincides with the kernel of δ, i. e. the set of constants $M(Y, Z)^{\delta}$. Changing the bases of U and V, we may assume that δ_{U} and δ_{V} have the form

$$
\delta_{U}=\left(\begin{array}{ccccc}
J_{p_{1}} & 0 & \cdots & 0 & 0 \\
0 & J_{p_{2}} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & J_{p_{k-1}} & 0 \\
0 & 0 & \cdots & 0 & J_{p_{k}}
\end{array}\right), \quad \delta_{V}=\left(\begin{array}{ccccc}
J_{q_{1}} & 0 & \cdots & 0 & 0 \\
0 & J_{q_{2}} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & J_{q_{l-1}} & 0 \\
0 & 0 & \cdots & 0 & J_{q_{l}}
\end{array}\right)
$$

where J_{r} is the $(r+1) \times(r+1)$ Jordan cell

$$
J_{r}=\left(\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \tag{1}\\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right)
$$

with zero diagonal.
We denote by W_{r} the irreducible $(r+1)$-dimensional $S L_{2}$-module. It is isomorphic to the $S L_{2}$-module of the forms of degree r in two variables x, y. This is the unique structure of an $S L_{2}$-module on the $(r+1)$-dimensional vector space which agrees with the action of δ (and hence of g) as the Jordan cell (1): We can think of δ as the derivation of $K[x, y]$ defined by $\delta(x)=0, \delta(y)=x$. We fix the "canonical" basis of W_{r}
(2) $u^{(0)}=x^{r}, u^{(1)}=\frac{x^{r-1} y}{1!}, u^{(2)}=\frac{x^{r-2} y^{2}}{2!}, \ldots, u^{(r-1)}=\frac{x y^{r-1}}{(r-1)!}, u^{(r)}=\frac{y^{r}}{r!}$.

We give U and V the structure of $S L_{2}$-modules

$$
\begin{equation*}
U=W_{p_{1}} \oplus \cdots \oplus W_{p_{k}}, \quad V=W_{q_{1}} \oplus \cdots \oplus W_{q_{l}} \tag{3}
\end{equation*}
$$

and extend it on $K[Y]$ and $M(Y, Z)$ via the diagonal action of $S L_{2}$. Again, this agrees with the action of g and δ. Then $K[U]$ and $M(Y, Z)$ are direct
sums of irreducible $S L_{2}$-modules $U_{r i} \subset K[Y]$ and $W_{r j} \subset M(Y, Z)$ isomorphic to $W_{r}, i, j=1,2, \ldots, r=0,1,2, \ldots$, with canonical bases $\left\{u_{r i}^{(0)}, u_{r i}^{(1)}, \ldots, u_{r i}^{(r)}\right\}$ and $\left\{w_{r j}^{(0)}, w_{r j}^{(1)}, \ldots, w_{r j}^{(r)}\right\}$, respectively.

Lemma 1. The elements $u \in K[Y]$ and $w \in M(Y, Z)$ belong to $K[Y]^{\delta}$ and $M(Y, Z)^{\delta}$, respectively, if and only if they have the form

$$
\begin{equation*}
u=\sum_{r, i} \alpha_{r i} u_{r i}^{(0)}, \quad w=\sum_{r, j} \beta_{r j} w_{r j}^{(0)}, \quad \alpha_{r i}, \beta_{r j} \in K \tag{4}
\end{equation*}
$$

Proof. Almkvist, Dicks and Formanek [1] translated in the language of g-invariants results of De Concini, Eisenbud and Procesi [2] and proved that, in our notation, $g(u)=u$ and $g(w)=w$ if and only if u and w have the form (4). Since $g(u)=u$ if and only if $\delta(u)=0$, and similarly for w, we obtain that (4) holds if and only if u and w are δ-constants. (The same fact is contained in the paper by Tyc [14] but in the language of representations of the Lie algebra $s l_{2}(K)$.)

