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CRITERION OF NORMALITY OF THE COMPLETELY
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Abstract. For given completely regular topological spaces X and Y , there
is a completely regular space X ⊗̃ Y such that for any completely regular
space Z a mapping f : X × Y → Z is separately continuous if and only if
f : X ⊗̃Y → Z is continuous. We prove a necessary condition of normality, a
sufficient condition of collectionwise normality, and a criterion of normality
of the products X ⊗̃ Y in the case when at least one factor is scattered.

Let X, Y and Z be arbitrary topological spaces. Then for a mapping
f : X × Y → Z there appears double notion of continuity: continuity in all
variables jointly (or joint continuity) and continuity in each variable separately
(or separate continuity).

It is well known (see e.g. [1, 17.D] or [5]) that we can define a topological
space X ⊗ Y on the product set X × Y with the property that for any space Z
a mapping f : X × Y → Z is separately continuous if and only if f : X ⊗ Y → Z
is continuous. However this topology is inconvenient for investigating separately
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continuous mappings since in many important cases X ⊗Y fails to be completely
regular. In particular, the results of papers [5] and [4] imply that the spaces
R ⊗ R, R ⊗ A, R ⊗ αΓ, A ⊗ A and A ⊗ αΓ are not completely regular. Here R

denotes the real line, A — the double arrow (the product [0; 1] × {0; 1} ordered
lexicographically), and αΓ — the one-point compactification of a discrete infinite
space Γ.

In [6] on the set X × Y , where X and Y are completely regular spaces, a
new topological space X ⊗̃ Y was constructed. This space satisfies the following
conditions: X ⊗̃ Y is completely regular and for any completely regular space Z
a mapping f : X × Y → Z is separately continuous if and only if f : X ⊗̃ Y → Z
is continuous.

The problem of normality of the spaces X ⊗̃ Y comes quite naturally. In
[5] and [6] Knight, Moran and Pym obtained sufficient conditions of normality of
the products X ⊗̃Y only in the case when at least one factor is locally countable.
By using these results it is easy to see normality of the spaces R ⊗̃αΓ and A ⊗̃αΓ
for countable Γ. In [3] the author proved a sufficient condition of normality of
the spaces X ⊗̃ Y that have at least one scattered factor. It follows from this
condition that the spaces R⊗̃αΓ and A⊗̃αΓ are normal for arbitrary Γ. Moreover,
established in [6] and [3] necessary conditions of normality of the products of
metrizable spaces indicate that the space R ⊗̃ R is not normal.

In this paper the results of works [6] and [3] are generalized. In partic-
ular, it is shown that the spaces R ⊗̃ αΓ and A ⊗̃ αΓ are collectionwise normal
(Theorem 7), but the space R ⊗̃ A is not normal (Theorem 4, see also [6, 8.4]).
The main result of the paper is a criterion of normality of the completely regular
topology of separate continuity for a rather large class of spaces (Theorem 9).

Necessary condition of normality.

Lemma 1. Any Čech-complete non-scattered space contains a compact

that can be mapped irreducibly onto the segment [0; 1].

P r o o f. Let X be a Čech-complete non-scattered space. Then there exist
a non-empty perfect subset Z in X ([2], 1.7.10) and open in βZ sets Gn such that

Z =
∞⋂

n=1
Gn. By standard tree arguments for any finite binary sequence we may

determine an open in βZ set U(i1,...,in) so that: a) U (i1,...,in−1,0)∩U (i1,...,in−1,1) = ∅;

b) U (i1,...,in−1,0) ∪ U (i1,...,in−1,1) ⊂ U(i1,...,in−1); c) U (i1,...,in) ⊂ Gn.

Further, we put K =
∞⋂

n=1

⋃
(i1,...,in)∈{0;1}n

U (i1,...,in) and construct the func-

tion f : K → [0; 1] transforming points from K to real numbers from [0; 1] written
in the binary form 0.i1 . . . in . . .. Since f is continuous and K is compact, there is
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a closed subset M ⊂ K such that the restriction g of f on M is irreducible and
g(M) = [0; 1] ([2], 3.1.C). �

Lemma 2. For an irreducible closed mapping the image of an isolated

point is isolated point and the preimage of a dense set is a dense set.

P r o o f. Let g : M → N be an irreducible closed mapping, a point m
be isolated in M , and a set P be dense in N . As g(M \ {m}) 6= [0; 1] the set
g(M \ {m}) = [0; 1] \ g(m) is closed. Hence g(m) is an isolated point in N .

To prove the second claim we denote Q = g−1(P ). Then the set N \ g(Q)
is open in N and disjoint with P . Therefore N \ g(Q) = ∅, and by virtue of
irreducibility of g we obtain Q = M . �

Let X and Y be topological spaces. A mapping f : X → Y is called an
F-refinement if f is a continuous mapping with the finite preimages of points.
A space X is said to F-refine into a space Y if there exists an F-refinement
f : X → Y .

Lemma 3. Let X×Y be a hereditarily normal space, M be a closed subset

of X, and f : M → Y be an F-refinement. Then the set D = {(m, f(m)); m ∈
M} is discrete in X ⊗̃ Y .

