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Abstract. Let H be a separable infinite dimensional complex Hilbert
space and let L(H) denote the algebra of all bounded linear operators on
H into itself. Given A ∈ L(H), the derivation δA : L(H) −→ L(H) is
defined by δA(X) = AX − XA. In this paper we prove that if A is an n-
multicyclic hyponormal operator and T is hyponormal such that AT = TA,
then ‖δA(X)+T‖ ≥ ‖T‖ for all X ∈ L(H). We establish the same inequality
if A is a finite operator and commutes with normal operator T . Some related
results are also given.

1. Introduction. Let H be an infinite dimensional complex Hilbert
space and let L(H) denote the algebra of all bounded linear operators acting
on H. If A ∈ L(H), then the inner derivation induced by A is the operator δA

defined on L(H) by δA(X) = AX − XA. By finite operator we shall mean a
bounded linear operator A on H such that

(1) ‖δA(X) + I‖ ≥ 1
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for every X ∈ L(H). As stated in [11] J. P. Williams proved that the class
of finite operators contains every normaloid (i.e., the spectral radius r(A) of A
equals the norm of A), every operator with compact direct summand and the
entire C∗-algebra generated by each of its members. The purpose of this paper is
to investigate this class of operators to give natural generalizations of the norm
inequality (1). The basic tools in the main results is to use Anderson’s inequality
for normal operators [1] and the Berberian extension Theorem [12, p. 15]. The
present paper is organized as follows. In Theorem 2.2 we initiate a new approach
to extend this results to certain intertwining nonnormal operators A and T where
A is an n-multicyclic hyponormal operator and requiring that T is hyponormal.
The point of view about finite operators is developed in Theorem 2.3, in which we
give a natural generalization of the inequality (1). Using a very simple argument
we show in Theorem 2.4 that if A satisfies a quadratic polynomial, then A is a

finite operator and that A∗ 6∈ R(δA)
W

, where R(δA)
W

is the weak closure of the
range R(δA) of δA.

In addition to the notation already introduced, we shall use the following
further notation. Let K(H) be the ideal of all compact operators in L(H) and
let C(H) denote the Calkin algebra L(H)/K(H). For X ∈ L(H), let [X] denote
the projection of L(H) onto the Calkin algebra. We shall denote the kernel, the
orthogonal complement of the kernel, the range of X by ker(X), ker(X)⊥ and
R(X) respectively. The spectrum, the approximate point spectrum and the point
spectrum of X will be denoted by σ(X), σap(X) and σp(X), and the restriction
of X to an invariant subspace M will be denoted by X|M .

Given A ∈ L(H), there exists a Hilbert space H◦ ⊃ H and an isometric ∗-
isomorphism A −→ A◦ such that σ(A) = σ(A◦) and σap(A) = σap(A

◦) = σp(A
◦).

This is the Berberian extension Theorem [12].

2. Main results.

Definition 2.1 [11]. Let A ∈ L(H). We say that A is a finite operator

if,

‖AX − XA + I‖ ≥ 1,

for all X ∈ L(H).

Definition 2.2. Let A ∈ L(H). The operator A is said to be n-

multicyclic if there are n vectors g1, g2, · · · , gn ∈ H, called generating vectors,

such that {f(A)gi : f ∈ R(σ(A)), 1 ≤ i ≤ n} has span dense in H, where

R(σ(A)) denotes the rational functions analytic on σ(A).
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Theorem 2.1 [2]. If A is an n-multicyclic hyponormal operator, then

[A∗, A] is in trace class, and tr([A∗, A]) ≤
n

π
ω(σ(A)), where ω is planar Lebesgue

measure.

Theorem 2.2. Let A ∈ L(H). If A is an n-multicyclic hyponormal

operator, then for every hyponormal operator T such that AT = TA, we have

‖AX − XA + T‖ ≥ ‖T‖

for all X ∈ L(H).

