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Abstract. We consider the following linear (2N)-th order difference equa-

tion:
N
∑

i=1

(αk−i,iyk−i + αk,iyk+i) + αk,0yk = λNyk, k = 0, 1, 2, . . . , where

αi,j ∈ C : αi,N 6= 0, λ is a complex parameter, (y0, y1, . . . , yk, . . .) = ~yT is a
vector solution, N is a fixed integer. It can be written in the following matrix
form: J~y = λN~y, where J is a (2N +1)-diagonal, symmetric matrix. We give
an easy procedure for solving of the direct and the inverse spectral problems
for the equation. Guseynov used a procedure of the Gelfand-Levitan type
for the case N = 1. We use another procedure and this procedure is more
easy and transparent.

1. Introduction. Let us consider the following linear difference equa-
tion of the second order:

b0y0 + a0y1 = λy0,
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(1) an−1yn−1 + bnyn + anyn+1 = λyn, n = 1, 2, . . . ,

where an, bn ∈ C, an 6= 0, λ is a complex parameter, (y0, y1, . . .) is a vector
solution.

Such an equation was considered by Guseynov in [1]. He gave a procedure
for construction of a spectral function. He gave necessary and sufficient conditions
for a functional σ to be the spectral function. He showed how to reconstruct the
difference equation using σ and a sequence of signs.

Our aim here is twofold. First, we shall give a little another definition
of the spectral function and an easy procedure of reconstruction of difference
equation (1). Second, we shall extend our procedure for the following linear
difference equation of the (2N)-th order:

(2)

N
∑

i=1

(αk−i,iyk−i + αk,iyk+i) + αk,0yk = λNyk, k = 0, 1, 2, . . . ,

where αi,j ∈ C : αi,N 6= 0, λ is a complex parameter, (y0, y1, . . . , yk, . . .) = ~yT is
a vector solution, N is a fixed integer, and all αi,j and pk with negative indexes
here are equal to zero.

Equation (2) can be written in the following matrix form:

(3) J~y(λ) = λN~y(λ),

where J is a (2N + 1)-diagonal, symmetric, non-Hermitian matrix:

(4) J =





















α0,0 α0,1 α0,2 . . . α0,N 0 0 . . .

α0,1 α1,0 α1,1 . . . α1,N−1 α1,N 0 . . .
...

...
...

. . .
...

...
... . . .

α0,N α1,N−1 α2,N−2 . . . . . . . . .

0 α1,N α2,N−1 . . . . . . . . .
...

...
...

...
...

...
...

. . .





















,

Notice that the case of equation (3) with Hermitian (2N + 1)-diagonal matrix
J is closely related to the orthogonal polynomials on radial rays in the complex
plane. The measure of orthogonality plays a role of a spectral function. For the
history of this type equations and recent results see [2] and references therein (for
the case of five-diagonal matrices see [3, 4]). Symmetric, non-Hermitian matrices
have a much more complicated structure (see [5]) and we can hardly expect for
integral representations of their spectral functions.
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In Section 3 we shall give necessary and sufficient conditions for a linear
functional σ to be a spectral function of (2). If we know a sequence of signs, we
can reconstruct difference equation (2) from its spectral function. The procedure
of reconstruction is easy and transparent.

2. Spectral problems for three-diagonal matrices. Let
{pn(λ)}∞n=0 be a solution of (1) with the initial condition p0(λ) = 1. It is not
hard to see that pn(λ) is a polynomial of degree n. Let us define a linear with
respect to the both arguments functional σ(u, v), u, v ∈ P, where P is the space
of all polynomials. We define it in the following way:

(5) σ(pn(λ), pm(λ)) = δn,m, n,m = 0, 1, 2, . . . .

Using linearity we extend the definition of σ for arbitrary u, v ∈ P. We notice
that from linearity it follows that

(6) σ(u, v) = σ(v, u), u, v ∈ P.

Using recurrence relation (1) we write:

σ(λpn(λ), pm(λ)) = σ(an−1pn−1 + bnpn + anpn+1, pm) =

(7) = an−1δn−1,m + bnδn,m + anδn+1,m;

σ(pn(λ), λpm(λ)) = σ(pn, am−1pm−1 + bmpm + ampm+1) =

(8) = am−1δn,m−1 + bmδn,m + amδn,m+1, n,m = 0, 1, 2, . . . .

Comparing (7) with (8) for n = m − 1;m;m + 1, we see that the expressions
coincide. But for n < m − 1 or n > m + 1 we obtain zero in equations (7) and
(8). So, we get

(9) σ(λpn(λ), pm(λ)) = σ(pn(λ), λpm(λ)), n,m = 0, 1, 2, . . . .

