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ABSTRACT. We consider the following linear (2N)-th order difference equa-

N
tion: ‘Z%(O‘k—iﬂ'yk—i + i Ykti) + Ok 0YE = )\Nyk, k =0,1,2,..., where
i=
ai; € C:a;n #0, \is a complex parameter, (Yo, Y1, .-, Yk, --.) = §. is a
vector solution, N is a fixed integer. It can be written in the following matrix
form: Ji = AV, where J is a (2N +1)-diagonal, symmetric matrix. We give
an easy procedure for solving of the direct and the inverse spectral problems
for the equation. Guseynov used a procedure of the Gelfand-Levitan type
for the case N = 1. We use another procedure and this procedure is more
easy and transparent.

1. Introduction. Let us consider the following linear difference equa-
tion of the second order:
boyo + aoy1 = Ao,
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(1) On—1Yn—1 + bnyn + anYn+1 = )‘yﬂn n= 17 2’ ceey

where a,,b, € C,a, # 0, A is a complex parameter, (yo,¥1,...) iS a vector
solution.

Such an equation was considered by Guseynov in [1]. He gave a procedure
for construction of a spectral function. He gave necessary and sufficient conditions
for a functional o to be the spectral function. He showed how to reconstruct the
difference equation using o and a sequence of signs.

Our aim here is twofold. First, we shall give a little another definition
of the spectral function and an easy procedure of reconstruction of difference
equation (1). Second, we shall extend our procedure for the following linear
difference equation of the (2NV)-th order:

N
(2) > (ki iVi + Onitrri) T akoyr = Ny, k=0,1,2,...,
i=1
where a; ; € C: oy # 0, X is a complex parameter, (Yo, Y1, ..., Yk,--.) = §° is

a vector solution, N is a fixed integer, and all «; ; and p; with negative indexes
here are equal to zero.
Equation (2) can be written in the following matrix form:

(3) T = ANHN),
where J is a (2N + 1)-diagonal, symmetric, non-Hermitian matrix:
Q0,0 Qp,1 Qp,2 e Qo,N 0 0

Qo1 Q1 o ... o apn—1 apny O

Q0N Q1 N-1 O2N-2
0 Q1N Q2 N-1

Notice that the case of equation (3) with Hermitian (2/V + 1)-diagonal matrix
J is closely related to the orthogonal polynomials on radial rays in the complex
plane. The measure of orthogonality plays a role of a spectral function. For the
history of this type equations and recent results see [2] and references therein (for
the case of five-diagonal matrices see [3, 4]). Symmetric, non-Hermitian matrices
have a much more complicated structure (see [5]) and we can hardly expect for
integral representations of their spectral functions.
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In Section 3 we shall give necessary and sufficient conditions for a linear
functional o to be a spectral function of (2). If we know a sequence of signs, we
can reconstruct difference equation (2) from its spectral function. The procedure
of reconstruction is easy and transparent.

2. Spectral problems for three-diagonal matrices. Let
{Pn(N)}22, be a solution of (1) with the initial condition po(A) = 1. It is not
hard to see that p,(\) is a polynomial of degree n. Let us define a linear with
respect to the both arguments functional o(u,v), u,v € P, where P is the space
of all polynomials. We define it in the following way:

(5) o(Pn(A),;pm (X)) = dpm, n,m =0,1,2,....

Using linearity we extend the definition of ¢ for arbitrary u,v € P. We notice
that from linearity it follows that

(6) o(u,v) =o(v,u), u,v €P.
Using recurrence relation (1) we write:

U()\pn()\)apm()\)) = U(an—lpn—l + bppn + anpn—l—lapm) =

(7) = an—ldn—l,m + bndn,m + an5n+1,m§
J(pn()\), )\pm()\)) = U(pm Gm—1Pm—1 + bmpm + ampm-i—l) =
(8) = amflén,mfl + bmén,m + am(sn,erly n,m=0,1,2,....