In each component W_{r} of U in (3), using the basis (2), we define a linear operator d by

$$
d\left(u^{(k)}\right)=(k+1)(r-k) u^{(k+1)}, \quad k=0,1,2, \ldots, r
$$

i. e., up to multiplicative constants, d acts by $u^{(0)} \rightarrow u^{(1)} \rightarrow u^{(2)} \rightarrow \cdots \rightarrow u^{(r)} \rightarrow$ 0 . We extend d to a derivation of $K[Y]$. As in the case of δ, again we can think of d as the derivation of $K[x, y]$ defined by $d(x)=y, d(y)=0$.

Lemma 2. (i) The derivation d acts on each irreducible component $U_{r i}$ of $K[Y]$ by

$$
d\left(u_{r i}^{(k)}\right)=(k+1)(r-k) u_{r i}^{(k+1)}, \quad k=0,1, \ldots, r
$$

(ii) If $f=f(Y) \in K[Y]$, then $\delta^{s+1}(f)=0$ if and only if f belongs to the vector space

$$
\begin{equation*}
K[Y]_{s}=\sum_{t=0}^{s} d^{t}\left(K[Y]^{\delta}\right) \tag{5}
\end{equation*}
$$

Proof. Part (i) follows from the fact that the $S L_{2}$-action on U is the only action which agrees with the action of δ as well as with the action of d (as the derivations of $K[x, y]$ defined by $\delta(x)=0, \delta(y)=x$ and $d(x)=y, d(y)=0$, respectively), and the extension of this $S L_{2}$-action to $K[U]$ also agrees with the action of δ and d on $K[U]$.
(ii) Since the irreducible $S L_{2}$-submodules of $K[Y]$ are δ - and d-invariant, it is sufficient to prove the statement only for $f \in W_{r} \subset K[Y]$. Considering the basis (2) of W_{r}, we have that $\delta^{s+1}(f)=0$ if and only if

$$
f=\alpha_{0} u^{(0)}+\alpha_{1} u^{(1)}+\cdots+\alpha_{s} u^{(s)}, \quad \alpha_{k} \in K
$$

Since $W_{r}^{\delta}=K u^{(0)}$ and $d^{t}\left(u^{(0)}\right) \in K u^{(t)}$, we obtain that $W_{r} \cap K[Y]_{s}$ is spanned by $u^{(0)}, u^{(1)}, \ldots, u^{(s)}$ and coincides with the kernel of δ^{s+1} in W_{r}.

In principle, the proof of the following proposition can be obtained following the main steps of the proof of Tyc [14] of the Weitzenböck theorem. The proof of the three main lemmas in [14] uses only the fact that the ideals of the algebra $K[Y]$ are finitely generated $K[Y]$-modules. Instead, we shall give a direct proof, using the idea of the proof of Lemma 3 in [14].

Proposition 3. The set of constants $M(Y, Z)^{\delta}$ is a finitely generated $K[Y]^{\delta}$-module.

Proof. Let N_{i} be the $K[Y]$-submodule of $M(Y, Z)$ generated by the basis elements z_{j} of $V=K z_{1} \oplus \cdots \oplus K z_{q}$ corresponding to the i-th Jordan cell $J_{q_{i}}$. Since $M(Y, Z)=N_{1} \oplus \cdots \oplus N_{l}$ and $M(Y, Z)^{\delta}=N_{1}^{\delta} \oplus \cdots \oplus N_{l}^{\delta}$, it is sufficient to show that each N_{i}^{δ} is a finitely generated $K[Y]^{\delta}$-module. Hence, without loss of generality we may assume that $q=r+1$ and $\delta\left(z_{0}\right)=0, \delta\left(z_{j}\right)=z_{j-1}$, $j=1,2, \ldots, r$. Let

$$
\begin{equation*}
f=f_{0}(Y) z_{0}+f_{1}(Y) z_{1}+\cdots+f_{r}(Y) z_{r} \in M(Y, Z)^{\delta}, \quad f_{j}(Y) \in K[Y] \tag{6}
\end{equation*}
$$