Using linearity, from (9) we derive

(10) σ(λu(λ), v(λ)) = σ(u(λ), λv(λ)), u, v ∈ P.

Conversely, let a sequence of polynomials {pn(λ)}∞n=0, deg pn = n, p0 = 1, be
given. Also let a linear functional σ(u, v) which satisfies (5), (10) be given. Then
we can derive (1). Really, since deg pn = n, one can write:

(11) λpn(λ) =

n+1
∑

k=0

an,kpk(λ), an,k ∈ C : an,n+1 6= 0, n = 0, 1, 2, . . . .
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Using relations (5), (6), (10) we get:

σ(λpn, pj) = an,j, j = 0, 1, 2, . . . , n + 1;

σ(λpn, pj) = σ(pn, λpj) = σ(λpj , pn) =

{

0, j + 1 < n

aj,n, j + 1 ≥ n
,

and

(12) an,j =

{

0, j + 1 < n

aj,n, j + 1 ≥ n
, j = 0, 1, 2, . . . , n + 1.

Relation (11) can be written in the following form:

(13) λpn(λ) = an,n−1pn−1(λ) + an,npn(λ) + an,n+1pn+1(λ), n = 0, 1, 2, . . . .

We put by definition: an = an,n+1, bn = an,n. Using relation (12), from relation
(13) we get (1).

Definition. A linear with respect to the both arguments functional σ(u, v),
u, v ∈ P, which satisfies (5), we shall call the spectral function of difference

equation (1).

The following theorem is a reformulation of [1, Theorem 2.1, p. 242], but
the method of proof is quite another:

Theorem 1. A linear with respect to the both arguments functional

σ(u, v), u, v ∈ P, is the spectral function of a difference equation of type (1) iff:

1) σ(λu(λ), v(λ)) = σ(u(λ), λv(λ)), u, v ∈ P;
2) σ(1, 1) = 1;
3) For arbitrary polynomial uk(λ) of degree k, there exists a polynomial

ûk(λ) of degree k such that:

σ(uk(λ), ûk(λ)) 6= 0.

P r o o f. Necessity. Let σ(u, v) be a spectral function of a difference
equation (1). Relation 1) can be derived in the same manner as relation (10)
was derived. Relation 2) is obvious from (5) since p0 = 1. For a polynomial

uk(λ),deg uk = k, we can write: uk(λ) =
k
∑

j=0

ξjpj(λ), ξj ∈ C : ξk 6= 0. Put

ûk(λ) =
k
∑

j=0

ξjpj(λ). Using orthonormality relation (5) we get

σ(uk(λ), ûk(λ)) =
k

∑

j=0

|ξj |
2 > 0,
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and relation 3) is verified.

Sufficiency. Let σ(u, v) be a linear functional satisfying relations 1),2),3).
Let us construct a system of polynomials {pn(λ)}∞n=0. Put p0 = 1. Let R1(λ)
be arbitrary polynomial of degree 1. Then we can write: R1(λ) = µ1λ +
α1,0p0(λ), µ1, α1,0 ∈ C, µ1 6= 0. Then

σ(R1(λ), p0(λ)) = σ(µ1λ + α1,0p0(λ), p0(λ)) = µ1σ(λ, p0) + α1,0.

If we take α1,0 = −µ1σ(λ, p0) then

R1(λ) = µ1(λ − σ(λ, p0)p0(λ)),

(14) σ(R1(λ), p0(λ)) = 0,

From relation 3) it follows that there exists a polynomial R̂1(λ),deg R̂1 = 1, such
that

M1 := σ(R1(λ), R̂1(λ)) 6= 0.

For the polynomial R̂1(λ) we can write: R̂1(λ) = ν1R1(λ) + β1,0p0(λ), ν1, β1,0 ∈
C, ν1 6= 0. Then

M1 = σ(R1(λ), R̂1(λ)) = σ(R1(λ), ν1R1(λ) + β1,0p0(λ)) = ν1σ(R1(λ), R1(λ));

ν1

M1

σ(R1(λ), R1(λ)) = 1.

Put by definition

µ̃1,1 =

√

ν1

M1

,

where we take arbitrary branch of the square root. Put

p1(λ) = µ̃1,1R1(λ).

Then deg p1 = 1 and

σ(pi, pj) = δi,j, i, j = 0, 1.

