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We prove a representation theorem for bounded operators commuting with
translations on L2

ω
(G, H), where G is a locally compact abelian group, H

is a Hilbert space and ω is a weight on G. Moreover, in the particular case
when G = R, we characterize completely the spectrum of the shift operator
S1,ω on L2

ω
(R, H).

1. Introduction. Let G be a locally compact abelian group. Denote by
Ĝ the dual group of G. The groups G and Ĝ are equipped with the Haar measure.
Let H be a separable Hilbert space and denote by 〈u, v〉 the scalar product of two
elements u and v in H. Let ω be a weight on G i.e. ω is a continuous, positive,
measurable function on G such that

0 < sup
x∈G

ω(x + y)

ω(x)
< +∞, ∀y ∈ G.
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For 1 ≤ p < +∞, we denote by Lp
ω(G,H) the space of the functions f on G with

values in H such that
G 3 x −→ ‖f(x)‖ ∈ R+

is a function in Lp
ω(G), where Lp

ω(G) is the set of the measurable functions g on
G such that ∫

G

|g(x)|pω(x)pdx < +∞.

Let Cc(G) be the space of the continuous functions from G into C with compact
support. Denote by Cc(G,H) the space of the functions f on G with values in
H such that ‖f(.)‖ ∈ Cc(G). For a ∈ G, define

Sa,ω : Lp
ω(G,H) −→ Lp

ω(G,H)

by the formula

(Sa,ωf)(x) = f(x − a), ∀f ∈ Lp
ω(G,H), a.e.

and let
Sa,ω : Lp

ω(G) −→ Lp
ω(G)

be the operator defined by the formula

(Sa,ωg)(x) = g(x − a), ∀g ∈ Lp
ω(G), a.e.

Notice that we have

‖Sa,ω‖ = ‖Sa,ω‖ = sup
x∈G

ω(x + a)

ω(x)
, ∀a ∈ G,

and consequently
ρ(Sa,ω) = ρ(Sa,ω), ∀a ∈ G.

Here ρ(Sa,ω) (resp. ρ(Sa,ω)) denotes the spectral radius of Sa,ω (resp. Sa,ω).
Denote by Cc(G) ⊗ H the closed vector space generated by functions

fu : G 3 x −→ f(x)u ∈ H

with f ∈ Cc(G) and u ∈ H. The space Cc(G) ⊗ H is dense in Lp
ω(G,H), for

1 ≤ p < +∞. We say that M is a multiplier on Lp
ω(G,H) if M is a bounded

operator from Lp
ω(G,H) into Lp

ω(G,H) such that

MSa = SaM, ∀a ∈ G.
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Define Mp
ω the algebra of the multipliers on Lp

ω(G,H). We denote by F (resp.
F) the usual Fourier transformation from L2(G,H) (resp. L2(G)) into L2(Ĝ,H)
(resp. L2(Ĝ)). We have the following representation theorem for the multipliers
on Lp(G,H).

Theorem 1 ([2]). For every M multiplier on Lp(G,H), 1 ≤ p < +∞,

there exists a measurable function

ΦM : Ĝ −→ L(H),

which is essentially bounded for the operator norm of L(H) such that

F(Mf)(χ) = ΦM (χ)[F(f)(χ)], a.e. on Ĝ,

for every f ∈ Lp(G,H) ∩ L2(G,H). Moreover,

ess sup
χ∈

�

G

‖ΦM (χ)‖ ≤ ‖M‖.

The proof of this theorem is based on the well-known result about the
multipliers on Lp(G). Indeed, for every bounded operator M commuting with
the translations on Lp(G) there exists a function h ∈ L∞(Ĝ) (see [3]) such that

(1.1) M̂f = hf̂, ∀f ∈ Cc(G)

and ‖h‖∞ ≤ ‖M‖. This paper is motivated by a recent result generalizing the
representation (1.1) for a more general class of Banach spaces of functions on

G. The spaces Lp
ω(G) are included in this class. Denote by G̃p

ω the set of the
continuous morphisms θ from G into C∗ such that

(1.2)
∣∣∣
∫

G

f(x)θ−1(x)dx
∣∣∣ ≤ ‖Mf‖L(Lp

ω(G)),

where Mf is the operator of convolution by f on Lp
ω(G). Define

G̃p+
ω = {|θ|, θ ∈ G̃p

ω}.