Then

$$
\delta(f)=\left(\delta\left(f_{0}\right)+f_{1}\right) z_{0}+\left(\delta\left(f_{1}\right)+f_{2}\right) z_{1}+\cdots+\left(\delta\left(f_{r-1}\right)+f_{r}\right) z_{r-1}+\delta\left(f_{r}\right) z_{r}
$$

and this implies that

$$
\begin{gathered}
\delta\left(f_{j}\right)=-f_{j+1}, \quad j=0,1, \ldots, r-1 \\
\delta\left(f_{r}\right)=\delta^{2}\left(f_{r-1}\right)=\cdots=\delta^{r}\left(f_{1}\right)=\delta^{r+1}\left(f_{0}\right)=0
\end{gathered}
$$

Hence, fixing any element $f_{0}(Y)$ from $K[Y]_{r}$, we determine all the coefficients f_{1}, \ldots, f_{r} from (6). By Lemma 2 it is sufficient to show that the $K[Y]^{\delta}$-module generated by $d^{t}\left(K[Y]^{\delta}\right)$ is finitely generated. By the theorem of Weitzenböck, $K[Y]^{\delta}$ is a finitely generated algebra. Let $\left\{h_{1}, \ldots, h_{n}\right\}$ be a generating set of $K[Y]^{\delta}$. Then $d^{t}\left(K[Y]^{\delta}\right)$ is spanned by the elements $d^{t}\left(h_{1}^{a_{1}} \cdots h_{n}^{a_{n}}\right)$. Since d is a derivation, $d^{t}\left(K[Y]^{\delta}\right)$ is spanned by elements of the form

$$
h_{1}^{c_{1}} \cdots h_{n}^{c_{n}}\left(\prod d^{t_{i_{1}}}\left(h_{1}\right)\right) \cdots\left(\prod d^{t_{i_{n}}}\left(h_{n}\right)\right), \quad \sum t_{i_{1}}+\cdots+\sum t_{i_{n}}=t
$$

There is only a finite number of possibilities for $t_{i_{1}}, \ldots, t_{i_{n}}$, and we obtain that $d^{t}\left(K[Y]^{\delta}\right)$ generates a finitely generated $K[Y]^{\delta}$-module.

Corollary 4. Let, in the notation of this section, U and V be polynomial $G L_{m}$-modules, let $g \in G L_{m}$ be a unipotent matrix and let $M(Y, Z)$ be equipped with the diagonal action of $G L_{m}$. Then, for every $G L_{m}$-submodule M_{0} of $M(Y, Z)$, the natural homomorphism $M(Y, Z) \rightarrow M(Y, Z) / M_{0}$ induces an epimorphism $M(Y, Z)^{g} \rightarrow\left(M(Y, Z) / M_{0}\right)^{g}$, i. e. we can lift the g-invariants of $M(Y, Z) / M_{0}$ to g-invariants of $M(Y, Z)$.

Proof. The lifting of the constants was established in [6] in the case of relatively free algebras and the same proof works in our situation. Since U and V are polynomial $G L_{m}$-modules, the module $M(Y, Z)$ is completely reducible. Hence $M(Y, Z)=M_{0} \oplus M^{\prime}$ for some $G L_{m}$-submodule M^{\prime} of $M(Y, Z)$ and $M(Y, Z) / M_{0} \cong M^{\prime}$. If $w+M_{0}=\bar{w} \in\left(M(Y, Z) / M_{0}\right)^{g}$, then $w=w_{0}+w^{\prime}$, $w_{0} \in M_{0}, w^{\prime} \in M^{\prime}$, and $g(w)=g\left(w_{0}\right)+g\left(w^{\prime}\right)$. Since $g(\bar{w})=\bar{w}$, we obtain that $g\left(w^{\prime}\right)=w^{\prime}$ and the g-invariant \bar{w} is lifted to the g-invariant w^{\prime}.

