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Abstract. A new measure of noncompactness on Banach spaces is defined
from the Hausdorff measure of noncompactness, giving a quantitative version
of a classical result by R. S. Phillips. From the main result, classical results
are obtained now as corollaries and we have an application to interpolation
theory of Banach spaces.

Introduction. The notion of measure of noncompactness was introdu-
ced by K. Kuratowski and, with a convenient but equivalent modification, by F.
Hausdorff. Subsequently it was used in numerous branches of functional analysis
and theory of differential and integral equations. In this note we introduce a new
measure of noncompactness to obtain a quantitative version of a classical result
by R. S. Phillips [5, Thm. 3.7] (see also Dunford-Schwartz [4, Lemma IV.5.4, p.
259] and Brooks-Dinculeanu [3, Thm. 1]). We shall also give an application to
interpolation spaces.
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1. Hausdorff measures of noncompactnes. Given a Banach space
X, the closed unitary ball in X is denoted by UX . The Haudorff measure of

noncompactness of a bounded subset B ⊂ X is defined by

χX(B) = inf{ε > 0 : there exists a finite set F in X such that B ⊂ F + εUX }.

For properties of χ see [1].

2. A Phillips-like estimate. We shall state a quantitative version,
but sligthly more general, of Brooks-Dinculeanu’s Theorem 1 [3].

If (Xn), n ∈ N is a sequence of Banach spaces, for 1 ≤ p < ∞, we denote
by

Xp = p
∞⊕

n=1

Xn,

the Banach space of all sequences (xn) in
∞∏

n=1

Xn such that

‖(xn)‖Xp =

[
∞∑

n=1

‖xn‖
p
Xn

]1/p

< ∞.

Given a sequence (xn) in Xp, let us set Pk(xn) = (x1, . . . , xk, 0, 0, . . .) and
πk((xn)) = xk, the projection on the kth-component.

Theorem 2.1. For a bounded subset B ⊂ p
⊕∞

n=1Xn we set

ν(B) = lim sup
k→∞

[
sup
x∈B

‖Pk(xn) − (xn)‖Xp + χ(Pk(B))

]
.

Then, if χ is the Hausdorff measure of noncompactness in Xp, we have

χ(B) ≤ ν(B) ≤ 2 χ(B),

for all bounded subset B in Xp.

P r o o f. For each bounded subset B ⊂ Xp and n ∈ N, we have

B ⊂ (Id − Pn)B + PnB.

Since the Hausdorff measure of noncompactness is subadditive, taking in account
the inequality

χ((Pn − Id)B) ≤ sup
x∈B

||Pnx − x||,
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we get

χ(B) ≤ χ((Pn − Id)B) + χ(PnB)

≤ sup
x∈B

||Pnx − x|| + χ(PnB),

for all n ∈ N. Therefore, χ(B) ≤ ν(B).
Conversely, since operators Pn are uniformly bounded, let us define M :=

lim supn→∞ ‖Pn‖. Then, since ‖Pn‖ = 1 (‖Pnx‖ ≤ ‖x‖ for all x and ‖Pnx‖ = ‖x‖
for x = (x1, . . . , xn, 0, 0, . . .)), it follows M = 1.

Given a bounded fixed subset B in X, let r = χ(B) and, for ε > 0
arbitrary, let rε := r + ε. Thus, there is a finite set B0 in X such that

B ⊂ B0 + rεUXp .

And, since B0 is finite, there exist N ∈ N such that

‖(Pn − Id)x0‖ < ε,

for all n ≥ N and x0 ∈ B0. Now, let x an arbitrary element in B and x0 ∈ B0

chosen such that ‖x − x0‖ < rε. Since

‖(Pn − Id)x‖ − ‖(Pn − Id)x0‖ ≤ ‖(Pn − Id)(x − x0)‖ ≤ 1 . rε,

it holds
‖(Pn − Id)x‖ ≤ ‖(Pn − Id)x0‖ + rε,

and, for all x ∈ B and n ≥ N , we have

‖Pnx − x‖ ≤ ε + rε = r + 2ε.

Therefore, taking ε → 0 one has

lim sup
n→∞

sup
x∈B

||Pnx − x|| ≤ χ(B).

Finally, since χ(PλB) ≤ ‖Pn‖ χ(B) ≤ M χ(B) ≤ χ(B) we get

ν(B) ≤ χ(B) + χ(B) = 2χ(B),

and the proof is complete. �

From the result of the Theorem 2.1 we can prove the measure ν has all
the properties of χ, therefore ν is a measure of noncompactness too. And albeit ν

is a measure equivalent to χ, from ν we get the new results which follows below.
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The next result is necessary to get our main application.

Lemma 2.2. For a bounded subset B ⊂ Xp = p
⊕∞

n=1Xn we have

χXn(πn(B)) ≤ χ(B).