It was proved in [6] that the set G̃p+
ω is not empty, log-convex and compact for

the topology of the uniform convergence on every compact set of G. It is clear

that G̃p
ω = G̃p+

ω Ĝ. Let G̃ be the set of the continuous morphisms from G into C∗.
We have the following proposition.
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Proposition 1 (see [6], [7]). If G is either a discrete group or a compact

group, we have

G̃p
ω = {θ ∈ G̃ | |θ−1(x)| ≤ ρ(Sx,ω), ∀x ∈ G}

and G̃p
ω is isomorphic to the joint spectrum of {Sx,ω}x∈G. The same result holds

for G = R.

Also in [6], was proved the following result, which we will use.

Theorem 2 ([6], [7]). Fix θ ∈ G̃p
ω. For every bounded operator M

commuting with the translations on Lp
ω(G), we have (Mg)θ−1 ∈ L2(G), ∀g ∈

Cc(G). There exists a function hM,θ ∈ L∞(Ĝ) such that

̂(Mg)θ−1 = hM,θ (̂gθ−1), ∀g ∈ Cc(G)

and ‖hM,θ‖∞ ≤ Cω‖M‖, where Cω is a constant independent of M .

The main result in this paper is the following.

Theorem 3. For M ∈ Mp
ω and θ ∈ G̃p

ω, we have:

1) (Mg)θ−1 ∈ L2(G,H) ,∀g ∈ Cc(G) ⊗ H.

2) There exists Φθ ∈ L∞(Ĝ,L(H)) such that

F((Mg)θ−1)(χ) = Φθ(χ)[F(gθ−1)(χ)], ∀g ∈ Cc(G) ⊗ H, a.e.

Moreover, ess sup
χ∈

�

G
‖Φθ(χ)‖ ≤ Cω‖M‖.

2. Proof of Theorem 3. Since Theorem 2 plays an important role in
the proof of Theorem 3, for the convenience of the reader we give a sketch of it’s
proof. The full proof is exposed in [7] and [6].

P r o o f o f Th e o r em 2. First, every multiplier M in Lp
ω(G) is the

limit for the strong operators topology of a net (Mφα
) where φα ∈ Cc(G) and

‖Mφα
‖ ≤ Cω‖M‖. This may be proved using the fact that the restriction of every

multiplier on Cc(G) is a convolution with a quasimeasure (see [2]). Fix M ∈ Mp
ω

and let (Mφα
) be a net satisfying the above property. Fix θ ∈ G̃p

ω. From the

definition of Ĝ, it follows that

∣∣∣φ̂αθ−1(χ)
∣∣∣ ≤ ‖Mφα

‖ ≤ Cω‖M‖, ∀χ ∈ G̃p
ω.
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If we replace (φα) by a suitable subnet, we obtain that (φ̂αθ−1) converges to a
function hM,θ ∈ L∞(Ĝ) for the weak∗ topology σ(L∞(Ĝ), L1(Ĝ)). This implies
that for each f ∈ Cc(G), the net

(
F((Mφα

f)θ−1)
)

=
(
F((φα ∗ f)θ−1)

)
=

(
φ̂αθ−1f̂ θ−1

)

converges to hM,θf̂ θ−1 with respect to the weak topology of L2(Ĝ). Consequently,

lim
α

(Mφα
f)θ−1 = F−1(hM,θf̂ θ−1), ∀f ∈ Cc(G)

with respect to the weak topology of L2(G). On the other hand, since Lp
ω(G) ⊂

L1
loc(G) and the inclusion is continuous, for g ∈ Cc(G), we get

lim
α

∣∣∣
∫

G

g(y)θ−1(y)
(
Mφα

f(y) − Mf(y)
)
dy

∣∣∣ = 0.