P r o o f. Choose a point m0 ∈ M , and let U be any its neighborhood such
that {m ∈ M ; f(m) = f(m0)}∩U = ∅. Since the sets D\{(m0, f(m0))} and E =
({m0}×Y )∪ (U ×{f(m0)})\{(m0, f(m0))} are closed in X ×Y \{(m0, f(m0))},
there is a continuous function h : X × Y \ {(m0, f(m0))} → [0; 1] such that
h(D \ {(m0, f(m0))}) = {1} and h(E) = {0}. We extend h to X × Y by defining
h(m0, f(m0)) = 0. Then h is separately continuous or, in other words, continuous
with respect to the topology of the space X ⊗̃ Y . Additionally h(m0, f(m0)) = 0
and h(D \ {(m0, f(m0))}) = {1}. �

Theorem 4. Let a space X contain a Čech-complete non-scattered sub-

space that F-refines into a space Y , and let the space X × Y be perfectly normal.

Then the space X ⊗̃ Y is not normal.

P r o o f. We suppose that Z ⊂ X is a Čech-complete non-scattered space.
By Lemma 1 there exist a compact M ⊂ Z and an irreducible function g : M →
[0; 1], and by Lemma 2 the sets T = g−1([0; 1] ∩ Q) and M \ T = g−1([0; 1] \ Q)
are dense in M .

Now we consider the mapping D : M → M ×Y given by the rule D(m) =
(m, f(m)), where f : M → Y is an F-refinement, and denote F0 = D(T ) and
F1 = D(M \ T ). By Lemma 3 the sets F0 and F1 are closed in X ⊗̃ Y . Our goal
is to show that it is impossible to separate the sets F0 and F1 by neighborhoods
in the space X ⊗̃ Y .

Let G0 and G1 be arbitrary neighborhoods of the sets F0 and F1 respec-
tively. Since X × Y is perfectly normal, we have that D(M) is equal to intersec-
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tion of some decreasing sequence of open sets {Uj}j∈N. Therefore for each point
m ∈ M we can find a natural number j(m) such that

(
Uj(m) ∩ (M × {f(m)})

)
∪(

Uj(m) ∩ ({m} × f(M))
)
⊂ Gi, where i = 0 or i = 1.

For a natural number j, we put Mj = {m ∈ M ; j(m) 6 j}. Clearly M =
∞⋃

j=1
Mj. Then it follows from the Baire category theorem that for some j0 the set

Mj0 is not nowhere dense, i.e. there is an open in M set W0 such that W0 ⊂ M
M

i0
,

and besides we may assume that W0 × f(W0) ⊂ Ui0 . The three alternatives are
possible for the set W = W0 ∩ Mj0 : a) W ∩ T = ∅; b) W ∩ (M \ T ) = ∅;
c) W ∩ T 6= ∅ and W ∩ (M \ T ) 6= ∅.

We shall consider all these alternatives.
a) Let m1 ∈ W0 ∩ T and m2 ∈ W ∩ {m ∈ M ; (m, f(m1)) ∈ Uj(m1)}.

Then j(m2) 6 j0 < j(m1) and (m2, f(m1)) ∈ Uj(m1) ⊂ Uj(m2). Consequently
G0 ∩ G1 6= ∅.

b) Let m1 ∈ W0∩ (M \T ) and m2 ∈ W ∩{m ∈ M ; (m, f(m1)) ∈ Uj(m1)}.
Then j(m2) 6 j0 < j(m1) and (m2, f(m1)) ∈ Uj(m1) ⊂ Uj(m2). Consequently
G0 ∩ G1 6= ∅.

c) Let m1 ∈ W ∩ T and m2 ∈ W ∩ (M \ T ). Then max{j(m1), j(m2)} 6

j0 and (m1, f(m2)) ∈ W0 × f(W0) ⊂ Uj0 ⊂ Uj(m1) ∩ Uj(m2). Consequently
G0 ∩ G1 6= ∅. �

Sufficient condition of normality.

Lemma 5. Let Y be a paracompact, and assume that a space X contains

a point ∞ such that (X \ {∞}) ⊗̃ Y is collectionwise normal. Then the space

X ⊗̃ Y is collectionwise normal too.

P r o o f. Let {Fs}s∈S be a discrete family of closed sets in the space X ⊗̃Y .
First, we shall prove that one can separate the sets Fs by neighborhoods in the
case when the set S is divided into subsets S1 and S2 such that A =

⋃
s∈S1

Fs ⊂

(X \ {∞})× Y and B =
⋃

s∈S2

Fs ⊂ {∞}× Y . Obviously, in this case it suffices to

separate the sets A and B.
Denote Z = {y ∈ Y ; (∞, y) ∈ B}. For each point z ∈ Z there is an

open in X ⊗̃ Y set Uz such that (∞, z) ∈ Uz ⊂ U z ⊂ (X × Y ) \ A. Then the
paracompact set B has a locally finite open cover {{∞} × Vt}t∈T inscribed in
the cover {Uz ∩ B}z∈Z . For each index t ∈ T we fix a point z(t) such that
{∞} × Vt ⊂ Uz(t) and put Wt = (X × Vt) ∩ Uz(t). The family {Wt}t∈T is locally

finite in X ⊗̃Y . Hence B ⊂
⋃

t∈T

Wt ⊂
⋃

t∈T

Wt =
⋃

t∈T

W t ⊂
⋃

t∈T

U z(t) ⊂ (X ×Y )\A.