Remark 5. The proof of Proposition 3 gives also an algorithm to find the generators of $M(Y, Z)^{\delta}$ in terms of the generators of $K[Y]^{\delta}$. The latter problem is solved by van den Essen [7] and his algorithm uses Gröbner bases techniques.
2. The main results. The following theorem is the main result of our paper. For $m=2$ it was established in [6] using the description of the g-invariants of $K\langle x, y\rangle$.

Theorem 6. For any variety \mathfrak{V} of associative algebras which does not contain the algebra $U T_{2}(K)$ of 2×2 upper triangular matrices, the algebra of invariants $F_{m}(\mathfrak{V})^{g}$ of any unipotent $g \in G L_{m}$ is finitely generated.

Proof. We shall work with the linear locally nilpotent derivation $\delta=$ $\log g$ instead with g.

It is well known that any variety \mathfrak{V} which does not contain $U T_{2}(K)$ satisfies some Engel identity $\left[x_{2}, x_{1}, \ldots, x_{1}\right]=0$. By the theorem of Zelmanov [17] any Lie algebra over a field of characteristic zero satisfying the Engel identity is nilpotent. Hence we may assume that \mathfrak{V} satisfies the polynomial identity of Lie nilpotency $\left[x_{1}, \ldots, x_{c+1}\right]=0$. (Actually, this follows from much easier and much earlier results on PI-algebras.)

Let us consider the vector space $B_{m}(\mathfrak{V})$ of so called proper polynomials in $F_{m}(\mathfrak{V})$. It is spanned by all products $\left[x_{i_{1}}, \ldots, x_{i_{k}}\right] \cdots\left[x_{j_{1}}, \ldots, x_{j_{l}}\right]$ of commutators
of length ≥ 2. One of the main results of the paper by the author [4] states that if $\left\{f_{1}, f_{2}, \ldots\right\}$ is a basis of $B_{m}(\mathfrak{V})$, then $F_{m}(\mathfrak{V})$ has a basis

$$
\left\{x_{1}^{p_{1}} \cdots x_{m}^{p_{m}} f_{i} \mid p_{j} \geq 0, i=1,2, \ldots\right\}
$$

Let $B_{m}^{(k)}(\mathfrak{V})$ be the homogeneous component of degree k of $B_{m}(\mathfrak{V})$. It follows from the proof of Theorem 5.5 in [4], that for any Lie nilpotent variety \mathfrak{V}, and for a fixed positive integer m, the vector space $B_{m}(\mathfrak{V})$ is finite dimensional. Hence $B_{m}^{(n)}(\mathfrak{V})=0$ for n sufficiently large, e. g. for $n>n_{0}$. Let I_{k} be the ideal of $F_{m}(\mathfrak{V})$ generated by $B_{m}^{(k+1)}(\mathfrak{V})+B_{m}^{(k+2)}(\mathfrak{V})+\cdots+B_{m}^{\left(n_{0}\right)}(\mathfrak{V})$. Since $w x_{i}=x_{i} w+\left[w, x_{i}\right], w \in F_{m}(\mathfrak{V})$, applying Lemma 2.4 [4], we obtain that I_{k} / I_{k+1} is a free left $K[X]$-module with any basis of the vector space $B_{m}^{(k)}(\mathfrak{V})$ as a set of free generators. Since δ is a nilpotent linear operator of $U=K X=K x_{1} \oplus \cdots \oplus$ $K x_{m}$, it acts also as a nilpotent linear operator of $V_{k}=B_{m}^{(k)}(\mathfrak{V})$. Proposition 3 gives that $\left(I_{k} / I_{k+1}\right)^{\delta}$ is a finitely generated $K[X]^{\delta}$-module. Clearly, $B_{m}^{(0)}(\mathfrak{V})=$ $K, B_{m}^{(1)}(\mathfrak{V})=0, B_{m}^{(2)}(\mathfrak{V})$ is spanned by the commutators $\left[x_{i_{1}}, x_{i_{2}}\right]$, etc. Hence $I_{0} / I_{1} \cong K[X]$ and by the theorem of Weitzenböck $\left(I_{0} / I_{1}\right)^{\delta}$ is a finitely generated algebra. We fix a system of generators $\bar{f}_{1}, \ldots, \bar{f}_{a}$ of the algebra $\left(I_{0} / I_{1}\right)^{\delta}$ and finite sets of generators $\left\{\bar{f}_{k 1}, \ldots, \bar{f}_{k b_{k}}\right\}$ of the $K[X]^{\delta}$-modules $\left(I_{k} / I_{k+1}\right)^{\delta}, k=$ $2,3, \ldots, n_{0}$. The vector space U is a $G L_{m}$-module and its $G L_{m}$-action makes V_{k} a polynomial $G L_{m}$-module. We apply Corollary 4 and lift all \bar{f}_{i} and $\bar{f}_{k j}$ to some δ-constants $f_{i}, f_{k j} \in F_{m}(\mathfrak{V})^{\delta}$. The algebra S generated by f_{1}, \ldots, f_{a} maps onto $\left(I_{0} / I_{1}\right)^{\delta}$ and hence $\left(I_{k} / I_{k+1}\right)^{\delta}$ is a left S-module generated by $\bar{f}_{k 1}, \ldots, \bar{f}_{k b_{k}}$. The condition $I_{n_{0}+1}=0$ together with Corollary 4 gives that the f_{i} and $f_{k j}$ generate $F_{m}(\mathfrak{V})^{\delta}$.