Comparing (7) with (8) for n = m — 1;m;m + 1, we see that the expressions
coincide. But for n < m —1 or n > m + 1 we obtain zero in equations (7) and
(8). So, we get

9) o (Apn(A); pm(A) = a(Pn(A), Apm(A)), n,m =0,1,2,....
Using linearity, from (9) we derive
(10) o(Au(A),v(A)) = a(u(A), \v(N)), u,veP.

Conversely, let a sequence of polynomials {p,(A\)}52, degp, = n, po = 1, be
given. Also let a linear functional o(u,v) which satisfies (5), (10) be given. Then
we can derive (1). Really, since degp,, = n, one can write:

n+1
(11) Apn(N) = Z an ;kPk(N), ank € Ciappir #0,m=0,1,2,....
k=0
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Using relations (5), (6), (10) we get:
U()‘pﬂnpj) = An,j, j = 07 1’ 27 s+ 1a

0, j+1<n

o (Apn, pj) = 0(pn, Apj) = 0(Apj; pn) = { Qjn, j+1>n

and
(12) Qp j = {
Relation (11) can be written in the following form:

(13) )‘pn()‘) = an,nflpnfl()‘) + an,npn(/\) + an,n+1pn+1()\)7 n = 07 17 27 e

We put by definition: a,, = apnt1, by = ann. Using relation (12), from relation
(13) we get (1).

Definition. A linear with respect to the both arguments functional o(u,v),
u,v € P, which satisfies (5), we shall call the spectral function of difference
equation (1).

0, j+1<n

. =0,1,2,... 1.
aj”z, ]+1Zn 7] 07 b 7n+

The following theorem is a reformulation of [1, Theorem 2.1, p. 242], but
the method of proof is quite another:

Theorem 1. A linear with respect to the both arguments functional
o(u,v), u,v € P, is the spectral function of a difference equation of type (1) iff:

1) o(Au(A),v(A)) = o (u(A), Aw(A)), u,v € P;

2) o(1,1) =1;

3) For arbitrary polynomial ug(\) of degree k, there exists a polynomial
U (N) of degree k such that:

o(ug(A), ur(A)) # 0.

Proof. Necessity. Let o(u,v) be a spectral function of a difference
equation (1). Relation 1) can be derived in the same manner as relation (10)
was derived. Relation 2) is obvious from (5) since pg = 1. For a polynomial

k
up(A),deguy = k, we can write: up(A) = Y &pi(N), & € C @ & # 0. Put
5=0

E __
k(X)) = > &p;j(A). Using orthonormality relation (5) we get
j=0

k
o(ur(N), ar(N) = Y 1§ >0,
=0
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and relation 3) is verified.

Sufficiency. Let o(u,v) be a linear functional satisfying relations 1),2),3).
Let us construct a system of polynomials {p,(X)}72,. Put po = 1. Let Ri())
be arbitrary polynomial of degree 1. Then we can write: Rj(\) = A +

a10po(A), p1, 1,0 € C, g # 0. Then
d(R1(A),po(N)) = a(pX + a1,0p0(A), po(N)) = pio (A, po) + a1 0-

If we take a0 = —p10(A, po) then

Ri(A) = pa(A = (A, po)po(N)),

(14) o(R1(A),po(N)) =0,

From relation 3) it follows that there exists a polynomial Rl()\), deg Ry = 1, such
that

My :=o(R1(\), R1(N\)) #0.
For the polynomial Rl()\) we can write: Rl(/\) = 1R (A) + Biopo(A), 1, Bio €
C,v1 # 0. Then

My = o(Ri(N), Ri(N) = o(Ri(\), i Ri(\) + Bropo(N)) = via(Ri(N), Ri(N));
LB i) = 1.

Put by definition
4

H11 = Ma

where we take arbitrary branch of the square root. Put
p1(A) = fir, 1 Ri ().

