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Abstract. Let D denote the open unit disc and f : D → C be meromorphic
and injective in D. We further assume that f has a simple pole at the point
p ∈ (0, 1) and is normalized by f(0) = 0 and f ′(0) = 1. In particular, we
are concerned with f that map D onto a domain whose complement with
respect to C is convex. Because of the shape of f(D) these functions will
be called concave univalent functions with pole p and the family of these
functions is denoted by Co(p).
We determine for fixed p ∈ (0, 1) the set of variability of the residuum of
f, f ∈ Co(p).

Let D denote the open unit disc and f : D → C be meromorphic and
injective in D. We further assume that f has a simple pole at the point p ∈
(0, 1) and is normalized by f(0) = 0 and f ′(0) = 1. In the paper [8], S. M.
Zemyan denoted this class by Sp. He determined the exact set of variability of
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the residuum of the functions f ∈ Sp at the point p for fixed p. The union of
these sets is the whole plane C punctured in the origin. In the present paper
we consider similar questions for a subclass Co(p) of Sp, which is called class of
concave univalent functions and defined as follows.

We say that a function f : D → C belongs to the family Co(p) if and only
if:

(i) f is meromorphic in D and has a simple pole in the point p ∈ (0, 1).

(ii) f(0) = 0 and f ′(0) = 1.

(iii) f maps D conformally onto a set whose complement with respect to C is
convex.

Concerning the history of this class, we refer to [1], [3], [4], [5], [6] and
[7]. In the extremal problems considered in these references it occurs very often
that extremal problems in Co(p) have as extremal functions the conformal maps
of D onto the extended plane C slit in a part of a straight line. We shall prove
that the same is the case for the set of variability of the residuum of the functions
f ∈ Co(p) at the point p. This is the content of the following theorem.

Theorem. Let p ∈ (0, 1). For a ∈ C there exists a function f ∈ Co(p)
such that a = res (f(z), z = p) if and only if
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Let θ ∈ [0, 2π). A function f ∈ Co(p) has the residuum
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P r o o f. We first prove that any point of the disc described by (1) occurs
as the residuum of a function f ∈ Co(p). To that end we use the following
characterization of the class Co(p) proved in [7]:
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A function f belongs to the class Co(p) if and only if f(0) = 0, f ′(0) = 1,
and there exists a function ω holomorphic in D such that ω(D) ⊂ D and
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for z ∈ D.

In the special case ω ≡ c, c ∈ D, it is very easy to integrate the differential
equation (4) to get
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Obviously, this function f has the residuum
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To prove the other part of the first assertion, we use Theorem 4 of [4]:

If f ∈ Co(p) and z ∈ D \ {0, p}, then
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In fact, the inequality (5) was proved by J. Miller for another class of
functions, which later on was seen to be equal to Co(p) (see [3] and [5]).

It is evident that the function

w(z) =
1

f(z)
−

1

z
+

1 + p2

p
(6)

has under our circumstances a completion holomorphic in the unit disc that
satisfies w(p) = p. Since |w(z)| ≤ 1 for z ∈ D, we get as a consequence of the
Schwarz Lemma (see for instances [2], p. 18), that

|w′(p)| ≤
1 − |w(p)|2

1 − p2
= 1.(7)

In (7) equality is attained if and only if w is a holomorphic automorphism of D

with fixed point p. The evaluation of w′(p) using (6) yields
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w′(p) =
1

a
+

1

p2
,

where a = res (f(z), z = p). A little computation using this identity shows that
(1) is equivalent to (7).

According to the above, equality in (1) can be attained if and only if there
exists ϕ ∈ [0, 2π) such that

w(z) =
p + eiϕ z−p

1−zp

1 + peiϕ z−p
1−zp

, z ∈ D.(8)

By a calculation of f from (6) and (8) we get (3) with

eiθ =
p2 − eiϕ

1 − p2eiϕ
.

This completes the proof of the Theorem. �

We want to add two remarks.

Remark 1. From the inequality (1) it is immediately clear that the
functions f ∈ Co(p) have residua with negative real part. In fact, the set of all
residua of these functions, where p varies in the interval (0, 1), is a proper subset
of the left half plane. A computation of the envelope of the circles described by
(2) reveals that a = x + iy is the residuum of a function f in one of the classes
Co(p), p ∈ (0, 1), if and only if x + iy satisfies one of the following conditions.

(i) |y| ≥ 1

2
and x < − 1

2
.

(ii) |y| ∈ (0, 1

2
) and x ≤ −

√

|y| − y2.

(iii) y = 0 and x < 0.

Remark 2. Since for any function w holomorphic in D with w(D) ⊂ D

and fixed point p ∈ (0, 1) there exists a function v holomorphic in D such that
v(D) ⊂ D and

w(z) =
p + z−p

1−zp
v(z)

1 + p z−p
1−zp

v(z)
, z ∈ D,

we get as a consequence of (5) and (6) the following representation formula for
concave univalent functions.
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Let p ∈ (0, 1). For any f ∈ Co(p), there exists a function v holomorphic in D

such that v(D) ⊂ D and

f(z) = z
1 − zp + p(z − p)v(z)

(

1 − z
p

)

(1 − zp)(1 − p2v(z))
, z ∈ D.(9)

This formula can be simplified a lot, if we set

v(z) =
p2 − u(z)

1 − p2u(z)
, z ∈ D.(10)

The insertion of (10) into (9) yields a second possibility to express concave
univalent functions by unimodular bounded functions.

Let p ∈ (0, 1). For any f ∈ Co(p), there exists a function u holomorphic

in D such that u(D) ⊂ D and

f(z) =
z − p

1+p2 (1 + u(z))z2

(

1 − z
p

)

(1 − zp)
, z ∈ D.

We want to express our hope that this formula will help to solve further
extremal problems for Co(p).
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