Together with the results of [6] Theorem 6 gives immediately:
Corollary 7. For $m \geq 2$ and for any fixed unipotent operator $g \in G L_{m}$, $g \neq 1$, the algebra of g-invariants $F_{m}(\mathfrak{V})^{g}$ is finitely generated if and only if \mathfrak{V} does not contain the algebra $U T_{2}(K)$.

We refer to the books [9] and [5] for a background on the theory of matrix invariants. We fix an integer $n>1$ and consider the generic $n \times n$ matrices x_{1}, \ldots, x_{m}. Let $C_{n m}$ be the pure trace algebra, i. e. the algebra generated by the traces of products $\operatorname{tr}\left(x_{i_{1}} \cdots x_{i_{k}}\right), k=1,2, \ldots$, and let $T_{n m}$ be the mixed trace algebra generated by x_{1}, \ldots, x_{m} and $C_{n m}$. It is well known that $C_{n m}$ is finitely generated. (For an explicit set of generators, the Nagata-Higman theorem states that the nil polynomial identity $x^{n}=0$ implies the identity of nilpotency $x_{1} \cdots x_{d}=0$. If $d(n)$ is the minimal d with this property, one may take as
generators $\operatorname{tr}\left(x_{i_{1}} \cdots x_{i_{k}}\right)$ with $k \leq d(n)$.) Also, $T_{n m}$ is a finitely generated $C_{n m^{-}}$ module.

Theorem 8. For any unipotent operator $g \in G L_{m}$, the algebra $T_{n m}^{g}$ is finitely generated.

Proof. Consider the vector space U of all formal traces $y_{i}=\operatorname{tr}\left(x_{i_{1}} \cdots x_{i_{k}}\right)$, $i_{j}=1, \ldots, m, 1 \leq k \leq d(n)$. Let Y be the set of all y_{i}. It has a natural structure of a $G L_{m}$-module and hence $\delta=\log g$ acts as a nilpotent linear operator on U. Also, consider a finite system of generators f_{1}, \ldots, f_{a} of the $C_{n m}$-module $T_{n m}$. We may assume that the f_{j} do not depend on the traces and fix some elements $h_{j} \in K\langle X\rangle$ such that $h_{j} \rightarrow f_{j}$ under the natural homomorphism $K\langle X\rangle \rightarrow T_{n m}$ extending the mapping $x_{i} \rightarrow x_{i}, i=1, \ldots, m$. Let V be the $G L_{m}$-submodule of $K\langle X\rangle$ generated by the h_{j}. Again, δ acts as a nilpotent linear operator on V. We fix a basis $Z=\left\{z_{1}, \ldots, z_{q}\right\}$ of V. Consider the free $K[Y]$-module $M(Y, Z)$ with basis Z. Proposition 3 gives that $M(Y, Z)^{\delta}$ is a finitely generated $K[Y]^{\delta}$-module and the theorem of Weitzenböck implies that $K[Y]^{\delta}$ is a finitely generated algebra. Since the algebra $C_{n m}$ and the $C_{n m}$-module $T_{n m}$ are homomorphic images of the algebra $K[Y]$ and the $K[Y]$-module $M(Y, Z)$, Corollary 4 gives that $K[Y]^{\delta}$ and $M(Y, Z)^{\delta}$ map on $C_{n m}^{\delta}$ and $T_{n m}^{\delta}$, respectively. Hence $T_{n m}^{\delta}$ is a finitely generated module of the finitely generated algebra $C_{n m}^{\delta}$ and, therefore, the algebra $T_{n m}^{\delta}$ is finitely generated.