Then degp; = 1 and

o(pi,pj) = 0ijy 4,5 =0,1.
Suppose that we have constructed such polynomials po(A), p1(A), ..., pp—1(A); degp; =
i, n > 2, that

(15) 0(pl7p]) - (52',]'7 /L7j = 0717"' , L — 1.



476 S. M. Zagorodnyuk

Consider arbitrary polynomial R, () of degree n. We can write: R,,(\) = pu, A"+
n—1

Y 0 iDi(A), n,ang € C, iy # 0. Then

i=0

n—1

U(Rn()‘)apj ()‘)) = U(:un)\n + Z an,ipi()‘)vpj()‘)) = Mna()‘nvpj()‘)) + anj,
=0

Let us take oy, j = —pino (A", p;(N)),7 =0,1,2,...,n — 1. Then

|
—

n

(16) Rn(A) = pn(A" = ) o (", pi(t))pi(N)),

%

I
o

o(Rn(N),pj(A\) =0, 7=0,1,...,n—1.

As it follows from relation 3), there exists a polynomial R, ()\), deg R, = n, such
that X
M, = o(R,(X\), R,(N)) # 0.

For the polynomial R,(\) we can write the following representation: R, ()\) =

n—1
Van()\) + Z ﬁn,ipi()‘)v Vmﬁn,i € C, v, #0. Then
=0

n—1
My, = 0(Ra(N), Ra(A) = 0(Ru(N), va Ra(A)+ Y Buipi(N)) = v (R(N), Ra(A));
1=0

R, Ra(X) =1
Put by definition
Un
1 ~n n = rya)
(17) fin, A

where we take arbitrary branch of the square root. We put

(18) pn()\) = :an,an()‘)'

Then degp, = n and

o(pi,pj) = 64, i, =0,1,...,n.
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We continue this process and obtain a sequence of polynomials {py(\)}5,
degpn, = n, such that: po(A\) = 1 and o(p;,p;) = & j, 4,7 = 0,1,2,.... As it
has been shown, if we have a linear functional o(u,v), u,v € P, and a sequence
of polynomials {p,(A)}22,, degp, = n, pp = 1, which satisfy (5), (10), we can
derive (1). The functional o will be a spectral function of this equation as it
follows from the definition of the spectral function.

The proof is complete. O

Let an equation of type (1) be given and using (5) we have constructed
its spectral function o(u,v). How we can reconstruct our difference equation (1)7?
We must use the procedure of construction of {p,(A)}5° in the proof of the last
theorem. We put pg = 1 and then begin from relation (15) for n = 1,2,3,....
During this procedure we must take p, = 1 for R,,()) in (16) and take fi,, ,, in (17)
such that Arg fi,, , € [0,7) if Arg pup, , = Arg P— 11 o € [0,m), or Arg finp €
[r,2m) otherwise, where py, , is the leading cgefﬁcient of p, which is connected
with (1). Really, let {P,()\)}>2, be a system of polynomials which is constructed
following this procedure. Suppose that P;(\) = p;(A), i =0,1,....,n—1;n > 1,
i.e. the first n — 1 constructed polynomials coincide with polynomials defined

n—1
from (1). Then for p,(\) we can write: pp(A) = pp A" + D> @ iPi(A). Then
i=0

0=0(pn(A),pi(N) = a(pn(A), Pi(X)) = pinno (A", P;(X))+6m i, i =0,1,...,n—1.
We get Qpi = _ﬂn,na()\na Pz()‘)) and

pn()‘) = Mn,n()\n - Z U(}\n’ PZ()\))PZ()\)) = Mn,an()‘)'
=0

3
—

Comparing this relation with (18) (keeping in mind that p,, in (18) we now denote
by P, and p, = 1) we get

Then

L= 0(Pu(N), PalV) = (%)QMpn(A),pn(A)) - (Z—)

~2 2
An = :un,n = :un,n 7& 0.
S0, fin,n and iy, , are square roots of A,, and according to our choice of branches of

these roots, they coincide. Hence F,, = p,,. Consequently, P, =p;, 1 =0,1,2,....
But the coefficients of equation (1) are uniquely defined by o, {py }5°.
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If we define a sequence of signs {£, =+, ...}, where “4+” in the n-th place

1 1
means that Arg ——— € [0, 7), and ”-” means that Arg ——— €
andp—1...0Q0 Andp—1...0Q0
[, 27), then the spectral function o and this sequence will uniquely define differ-

ence equation (1).