Suppose that we have constructed such polynomials p0(λ), p1(λ), . . . , pn−1(λ); deg pi =
i, n ≥ 2, that

(15) σ(pi, pj) = δi,j , i, j = 0, 1, . . . , n − 1.
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Consider arbitrary polynomial Rn(λ) of degree n. We can write: Rn(λ) = µnλn+
n−1
∑

i=0

αn,ipi(λ), µn, αn,i ∈ C, µn 6= 0. Then

σ(Rn(λ), pj(λ)) = σ(µnλn +

n−1
∑

i=0

αn,ipi(λ), pj(λ)) = µnσ(λn, pj(λ)) + αn,j,

j = 0, 1, . . . , n − 1.

Let us take αn,j = −µnσ(λn, pj(λ)), j = 0, 1, 2, . . . , n − 1. Then

(16) Rn(λ) = µn(λn −

n−1
∑

i=0

σ(tn, pi(t))pi(λ)),

σ(Rn(λ), pj(λ)) = 0, j = 0, 1, . . . , n − 1.

As it follows from relation 3), there exists a polynomial R̂n(λ), deg R̂n = n, such
that

Mn := σ(Rn(λ), R̂n(λ)) 6= 0.

For the polynomial R̂n(λ) we can write the following representation: R̂n(λ) =

νnRn(λ) +
n−1
∑

i=0

βn,ipi(λ), νn, βn,i ∈ C, νn 6= 0. Then

Mn = σ(Rn(λ), R̂n(λ)) = σ(Rn(λ), νnRn(λ)+

n−1
∑

i=0

βn,ipi(λ)) = νnσ(Rn(λ), Rn(λ));

νn

Mn

σ(Rn(λ), Rn(λ)) = 1.

Put by definition

(17) µ̃n,n =

√

νn

Mn

,

where we take arbitrary branch of the square root. We put

(18) pn(λ) = µ̃n,nRn(λ).

Then deg pn = n and

σ(pi, pj) = δi,j, i, j = 0, 1, . . . , n.
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We continue this process and obtain a sequence of polynomials {pn(λ)}∞n=0,
deg pn = n, such that: p0(λ) = 1 and σ(pi, pj) = δi,j, i, j = 0, 1, 2, . . . . As it
has been shown, if we have a linear functional σ(u, v), u, v ∈ P, and a sequence
of polynomials {pn(λ)}∞n=0, deg pn = n, p0 = 1, which satisfy (5), (10), we can
derive (1). The functional σ will be a spectral function of this equation as it
follows from the definition of the spectral function.

The proof is complete. �

Let an equation of type (1) be given and using (5) we have constructed
its spectral function σ(u, v). How we can reconstruct our difference equation (1)?
We must use the procedure of construction of {pn(λ)}∞n=0 in the proof of the last
theorem. We put p0 = 1 and then begin from relation (15) for n = 1, 2, 3, . . . .
During this procedure we must take µn = 1 for Rn(λ) in (16) and take µ̃n,n in (17)

such that Arg µ̃n,n ∈ [0, π) if Arg µn,n = Arg
1

anan−1 . . . a0

∈ [0, π), or Arg µ̃n,n ∈

[π, 2π) otherwise, where µn,n is the leading coefficient of pn which is connected
with (1). Really, let {Pn(λ)}∞n=0 be a system of polynomials which is constructed
following this procedure. Suppose that Pi(λ) = pi(λ), i = 0, 1, . . . , n − 1;n ≥ 1,
i.e. the first n − 1 constructed polynomials coincide with polynomials defined

from (1). Then for pn(λ) we can write: pn(λ) = µn,nλn +
n−1
∑

i=0

α̃n,iPi(λ). Then

0 = σ(pn(λ), pi(λ)) = σ(pn(λ), Pi(λ)) = µn,nσ(λn, Pi(λ))+α̃n,i, i = 0, 1, . . . , n−1.

We get α̃n,i = −µn,nσ(λn, Pi(λ)) and

pn(λ) = µn,n(λn −

n−1
∑

i=0

σ(λn, Pi(λ))Pi(λ)) = µn,nRn(λ).

Comparing this relation with (18) (keeping in mind that pn in (18) we now denote
by Pn and µn = 1) we get

Pn(λ) =
µ̃n,n

µn,n

pn(λ).

Then

1 = σ(Pn(λ), Pn(λ)) =

(

µ̃n,n

µn,n

)2

σ(pn(λ), pn(λ)) =

(

µ̃n,n

µn,n

)2

,

An := µ̃2
n,n = µ2

n,n 6= 0.

So, µ̃n,n and µn,n are square roots of An and according to our choice of branches of
these roots, they coincide. Hence Pn = pn. Consequently, Pi = pi, i = 0, 1, 2, . . ..
But the coefficients of equation (1) are uniquely defined by σ, {pn}

∞

0 .
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If we define a sequence of signs {±,±, . . .}, where “+” in the n-th place

means that Arg
1

anan−1 . . . a0

∈ [0, π), and ”-” means that Arg
1

anan−1 . . . a0

∈

[π, 2π), then the spectral function σ and this sequence will uniquely define differ-
ence equation (1).

