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We prove a representation theorem for bounded operators commuting with
translations on L2 (G, H), where G is a locally compact abelian group, H
is a Hilbert space and w is a weight on G. Moreover, in the particular case

when G = R, we characterize completely the spectrum of the shift operator
Siwon L2(R, H).

1. Introduction. Let G be a locally compact abelian group. Denote by
G the dual group of G. The groups G and G are equipped with the Haar measure.
Let H be a separable Hilbert space and denote by (u,v) the scalar product of two
elements v and v in H. Let w be a weight on G i.e. w is a continuous, positive,
measurable function on G such that

(z+y)

w
0 < sup

< 400, Vy € G.
zeG w(z)
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For 1 < p < +o0, we denote by LY (G, H) the space of the functions f on G with

values in H such that
Gz — |[fx)] eRT

is a function in L (G), where LE(G) is the set of the measurable functions g on
G such that

/ lg(2)|Pw(z)Pdx < +oc.
G

Let C.(G) be the space of the continuous functions from G into C with compact
support. Denote by C.(G, H) the space of the functions f on G with values in
H such that ||f(.)|| € C.(G). For a € G, define

Saw : LV(G,H) — LF (G, H)
by the formula
(Sawf)(x) = fx—a), Vfe LP(G,H), a.e.

and let
Sow : LE(G) — LL(G)

be the operator defined by the formula
(Sawg)(x) = g(x —a), Vg € LE(G), a.e.

Notice that we have
wlx+a
1Sesll = [1Saull = sup 25+ vy e g,
zeG w(l’)

and consequently
p(Saw) = p(Saw), Va € G.

Here p(Saw) (resp. p(Saw)) denotes the spectral radius of S, (resp. Sgu).
Denote by C.(G) ® H the closed vector space generated by functions

fu:Goz — f(x)uec H

with f € C.(G) and w € H. The space C.(G) ® H is dense in LY (G, H), for
1 < p < +oo. We say that M is a multiplier on LE(G, H) if M is a bounded
operator from L% (G, H) into LY (G, H) such that

MS, = S,M, Va € G.
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Define MY, the algebra of the multipliers on L% (G, H). We denote by F (resp.
F) the usual Fourier transformation from L?(G, H) (resp. L*(@)) into LQ(G\, H)
(resp. L?(G)). We have the following representation theorem for the multipliers
on LP(G, H).

Theorem 1 ([2]). For every M multiplier on LP(G,H), 1 < p < +00,
there exists a measurable function

Oy G — L(H),
which is essentially bounded for the operator norm of L(H) such that
FMF)(x) = 2a()F(F)(X)], a.e.on G,
for every f € LP(G,H) N L*(G, H). Moreover,

ess sup [ @2 ()] < [|M]].
x€G

The proof of this theorem is based on the well-known result about the
multipliers on LP(G). Indeed, for every bounded operator M commuting with
the translations on LP(G) there exists a function h € L*(G) (see [3]) such that

(1.1) Mf =hf, Vf € C.G)

and ||h]lco < ||M]|. This paper is motivated by a recent result generalizing the
representation (1.1) for a more general class of Banach spaces of functions on

G. The spaces L (G) are included in this class. Denote by éé the set of the
continuous morphisms 6 from G into C* such that

(12) | [ 1@ @] < 1017z
where M is the operator of convolution by f on L%(G). Define
GET = {0], 0 € GB}.

It was proved in [6] that the set G% * is not empty, log-convex and compact for
the topology of the uniform convergence on every compact set of G. It is clear

that Gﬁ =GY +G Let G be the set of the continuous morphisms from G into C*.
We have the following proposition.
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Proposition 1 (see [6], [7]). If G is either a discrete group or a compact
group, we have

GL={0eG | |0 (2) < p(Sew), Yz € G}

and GY, is isomorphic to the joint spectrum of {Sy.w}tzec. The same result holds

for G =R.

Also in [6], was proved the following result, which we will use.

Theorem 2 ([6], [7]). Fiz 0 € é\é. For every bounded operator M
commuting with the translations on Lﬁ(G),A we have (Mg)0~! € L*(G), Vg €
Ce(G). There exists a function hyrg € L*(G) such that

—_—

(Mg)0=—t = hpp(g8—1), Vg € C.(G)

and ||harglloe < Cul|M||, where C,, is a constant independent of M.

The main result in this paper is the following.

Theorem 3. For M € M, and 0 € GY,, we have:
1) (Mg)0~! € L*(G,H) Vg € C.(G)®H.
2) There exists Py € L>°(G, L(H)) such that

F((Mg)o~")(x) = @a(x)[F(90~ ") (Y], Vg € Ce(G) ® H, a.e.

Moreover, ess sup |Po(x)|| < Cul|M]|.

xe@ |

2. Proof of Theorem 3. Since Theorem 2 plays an important role in
the proof of Theorem 3, for the convenience of the reader we give a sketch of it’s
proof. The full proof is exposed in [7] and [6].