P r o o f. We start verifying that πn(UXp) = UXn . Let x = (xj)
∞
j=1 ∈ UXp ,

then

‖x‖Xp =




∞∑

j=1

‖xj‖
p
Xj




1/p

≤ 1.

Thus, we have ‖xj‖Xj
≤ ‖x‖Xp ≤ 1 for all j. Since xn = πn(x) we obtain

πn(x) ∈ UXn and finally πn(UXp) ⊂ UXn . Now, given z ∈ UXn , we define a
sequence x = (xj)

∞
j=1 by xj = 0, if j 6= n, and xj = z, if j = n. Then x ∈ Xp

and ‖x‖Xp = ‖z‖Xn ≤ 1, which implies x ∈ UXp and πn(x) = z. Therefore, given
z ∈ Xn, there exists x ∈ Xp with πn(x) = z, what means UXn ⊂ πn(UXp) and
the assertion follows.

Now, given ε > χ(B), there exist balls B1, . . . , BM ∈ Xp which Bi =
B(xi, ε), such that

B ⊂

M⋃

i=1

B(xi, ε).

Thus,

πn(B) ⊂ πn

(
M⋃

i=1

B(xi, ε)

)
⊂

M⋃

i=1

πn(B(xi, ε)).

Now, since

πn(B(xi, ε)) = πn(xi) + επn(UXp) = πn(xi) + εUXn ,

for each i, we see that there exist elements y1, . . . , yM such that

πn(B) ⊂
M⋃

i=1

{yi + εUXn)}.

Therefore, χXn(πn(B)) ≤ ε and the result follows. �

Corollary 2.3. A set K ⊂ Xp = p
⊕∞

n=1Xn is relatively compact, if and

only if:

A)
∑

m≥k

||xm||pXn
−→ 0, k → ∞, uniformly for x ∈ K.
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B) the set K(m) = {xm = πm(x) ; x ∈ K} is relatively compact in the

norm of Xm, for each m ∈ N.

P r o o f. If K ⊂ Xp is relatively compact, we have χ(K) = 0 and, by
Theorem 2.1, we obtain

ν(K) = lim sup
k→∞

[
sup
x∈B

‖Pk(xn) − (xn)‖Xp + χ(Pk(K))

]
= 0.

From Lemma 2.2, we have for each n

χXn(πn(K)) = χXn(πn(Pn(K))) ≤ χ(Pn(K)) ≤ ‖Pn‖L(Xp,Xp)
χ(K),

thus, A) and B) follow. �

In particular, if X is a fixed Banach space and Xn = X, for each n ∈ N,
we have

Xp = p
∞⊕

n=1

Xn = `
p
X .

Thus, we obtain from Corollary 2.3 a result stated by Brooks-Dinculeanu [1,
Thm. 1].

Corollary 2.4. A set K ⊂ `
p
X , 1 ≤ p < ∞, is relatively compact, if and

only if:

A)
∑

m≥k

‖xm‖p −→ 0, k → ∞, uniformly for x ∈ K.

B) for each m ∈ N, the set K(m) = {xm;x ∈ K} is relatively compact

in the norm of X.

3. An application to interpolation spaces. Given a Banach space
E and a number α > 0, we set αE for the space E equipped with the norm

‖ . ‖αE = α ‖ . ‖E .

Let (E0, E1) be a Banach couple and 0 < θ < 1 (see [2] for the definitions
on interpolation theory of Banach spaces). For each n ∈ Z we set

Xθ
n := 2−θnE0 + 2−(θ−1)nE1.

For 1 ≤ p < ∞, the K-interpolation space (E0, E1)θ,p,K can be identified with the

subspace of all constant sequences in p
⊕̂

n∈Z
Xθ

n. Then, for each n ∈ N, setting
In for the segment in Z from −n to n and Ic

n = Z \ In, we see that the functional

νθ(B) := lim sup
n→∞

[sup
x∈B

[
∑

k∈Ic

n

[2−kθK(2k, x)]p]1/p + χ(PIn(B))]
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can be estimate in (E0, E1)θ,p,K .

As a consequence of the main theorem, we have the following compactness
criterion for bounded sets in interpolation spaces, which goes back to J. Peetre.

Theorem 3.2 (J.Peetre). Let (E0, E1)θ,p,K be an interpolation space with

0 < θ < 1 and 1 ≤ p < ∞. Then, a bounded subset B in (E0, E1)θ,p,K is relatively

compact if and only if

A) lim sup
n→∞

∑

k∈Ic

N

[2−kθK(2k, x)]p = 0, uniformly in x ∈ B,

and

B) the subset B is relatively compact in E0 + E1.

Indeed, νθ(B) can be estimate by the Hausdorff measure of noncompact-
ness χ(B). Further, if B is precompact in E0 + E1 is also precompact in Xθ

n =
2−θnE0 + 2−(θ−1)nE1.
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