P r o o f. Let T be a hyponormal operator in L(H) such that AT = TA.
We have r(T ) = ‖T‖, then it is enough to show that

‖AX − XA + T‖ ≥ |λ|

for all X ∈ L(H) and all λ ∈ σ(T ). It is well known that T enjoys the property
that σ(T ) = σp(T ) ∪ σe(T ) (see [5]).
Let λ ∈ σ(T ), we will consider two cases for the location of λ.

Case 1. Assume that λ ∈ σp(T ). We shall divide this case into two
different steps.

(i) If λ ∈ σp(T ) such that dimker(T −λ) < ∞. Since A commutes with T ,
it follows that the subspace Eλ = ker(T − λ) is invariant by T and A. Moreover,
A/Eλ is normal hence Eλ reduces A and T simultaneously [9, p. 514]. Then with
respect to the orthogonal decomposition H = Eλ ⊕ E⊥

λ , the operators A and T
can be respectively represented as

A =

(

B 0
0 C

)

and T =

(

λ 0
0 ∗

)

.

Let X ∈ L(H) have the matrix representation X =

(

Y Z
R S

)

, we get

‖AX − XA + T‖ =
∥

∥

∥

(

BY − Y B + λ ∗
∗ ∗

)

∥

∥

∥
.

Since the norm of an operator matrix always dominates the norm of its diagonal
part [7, p. 82], it follows that

‖AX − XA + T‖ ≥ ‖BY − Y B + λ‖
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A is a finite operator because A is hyponormal [11], hence B thus. Then we
obtain

‖BY − Y B + λ‖ ≥ |λ|

Consequently we have

‖AX − XA + T‖ ≥ |λ|

for all X ∈ L(H), and all λ ∈ σp(T ) such that dimker(T − λ) < ∞.

(ii) If λ ∈ σp(T ) such that dimker(T −λ) = ∞. Since T is a hyponormal
operator, then dimker(T − λ)∗ = ∞. It follows that T − λ is not a Fredholm
operator, hence λ ∈ σe(T ) (see the case 2.).

Case 2. Assume that λ ∈ σe(T ). Also, we will divide this case into two
steps.

(i) T has no isolated eigenvalues of finite multiplicity.
The condition AT = TA implies that [A][T ] = [T ][A]. Since A is an n-multicyclic
hyponormal operator, it follows from the Theorem 2.1 that [A] is normal. An-
derson’s result [1] applied to the Calkin algebra insures that

‖AX − XA + T‖ ≥ ‖[A][X] − [X][A] + [T ]‖ ≥ ‖[T ]‖

for all X ∈ L(H). On the other hand, since T is hyponormal and has no isolated
eigenvalues of finite multiplicity, one obtains from Remark [5, p. 186] that ‖[T ]‖ =
r([T ]). Hence

‖[A][X] − [X][A] + [T ]‖ ≥ |λ|

for all X ∈ L(H). It follows that

‖AX − XA + T‖ ≥ |λ|

for all X ∈ L(H), as desired.

(ii) If T has isolated eigenvalues of finite multiplicity. We consider the
subspace E =

⊕

µ∈β(T ) ker(T−µ), where β(T ) is the set of all isolated eigenvalues
of T with finite multiplicity. Since T/E is a normal operator then E reduces T .
With respect to the decomposition H = E ⊕ E⊥, we have

T =

(

T1 0
0 T2

)

.

It follows from an application of Anderson’s result [1] and the Theorem 2.1 that

‖AX − XA + T‖ ≥ ‖[A][X] − [X][A] + [T ]‖ ≥ ‖[T ]‖.
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Moreover, λ ∈ σe(T ) if and only if λ ∈ σe(T2). By hypothesis we have λ ∈
σe(T ) = σe(T2). It is easy to check that

inf

{
∥

∥

∥

∥

(

K1 + T1 K2

K3 T2 + K4

)
∥

∥

∥

∥

, K1,K2,K3,K4 compacts

}

≥

≥ inf
{

‖T2 + K4‖, K4 compact
}

Then it follows immediately
‖[T ]‖ ≥ ‖[T2]‖.