We conclude that for every f ∈ Cc(G) the functions (Mf)θ−1 and F−1(hM,θf̂ θ−1)

define the same linear functional on Cc(G) and so (Mf)θ−1(x) = F−1(hM,θf̂ θ−1)(x),
for almost every x ∈ G. We conclude that (Mf)θ−1 ∈ L2(G) and

̂(Mg)θ−1 = hM,θ (̂gθ−1), ∀g ∈ Cc(G). �

In order to proof Theorem 3, we need the following lemma.

Lemma 1. Let g ∈ L2(G,H) and v ∈ H. Then we have

F(〈g(.), v〉)(χ) = 〈F(g)(χ), v〉,

for almost every χ ∈ Ĝ.

P r o o f. Let g ∈ L2(G,H) and (gn)n∈N ⊂ Cc(G,H) be a sequence
converging to g in L2(G,H). Then, we have

F(〈g(.), v〉) = lim
n→+∞

F(〈gn(.), v〉),

with respect to the norm of L2(Ĝ). For fixed χ ∈ Ĝ and v ∈ H, the map

Cc(Ĝ,H) 3 h −→ 〈h(χ), v〉 ∈ C

is a continuous linear form. For given φ ∈ Cc(Ĝ), the integral
∫

G

gn(x)φ(χ)χ−1(x)dx
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is a convergent Bochner integral with values in Cc(Ĝ,H). Indeed, we have
∫

G

sup
χ∈

�

G

‖gn(x)φ(χ)χ−1(x)‖dx

≤ ‖φ‖∞

∫

G

‖gn(x)‖dx < +∞.

Since the Bochner integral commutes with continuous linear maps, we have for
almost every χ ∈ Ĝ,

φ(χ)F(〈gn(.), v〉)(χ) = φ(χ)〈F(gn)(χ), v〉.

Since lim
n→+∞

F(gn) = F(g) with respect to the norm of L2(Ĝ,H), if we replace

(gn)n∈N by a suitable subsequence, we get

lim
n→+∞

‖F(gn)(χ) −F(g)(χ)‖ = 0, a.e.

and hence
lim

n→+∞
〈F(gn)(χ), v〉 = 〈F(g)(χ), v〉, a.e.

We conclude that
F(〈g(.), v〉)(χ) = 〈F(g)(χ), v〉,

for almost every χ ∈ Ĝ. �

P r o o f o f Th e o r em 3. Fix M ∈ Mp
ω and fix u and v ∈ H. Introduce

the operator Mu,v defined for f ∈ Lp
ω(G) by the formula

(2.1) Mu,v(f)(x) = 〈M(fu)(x), v〉, a.e.

Notice that Mu,v(f) ∈ Lp
ω(G) for every f ∈ Lp

ω(G). Indeed, since M(fu) ∈
Lp

ω(G,H), we have ∫

G

|〈M(fu)(x), v〉|pω(x)pdx

≤

∫

G

‖M(fu)(x)‖p‖v‖pω(x)pdx < +∞.

Moreover, notice that
‖Mu,v‖ ≤ ‖M‖‖u‖‖v‖.

It is clear that

〈M(Sa(fu))(x), v〉 = 〈M(fu)(x − a), v〉, a.e.
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hence Mu,v is a multiplier on Lp
ω(G). From Theorem 2, we obtain for every

θ ∈ G̃p
ω,

(2.2) (Mu,vf)θ−1 ∈ L2(G), ∀f ∈ Cc(G)

and there exists Φθ,u,v ∈ L∞(Ĝ) such that

(2.3) F((Mu,vf)θ−1)(χ) = Φθ,u,v(χ)F(fθ−1)(χ), a.e.