Now we are ready to prove the statement of the lemma in general case. In
view of collectionwise normality of Y we can find disjoint open in Y sets Us such
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that Fs ∩ ({∞} × Y ) ⊂ Us. By using the above considered case we obtain that
Fs \(X×Us) ⊂ V 1

s and Fs∩({∞}×Y ) ⊂ V 2
s for some disjoint open in X ⊗̃Y sets

V 1
s and V 2

s . Since (X \{∞}) ⊗̃Y is collectionwise normal, there are disjoint open
in X ⊗̃Y sets W 1

s and W 2
s such that Fs\(V 1

s ∪V 2
s ) ⊂ W 1

s and Fs\(X×Us) ⊂ W 2
s .

Thus it is easy to check that the sets
(
(W 1

s ∪ V 1
s ∪ V 2

s ) ∩ (X × Us)
)
∪

(
W 2

s ∩ V 1
s

)

are disjoint neighborhoods of the sets Fs. �

We recall that a normal space X is called strongly zero-dimensional if for
any closed set F ⊂ X and for any its neighborhood U there exists a clopen set
H such that F ⊂ H ⊂ U ([2, 6.2]).

Lemma 6. In any open cover of a strongly zero-dimensional paracompact

one can inscribe a disjoint open cover.

P r o o f. Let X be a strongly zero-dimensional paracompact, and let
{Ut}t∈T be an open cover of the space X. Regularity and paracompactness of X
enable us, in an obvious way, to inscribe combinatorially with closure an open
cover {Vt}t∈T in the cover {Ut}t∈T .

By the definition of strong zero-dimensionality, for each t ∈ T there is a
clopen set Ht such that V t ⊂ Ht ⊂ Ut. We may assume that the set T is well
ordered and put Wt = Ht \

⋃
t′<t

Ht′ . Then {Wt}t∈T is the required cover. �

We recall that an ordinal ht(X) = min{α; X (α) = ∅} is called scattered
height of the space X. Here X (α) is the α-th Cantor-Bendixson derivative of X.

Theorem 7. Let X be a scattered strongly zero-dimensional paracompact,

and Y be a paracompact. Then the space X ⊗̃ Y is collectionwise normal.

P r o o f. A) Let ht(X) = α + 1 be an isolated ordinal. We suppose that

for all spaces X̃ with the property ht(X̃) 6 α the statement of the theorem is
true. Since the space X (α) is discrete for each point x ∈ X (α) there is an open in
X set Ux such that Ux ∩ X(α) = {x}. And also choose arbitrary neighborhoods
Ux in the space X \ X (α) for all remaining points x ∈ X \ X (α). By Lemma 6,
in the open cover {Ux}x∈X we can inscribe an open disjoint cover {Vt}t∈T . Then
X ⊗̃ Y =

⊕
t∈T

(Vt ⊗̃ Y ). By Lemma 5 and the inductive assumption, all the spaces

Vt ⊗̃Y are collectionwise normal. Hence the space X ⊗̃Y is collectionwise normal
too.

B) Let ht(X) = α be a limit ordinal. We suppose that for all spaces X̃

with the property ht(X̃) < α the statement of the theorem is true. For each
point x ∈ X we fix an ordinal βx < α such that x /∈ X (βx) and take an arbitrary
neighborhood Ux of the point x in the space X \ X (βx). By Lemma 6 in open
cover {Ux}x∈X we can inscribe an open disjoint cover {Vt}t∈T . Then by inductive
assumption the space Vt ⊗̃ Y is collectionwise normal for any t ∈ T . Hence the
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space X ⊗̃ Y =
⊕
t∈T

(Vt ⊗̃ Y ) is collectionwise normal too. �

Criterion of normality.

Lemma 8. Any locally compact paracompact scattered space is strongly

zero-dimensional.

P r o o f. Indeed a scattered space is hereditarily disconnected, and in
the class of locally compact paracompact spaces hereditary disconnectedness is
equivalent to strong zero-dimensionality ([2], 6.2.9). �

Theorem 9. Let a locally compact paracompact space X F-refine into

a paracompact space Y , and let the space X × Y be perfectly normal. Then the

space X ⊗̃ Y is normal if and only if X is scattered.

P r o o f. Theorem 4 and Čech-completeness of the locally compact space
X imply necessity, and Lemma 8 and Theorem 7 imply sufficiency. �

Corollary 10. Let X be a locally compact paracompact space, and let the

space X ×X be perfectly normal. Then the space X ⊗̃X is normal if and only if

X is scattered.
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