Since T2 has no isolated eigenvalues of finite multiplicity, then by using the Re-
mark [5, p. 186] we have ‖AX − XA + T‖ ≥ |λ|. Whence

‖AX − XA + T‖ ≥ |λ|

For all X ∈ L(H) and all λ ∈ σe(T ). Finally, we conclude that

‖AX − XA + T‖ ≥ |λ|

For all X ∈ L(H) and all λ ∈ σ(T ), and the proof is complete. �

As a special case we get the following Corollary.

Corollary 2.1. Let A, T ∈ L(H), such that A quasi-normal operator, T
hyponormal and AT = TA. Then

‖AX − XA + T‖ ≥ ‖T‖

for all X ∈ L(H).

P r o o f. Since A is a quasi-normal operator, it follows from [6] that A =
N + K, where N is a normal and K is a compact. Hence, by using the same
argument as in the above theorem, we get the desired inequality. �

Theorem 2.3. Let A and T be commuting operators such that A is a

finite operator and T is normal. Then

‖AX − XA + T‖ ≥ ‖T‖

for all X ∈ L(H).

P r o o f. Let λ ∈ σp(T ) and let E be the subspace E = ker(T − λ). Since
A commutes with T it follows from Fuglede-Putnam’s theorem [8] that E reduces
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A and T simultaneously. Hence, with respect to the decomposition H = E⊕E⊥,
we have

A =

(

B 0
0 ∗

)

and T =

(

λ 0
0 ∗

)

.

Let X ∈ L(H) have the representation X =

(

Y ∗
∗ ∗

)

∈ L(H). Then,

‖AX − XA + T‖ =

∥

∥

∥

∥

(

BY − Y B + λ ∗
∗ ∗

)
∥

∥

∥

∥

≥ ‖BY − Y B + λ‖

Since B is a finite operator, it follows that

‖AX − XA + T‖ ≥ |λ|,

for all X ∈ L(H) and all λ ∈ σp(T ).

Using the Berberian extension Theorem, we have that A◦ is finite , T ◦ is
normal and A◦T ◦ = T ◦A◦. Since, σp(T

◦) = σap(T
◦) = σap(T ) = σ(T ), it follows

from the first part that

‖AX − XA + T‖ ≥ |λ|

for all X ∈ L(H) and all λ ∈ σ(T ). Hence,

‖AX − XA + T‖ ≥ ‖T‖

for all X ∈ L(H). This completes the proof. �

Theorem 2.4. Let A ∈ L(H). If A satisfies some quadratic polynomial,

then A is a finite operator and A∗ 6∈ R(δA)
W

.

P r o o f. Suppose that A satisfies A2 − 2αA + β = 0, hence (A − α)2 is a
normal operator. Then, by Putnam’s result [10] we may write A − α = N ⊕ M ,

where N is normal and M =

(

B C
0 −C

)

, with B normal and C is an injective

positive operator such that BC = CB. Therefore, A = (N + αI) ⊕ (M + αI).

Then for linear operator X =

(

Y Z
R S

)

we have

AX − XA + I =

(

NY − Y N + I ∗
∗ ∗

)

.
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Since the norm of operator matrix always dominates the norm of its diagonal
part [7, p. 82] one obtains

‖AX − XA + I‖ ≥ ‖NY − Y N + I‖.

Hence it follows from Williams’s result [11] on normal operators that

‖AX − XA + I‖ ≥ 1

for all X ∈ L(H). Let us assume that A∗ ∈ R(δA)
W

. An easy calculation leads

us to A∗A ∈ R(δA)
W

. Since R(δA)
W

contains nonzero positive operator [3], it
follows that A = 0. �

Remark 2.1. The above theorem is due to J. P. Williams [11], however
we proved it by other method that this used.

Another interesting class of operators for which the Theorem 2.3 is sat-
isfied is the class of operators A such that A∗A and A + A∗ commute. It is well
known that this class has the property that r(A) = ‖A‖ (see [4]).
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