3. Spectral problems for difference equations of the (2N)-
th order. Let us consider a linear difference equation of the (2N)-th order
(2). Let {pn(λ)}∞n=0 be a solution of (2) with initial conditions pi(λ) = λi, i =
0, 1, 2, . . . , N − 1. It is clear from recurrence relation (2) that deg pn(λ) = n.
Define a linear with respect to the both arguments functional σ(u, v), u, v ∈ P,
from relation (5). Using linearity we extend it for arbitrary u, v ∈ P. We notice
that from linearity it follows that relation (6) is fulfilled. From recurrence relation
(2) it follows that

σ(λNpn(λ), pm(λ)) = σ(
N

∑

i=1

(αn−i,ipn−i + αn,ipn+i) + αn,0pn, pm) =

(19) =
N

∑

i=1

(αn−i,iδn−i,m + αn,iδn+i,m) + αn,0δn,m;

σ(pn(λ), λNpm(λ)) = σ(pn,

N
∑

j=1

(αm−j,jpm−j + αm,jpm+j) + αm,0pm) =

(20) =

N
∑

j=1

(αm−j,jδn,m−j + αm,jδn,m+j) + αm,0δn,m, n,m = 0, 1, 2, . . . .

Comparing the right-hand sides of (19) and (20) for n = m−j, j = 1, 2, . . . , N ;n =
m;n = m + j, j = 1, 2, . . . , N, we see that they coincide. But if n < m − N or
n > m + N the right-hand sides are equal to zero. So, we obtain

σ(λNpn(λ), pm(λ)) = σ(pn(λ), λNpm(λ)), n,m = 0, 1, 2, . . . .

Using linearity, from this relation we derive that

(21) σ(λNu(λ), v(λ)) = σ(u(λ), λNv(λ)), u, v ∈ P.
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Conversely, let {pn(λ)}∞n=0, deg pn = n, be a sequence of polynomials such that
pi(λ) = λi, i = 0, 1, . . . , N − 1, and σ(u, v) be a linear functional which satisfies
(5), (21). Then we can write:

(22) λNpk(λ) =

N+k
∑

i=0

ξk,ipi(λ), ξk,i ∈ C : ξk,N+k 6= 0; k = 0, 1, 2, . . . .

Using (5),(21),(6) we get:

σ(λNpk(λ), pj(λ)) = ξk,j, j = 0, 1, 2, . . . , k + N ;

σ(λNpk(λ), pj(λ)) = σ(pk(λ), λNpj(λ)) = σ(λNpj(λ), pk(λ)) =

=

{

ξj,k, j + N ≥ k

0, j + N < k
.

We get
ξk,j = ξj,k, j = k − N, k − N + 1, . . . , k + N ;

ξk,j = 0, j = 0, 1, 2, . . . , k − N − 1; k = 0, 1, 2, . . . .

Using these relations, from relation (22) we derive:

λNpk(λ) =
k+N
∑

i=k−N

ξk,ipi(λ) =
N

∑

j=1

ξk,k+jpk+j(λ) +
N

∑

j=1

ξk,k−jpk−j(λ)+

+ξk,kpk(λ) =
N

∑

j=1

(ξk−j,kpk−j(λ) + ξk,k+jpk+j(λ)) + ξk,kpk(λ).

If we put αk,j = ξk,k+j, j = 1, 2, . . . , N ; k = 0, 1, 2, . . . ; and αk,0 = ξk,k, k =
0, 1, 2, . . . ; then we obtain (2).

Definition. A linear with respect to the both arguments functional σ(u, v),
u, v ∈ P, which satisfies (5), we shall call the spectral function of difference

equation (2).

Theorem 2. A linear with respect to the both arguments functional

σ(u, v), u, v ∈ P, is the spectral function of a difference equation of type (2) iff:

1) σ(λNu(λ), v(λ)) = σ(u(λ), λNv(λ)), u, v ∈ P;
2) σ(λi, λj) = δi,j, i, j = 0, 1, . . . , N − 1;
3) For arbitrary polynomial uk(λ) of degree k there exists a polynomial

ûk(λ) of degree k such that:

σ(uk(λ), ûk(λ)) 6= 0.
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P r o o f. Necessity. Let σ(u, v) be a spectral function of a difference
equation (2). Relation 1) can be proved in the same way as we have proved
relation (21). Relation 2) is obvious from (5) since pi(λ) = λi, i = 0, 1, 2, . . . , N−