3. Spectral problems for difference equations of the (2IN)-
th order. Let us consider a linear difference equation of the (2/V)-th order
(2). Let {pn(A\)}5°, be a solution of (2) with initial conditions p;(\) = X, i =
0,1,2,...,N — 1. It is clear from recurrence relation (2) that degp,(\) = n.
Define a linear with respect to the both arguments functional o(u,v),u,v € P,
from relation (5). Using linearity we extend it for arbitrary u,v € P. We notice
that from linearity it follows that relation (6) is fulfilled. From recurrence relation
(2) it follows that

N

U()\an()\),pm()\)) = U(Z(an—i,ipn—i + an,ipn-l—i) + an,Opnapm) =
=1

2

(19) Z Qp—i; n zm+an15n+zm)+an05nma

N
U(Pn()\)7 )\Npm =0 pn7 Z O‘mfj,jpmfj + am,jperj) + Oém,Opm) =
7j=1

N
Z Oém 7,7 nm ]+am,]5nm+])+am05nma n,m=0,1,2,.
J=1

(20)

Comparing the right-hand sides of (19) and (20) forn = m—j, j =1,2,...,N;n =
m;n=m+j, j=1,2,..., N, we see that they coincide. But if n < m — N or
n > m + N the right-hand sides are equal to zero. So, we obtain

U(/\an(/\),pm()\)) = o(pn(N), /\Npm()\)), n,m=20,1,2,....

Using linearity, from this relation we derive that

(21) a(ANu(N),v(N) = a(u(X), \No(N), u,v e P.
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Conversely, let {Pn( M)}, degp, = n, be a sequence of polynomials such that
pi(A) =N, i=0,1,...,N — 1, and o(u,v) be a linear functional which satisfies
(5), (21). Then we can write:

N-+k
(22) kazpz s &ki €C &Nk # 0k =0,1,2,.

Using (5),(21),(6) we get:
oAV pr(N),pj (V) = &rjy §=0,1,2,... .k +N;

(A pe(X),p; (V) = a(pr(A), AV (V) = o (A p;(N), (V) =

=10, j+N <k

We get
i =Ew J=k—Nk=N+1,.. . k+N

5]@7]':0, j:071?27"'>k_N_1;k:0,1,2,....

Using these relations, from relation (22) we derive:

k+N N N
> &N =D ChnrriPrri(N) + D Ekk—jpr-i(N)+
i=k—N j=1 =1
N
(V) = > (ErmjkPr—i(N) + ErhaiPrri(N) + i (V).
7j=1

If we put ag; = &rpsjs 7= 1,2,...,N;k = 0,1,2,...; and a9 = &g, b =
0,1,2,...; then we obtain (2).

Definition. A linear with respect to the both arguments functional o(u,v),
u,v € P, which satisfies (5), we shall call the spectral function of difference
equation (2).

Theorem 2. A linear with respect to the both arguments functional
o(u,v),u,v € P, is the spectral function of a difference equation of type (2) iff:

1) o(ANu(N),v(N) = a(u(N), \No(N\)), u,v € P;

2) (A, N) =65, 1,5 =0,1,...,N —1;

3) For arbitrary polynomial ug(\) of degree k there exists a polynomial
U (X) of degree k such that:

o(ug(A), ur(A)) # 0.
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Proof. Necessity. Let o(u,v) be a spectral function of a difference
equation (2). Relation 1) can be proved in the same way as we have proved
relation (21). Relation 2) is obvious from (5) since p;(A\) = X", i =0,1,2,...,N—

k

1. For a polynomial uy(X),degu, = k, we can write: uip(A) = > &p;i(N), & €
j=0

E __
C: & #0. Put 4x(X) = Y &pj(N). Then, using (5) we get:
5=0

o(uk(A Z |£]|2 >0,

and relation 3) holds true.