Let O be a countable orthonormal basis of H and let F be the set of finite
linear combinations of elements of O. We have

|Φθ,u,v(χ)| ≤ Cω‖Mu,v‖, ∀χ ∈ Ĝ\Nu,v,

where Nu,v is a set of measure zero. Without loss of generality, we can modify
Φθ,u,v on N = ∪(u,v)∈F×F Nu,v in order to obtain

|Φθ,u,v(χ)| ≤ Cω‖Mu,v‖ ≤ Cω‖M‖‖u‖‖v‖, ∀u, v ∈ F, a.e.

For fixed χ ∈ Ĝ\N
F×F 3 (u, v) −→ Φθ,u,v(χ) ∈ C

is a sesquilinear and continuous form on F × F and since F is dense in H, we
conclude that there exists an unique map

H × H 3 (u, v) −→ Φ̃θ,u,v(χ) ∈ C

such that
Φ̃θ,u,v(χ) = Φθ,u,v(χ), ∀u, v ∈ F.

Consequently, there exists an unique map

Φθ : Ĝ −→ L(H)

such that
〈Φθ(χ)[u], v〉 = Φ̃θ,u,v(χ), ∀u, v ∈ H.

It is clear that

‖Φθ(χ)‖ = sup
‖u‖=1,‖v‖=1

|〈Φθ(χ)[u], v〉| ≤ Cω‖M‖, a.e.

Fix θ ∈ G̃p
ω and f ∈ Cc(G). For every χ ∈ Ĝ, we have f̂ θ−1(χ)u ∈ H. Next for

almost every χ ∈ Ĝ, we obtain

〈Φθ(χ)[f̂ θ−1(χ)u], v〉 = 〈Φθ(χ)[u], v〉f̂ θ−1(χ)
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= Φθ,u,v(χ)f̂ θ−1(χ) = F((Mu,vf)θ−1)(χ)

= F(〈M [fu], v〉θ−1)(χ).

Consequently,

(2.4) F−1(〈Φθ(.)[f̂ θ−1(.)u], v〉)(x) = 〈M [fu](x), v〉θ−1(x),

for almost every x ∈ G. Now, consider the function Ψθ on Ĝ defined for almost
every χ ∈ Ĝ by the formula

Ψθ(χ) = Φθ(χ)[f̂ θ−1(χ)u]

and observe that Ψθ ∈ L2(Ĝ,H). Indeed, we have

∫
�

G

‖Φθ(χ)[f̂ θ−1(χ)u]‖2dχ

≤

∫
�

G

‖Φθ(χ)‖2‖f̂ θ−1(χ)u‖2dχ

≤ C2
ω‖M‖2

∫
�

G

|f̂ θ−1(χ)|2‖u‖2dχ < +∞.

This makes possible to apply Lemma 1, and we get

F−1(〈Φθ(.)[f̂ θ−1u(.)], v〉)(x) = 〈F−1(Φθ(.)[f̂ θ−1(.)u])(x), v〉,

for almost every x ∈ G. It follows from (2.4) that we have

M [fu](x)θ−1(x) = F−1(Φθ(.)[f̂ θ−1(.)u])(x),

for almost every x ∈ G and this yields

M [fu]θ−1 ∈ L2(G,H).

Moreover, we obtain

F(M [fu]θ−1)(χ) = Φθ(χ)[f̂ θ−1(χ)u],

for almost every χ ∈ Ĝ. �
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3. The case G = R. In [4] we have established a more complete version
of Theorem 2 concerning multipliers on weighted spaces on R. Let w be a weight
on R and denote by Sω the operator S1,ω on L2

ω(R,H). Define

Iω = [− ln ρ(S−1
ω ), ln ρ(Sω)]

and
Ωω = {z ∈ C, Im z ∈ Iω}.

For f ∈ L2
ω(R,H) denote by (f)a the function

(f)a(x) = f(x)eax, ∀a ∈ Iω.

We have the following theorem.