1. For a polynomial uk(λ),deg uk = k, we can write: uk(λ) =
k
∑

j=0

ξjpj(λ), ξj ∈

C : ξk 6= 0. Put ûk(λ) =
k
∑

j=0

ξjpj(λ). Then, using (5) we get:

σ(uk(λ), ûk(λ)) =
k

∑

j=0

|ξj |
2 > 0,

and relation 3) holds true.
Sufficiency. Let σ(u, v) be a linear functional which satisfies conditions

1),2),3). Let us construct a system of polynomials {pn(λ)}∞n=0. Put pi(λ) =
λi, i = 0, 1, 2, . . . , N − 1. From relation 2) we get:

σ(pi, pj) = δi,j , i, j = 0, 1, . . . , N − 1.

Suppose that we have built such polynomials p0(λ), p1(λ), . . . , pn−1(λ); deg pi =
i, n ≥ N , that

(23) σ(pi, pj) = δi,j , i, j = 0, 1, . . . , n − 1.

Consider arbitrary polynomial Rn(λ) of degree n. We can write: Rn(λ) = µnλn+
n−1
∑

i=0

αn,ipi(λ), µn, αn,i ∈ C, µn 6= 0. Then

σ(Rn(λ), pi(λ)) = σ(µnλn +

n−1
∑

j=0

αn,jpj(λ), pi(λ)) = µnσ(λn, pi(λ)) + αn,i,

i = 0, 1, . . . , n − 1.

If we take αn,i = −µnσ(λn, pj(λ)), j = 0, 1, 2, . . . , n − 1, then

(24) Rn(λ) = µn(λn −

n−1
∑

i=0

σ(tn, pi(t))pi(λ)),

and
σ(Rn(λ), pi(λ)) = 0, i = 0, 1, . . . , n − 1.
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From relation 3) it follows that there exists a polynomial R̂n(λ),deg R̂n = n, such
that

Mn := σ(Rn(λ), R̂n(λ)) 6= 0.

For the polynomial R̂n(λ) we can write: R̂n(λ) = νnRn(λ)+
n−1
∑

i=0

βn,ipi(λ), νn, βn,i ∈

C, νn 6= 0. Then

Mn = σ(Rn(λ), R̂n(λ)) = σ(Rn(λ), νnRn(λ)+

n−1
∑

i=0

βn,ipi(λ)) = νnσ(Rn(λ), Rn(λ));

νn

Mn

σ(Rn(λ), Rn(λ)) = 1.

Put

(25) µ̃n,n =

√

νn

Mn

,

where we take arbitrary branch of the square root. We put

(26) pn(λ) = µ̃n,nRn(λ).

Then deg pn = n and
σ(pn, pn) = 1;

σ(pi, pj) = δi,j, i, j = 0, 1, . . . , n.

Applying this procedure for n = N,N + 1, N + 2, . . . , we build such a sequence
of polynomials {pn(λ)}∞n=0, deg pn = n, that pi(λ) = λi, i = 0, 1, . . . , N − 1, and

σ(pi, pj) = δi,j , i, j = 0, 1, 2, . . . .

As it has been already shown, if we have a linear functional σ(u, v), u, v ∈ P and a
sequence of polynomials {pn(λ)}∞n=0, deg pn = n, pi(λ) = λi, i = 0, 1, . . . , N − 1,
which satisfy (5),(21), we can derive (2). From the definition of the spectral
function it follows that σ will be a spectral function of this equation.

The proof is complete. �

Let an equation of type (2) be given and using (5) we have built its spectral
function σ(u, v). How we can reconstruct our difference equation (2)? We must
use the procedure of construction of {pn(λ)}∞n=0 in the proof of the previous theo-
rem. In this procedure we must take µn = 1 for Rn(λ) in (24) and take µ̃n,n in (25)

such that Arg µ̃n,n ∈ [0, π) if Arg µn,n = Arg
1

αk,Nαk−N,Nαk−2N,N . . . α
k−[ k

N
]N,N

∈



482 S. M. Zagorodnyuk

[0, π), or Arg µ̃n,n ∈ [π, 2π) otherwise, where µn,n is the leading coefficient of pn

which is defined from (2).
We can define a sequence of signs {±,±, . . .} where ”+” appears if

Arg
1

αk,Nαk−N,Nαk−2N,N . . . α
k−[ k

N
]N,N

∈ [0, π), and “−” appears if

Arg
1

αk,Nαk−N,Nαk−2N,N . . . α
k−[ k

N
]N,N

∈ [π, 2π). This sequence and the spectral

function allow us uniquely reconstruct difference equation (2).
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