REFERENCES

[1] G. Almkvist, W. Dicks, E. Formanek. Hilbert series of fixed free algebras and noncommutative classical invariant theory. J. Algebra 93 (1985), 189-214.
[2] C. De Concini, D. Eisenbud, C. Procesi. Young diagrams and determinantal varieties. Invent. Math. 56 (1980), 129-165.
[3] M. Domokos, V. Drensky. A Hilbert-Nagata theorem in noncommutative invariant theory. Trans. Amer. Math. Soc. 350 (1998), 2797-2811.
[4] V. Drensky. Codimensions of T-ideals and Hilbert series of relatively free algebras. J. Algebra 91 (1984), 1-17.
[5] V. Drensky, E. Formanek. Polynomial Identity Rings, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser, Basel-Boston, 2004 (to appear).
[6] V. Drensky, C. K. Gupta. Constants of Weitzenböck derivations and invariants of unipotent transformations acting on relatively free algebras. Preprint.
[7] A. VAN DEn ESSEn. An algorithm to compute the invariant ring of a $G_{a^{-}}$ action on an affine variety. J. Symbolic Computation 16 (1993), 551-555.
[8] E. Formanek. Noncommutative invariant theory. Contemp. Math. 43 (1985), 87-119.
[9] E. Formanek. The Polynomial Identities and Invariants of $n \times n$ Matrices. CBMS Regional Conf. Series in Math. 78, Published for the Confer. Board of the Math. Sci. Washington DC, AMS, Providence RI, 1991.
[10] A. Nowicki. Polynomial Derivations and Their Rings of Constants. Uniwersytet Mikolaja Kopernika, Torun, 1994, http://www-users.mat.uni.torun.pl/~anow/ploder.html.
[11] N. Onoda. Linear actions of G_{a} on polynomial rings. Proceedings of the 25th Symposium on Ring Theory (Matsumoto, 1992), 11-16, Okayama Univ., Okayama, 1992.
[12] C. S. Seshadri. On a theorem of Weitzenböck in invariant theory. J. Math. Kyoto Univ. 1 (1962), 403-409.
[13] W. Specht. Gesetze in Ringen, I. Math. Z. 52 (1950), 557-589.
[14] A. Tyc. An elementary proof of the Weitzenböck theorem. Colloq. Math. 78 (1998), 123-132.
[15] N. Vonessen. Actions of Linearly Reductive Groups on Affine PI-Algebras. Mem. Amer. Math. Soc. 414, 1989.
[16] R. Weitzenböck. Über die Invarianten von linearen Gruppen. Acta Math. 58 (1932), 231-293.
[17] E. I. Zelmanov. On Engel Lie algebras. Sibirsk. Mat. Zh. 29, 5 (1988), 112-117 (in Russian); English translation: Sib. Math. J. 29 (1988), 777-781.

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
1113 Sofia, Bulgaria
e-mail: drensky@math.bas.bg

[^0]: 2000 Mathematics Subject Classification: 16R10, 16R30.
 Key words: Noncommutative invariant theory; unipotent transformations; relatively free algebras.

 Partially supported by Grant MM-1106/2001 of the Bulgarian National Science Fund.