Theorem 4 ([4]). Let ω be a weight on R and let M be a multiplier on

L2
ω(R).

i) We have (Mf)a ∈ L2(R), ∀f ∈ C∞
c (R) and there exists ha ∈ L∞(R) such that

(̂Mf)a(x) = ha(x)(̂f)a(x), ∀a ∈ Iω, ∀f ∈ C∞
c (R), a.e.

and

‖ha‖∞ ≤ Cω‖M‖.

ii) If
◦
Ωω 6= ∅, then there exists h ∈ H∞(

◦
Ωω), such that for every f ∈ C∞

c (R),

M̂f(z) = h(z)f̂(z), ∀z ∈
◦
Ωω,

where

M̂f(x + ia) = (̂Mf)a(x), ∀x + ia ∈
◦
Ωω.

Using the same methods as those exposed in Section 2 combined with
Theorem 4, we obtain the following interesting version of Theorem 3 in the
particular case G = R.

Theorem 5. Let ω be a weight on R. Let M be a multiplier on

L2
ω(R,H). Then

i) We have (Mf)a ∈ L2(R,H), ∀f ∈ Cc(R)⊗H and there exists Φa ∈ L∞(R,L(H))
such that

(̂Mf)a(x) = Φa(x)[(̂f)a(x)], ∀a ∈ Iω, ∀f ∈ Cc(R) ⊗ H, a.e.
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and

ess sup
x∈R

‖Φa(x)‖ ≤ Cω‖M‖.

ii) If
◦
Ωω 6= ∅, then there exists

Φ :
◦
Ωω −→ L(H)

such that for every f ∈ Cc(R) ⊗ H,

M̂f(z) = Φ(z)[f̂(z)], ∀z ∈
◦
Ωω,

where

M̂f(x + ia) = (̂Mf)a(x), ∀x + ia ∈
◦
Ωω.

For every u, v ∈ H the function

z −→ 〈Φ(z)[u], v〉

is in H∞(
◦
Ωω).

Since the proof of Theorem 5 is very similar to that of Theorem 3, we
omit the details. Notice that following the results of [4] and [6], if G = R, the set

G̃p
ω given by (1.2), that we use in Theorem 3 is isomorphic to the strip Ωω and

the set G̃p+
ω is isomorphic to the segment Iω. Applying Theorem 5, we get the

following proposition.

Proposition 2. Let ω be a weight on R. We have

spec(Sω) =
{
z ∈ C,

1

ρ(S−1
ω )

≤ |z| ≤ ρ(Sω)
}

.

P r o o f. Let α /∈ spec(Sω). Then M = (Sω − αI)−1 is a multiplier.
Applying Theorem 5, we get that for every a ∈ Iω, there exists Φa ∈ L∞(R,H)
such that

(̂Mf)a(x) = Φa(x)[(̂f)a(x)], ∀a ∈ Iω, ∀f ∈ Cc(R) ⊗ H, a.e.

and

ess sup
x∈R

‖Φa(x)‖ ≤ Cω‖M‖.
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Replacing f by (Sω − αI)−1g in the above formula, we obtain

(̂g)a(x) = Φa(x)
[
F

(
((Sω − αI)g)a

)
(x)

]
, ∀g ∈ Cc(R) ⊗ H, ∀a ∈ Iω, a.e.

We have

F
(
((Sω − αI)g)a

)
(x) =

∫

G

(g(t − 1) − αg(t))eate−itxdt

= (̂g)a(x)(e−ixea − α), ∀g ∈ Cc(R) ⊗ H, ∀a ∈ Iω, a.e.

Consequently, we get

Φa(x)[(̂g)a(x)] =
1

e−ixea − α
(̂g)a(x), a.e.

and hence

‖Φa(x)‖ ≥
1

e−ixea − α
, a.e

This shows that ea 6= |α|, for every a ∈ Iω and from the definition of Iω it follows
that

α /∈
{

z ∈ C,
1

ρ(S−1
ω )

≤ |z| ≤ ρ(Sω)
}

.

We deduce that

{
z ∈ C,

1

ρ(S−1
ω )

≤ |z| ≤ ρ(Sω)
}
⊂ spec(Sω)

and this completes the proof. �
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