Sufficiency. Let o(u,v) be a linear functional which satisfies conditions
1),2),3). Let us construct a system of polynomials {p,(A\)}>2,. Put p;(A) =
A, i=0,1,2,...,N — 1. From relation 2) we get:

U(piypj) :(51'7]', i,j :O,l,...,N—l.

Suppose that we have built such polynomials po(A), p1(A), ..., pn—1(N); degp; =
i, n > N, that

(23) U(pl7p]):(52,]7 Z7jzoul7un_1
Consider arbitrary polynomial R,,(\) of degree n. We can write: R, (\) = up A"+

n—1
Z an,ipi()‘)v P, On g € Ca,un 7& 0. Then
=0

n—1

o(Ra(N),pi(N) = o (A" + Y anpi(N), pi(A) = pno (N, pi(N)) + i,
§=0

1=0,1,...,n—1.
If we take oy, j = —ppo (A", pj(N)), j=0,1,2,...,n—1, then

(24) R,(N) Z ", pi(1))pi(N),

and
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From relation 3) it follows that there exists a polynomial Rn()\), deg R,, = n, such
that R
M, = o(R,(\), Ry(N)) # 0.

~ N n—1
For the polynomial R,, () we can write: Ry (A) = v Rp(N)+ Y- Bn,ipi(A), Vn, Bni €
=0
C,v, #0. Then

n—1
My, = 0(Ra(N), Bn(V) = 0(Ba(A), va Rn(N)+ Y Bripi(N) = vao(Ru(A), Ra(N));
1=0

Un
ﬁ (Rn()‘)’Rn()\)) =1
Put
~ Vn
(25) Hnn = Eu

where we take arbitrary branch of the square root. We put
(26) Pn(A) = finnltn(A).

Then degp, =n and
o(pnspn) = 1;

o(pi,pj) = 64, 4,5 =0,1,...,n.

Applying this procedure for n = NN + 1, N +2,..., we build such a sequence
of polynomials {p,(A)}°,, degp, = n, that p;(A\) =X, i=0,1,...,N —1, and

O'(Z)i,pj) :51‘73', ’i,j :0,1,2,....

As it has been already shown, if we have a linear functional o (u,v), u,v € P and a
sequence of polynomials {p,(A\)}5%, degp, =n, p;(A\) =\, i =0,1,...,N —1,
which satisfy (5),(21), we can derive (2). From the definition of the spectral
function it follows that ¢ will be a spectral function of this equation.

The proof is complete. O

Let an equation of type (2) be given and using (5) we have built its spectral
function o(u,v). How we can reconstruct our difference equation (2)? We must
use the procedure of construction of {p, (A)}>2 in the proof of the previous theo-
rem. In this procedure we must take p,, = 1 for R,,(\) in (24) and take /iy, 5, in (25)

1

such that Arg fi,, , € [0, ) if Arg iy, , = Arg €
O, NO—N,NO%—2N,N - - O _[E]N N




482 S. M. Zagorodnyuk

[0,7), or Arg fip, € [, 27) otherwise, where py, , is the leading coefficient of p,,
which is defined from (2).

We can define a sequence of signs {£,=+,...} where ”+” appears if
1
Arg € [0,m), and “—” appears if
Ok, NOk—N,NOh—2N,N - - Qp_[ L]y N
1
Arg € [m,2m). This sequence and the spectral
Ok, Nk —N,NOh—2N,N - - Q_[E]N
function allow us uniquely reconstruct difference equation (2).
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