Proof of Theorem 2. First, every multiplier M in LY(G) is the
limit for the strong operators topology of a net (My,) where ¢, € C.(G) and
| My, || < Cu||M]|. This may be proved using the fact that the restriction of every
multiplier on C(G) is a convolution with a quasimeasure (see [2]). Fix M € Mt

and let (My,) be a net satisfying the above property. Fix 6 € G%. From the

~

definition of G, it follows that

0a07100| < 1M, || < CulIM]), Vx € GE.
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) converges to a

If we replace (¢o) by a suitable subnet, we obtain that (¢a0 i
L'(G)). This implies

function hpsg € LOO(G) for the weak™ topology O'(LOO(G)
that for each f € C.(G), the net

(F(Mo, 1)071)) = (F((6a x N7)) = (6a6717677)
converges to h M’gf/é_\l with respect to the weak topology of LQ(é). Consequently,
lim (M, £)0~ = F (haref01), Vf € Co(G)

with respect to the weak topology of L?(G). On the other hand, since L% (G) C
L} (@) and the inclusion is continuous, for g € C.(G), we get

loc

lim
o

[ 9w ) (Mo 1) = M5(w) | = 0.
G

We conclude that for every f € C.(G) the functions (M f)6~! and f_l(hM’gf/é_\l)

define the same linear functional on C..(G) and so (M f)§~!(x) = f‘l(hMﬂj”/G-_\l)(:c),
for almost every z € G. We conclude that (M f)0~! € L?(G) and

(Mg)o—1 = haro(g00), Vg € CL(G). O

In order to proof Theorem 3, we need the following lemma.

Lemma 1. Let g € L?(G,H) and v € H. Then we have
F((g(), )00 = (F9)(x), v),

for almost every x € G.

Proof. Let g € L?*(G,H) and (gn)nen C C.(G,H) be a sequence
converging to g in L?(G, H). Then, we have

F({g(),0)) = Tim F((gn(.),)),

n—-4o00o
with respect to the norm of LQ(é). For fixed x € Gandve H, the map
C.(G,H) > h —> (h(x),v) € C

is a continuous linear form. For given ¢ € Cc(é), the integral

/ o (2)P 00X (@) da
G
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is a convergent Bochner integral with values in C’C(é, H). Indeed, we have

[ 512 lan(@)ot0x ™" (@) dz
G

x€G

< 116llso /G lgn(@)[dz < +o0.

Since the Bochner integral commutes with continuous linear maps, we have for
almost every x € G,

P(X)F ({gn (), ) (x) = PO (F(gn)(X), v)-

Since hl}_l F(gn) = F(g) with respect to the norm of LQ(G,H), if we replace

(gn)nen by a suitable subsequence, we get
Jim (17 (gn)(x) = Fl9) 0Ol = 0, ace.

and hence
lim <f(gn)(X)7v> = <‘7:(g)(X)7U>7 a.e.

n—-+o0o

We conclude that

for almost every x € G. O

Proof of Theorem 3. Fix M € MP% and fix u and v € H. Introduce
the operator M,, ,, defined for f € L,(G) by the formula

(2.1) My (f)(x) = (M(fu)(z),v), a.e.

Notice that M, ,(f) € LL(G) for every f € LL(G). Indeed, since M(fu) €
LY(G, H), we have

[ 1ortro@), o pepa
G

< /GIIM(fU)(w)||p||v||pw(fv)pd:v < o0

Moreover, notice that
[ Mupll < [[M]|[[[ulflv]]-

It is clear that

(M(Sa(fu))(x),v) = (M(fu)(z —a),v), a.e.
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hence M, , is a multiplier on L% (G). From Theorem 2, we obtain for every
0 € GL,

(2.2) (Myof)07" € L*(G), Vf € Cc(@)

~

and there exists ®¢ ., € L°°(G) such that

(2.3) F(Muw )0~ (X) = Pouu()F(FO71)(X), ae.

Let O be a countable orthonormal basis of H and let F' be the set of finite
linear combinations of elements of @. We have

|(I)0,u,v(X)| S CwHMu,vH7 vX S é\]\Tu,va

where N, , is a set of measure zero. Without loss of generality, we can modify
Ppup on N = Uy pyeFxFNu,p in order to obtain

[Pg,u,0 ()| < Cul|Myu| < CollM|||lullllv]], Vu, v € Fa.e.

For fixed y € @\N
FxF 3 (u,v) — ®gq(x) €C

is a sesquilinear and continuous form on F' X F' and since F' is dense in H, we
conclude that there exists an unique map

H x H > (u,v) — &)G,u,v(X) eC

such that B
q)e,u,v(X) = <I>9,u,v(X)a VU,U SN

Consequently, there exists an unique map
by: G — L(H)

such that B
<‘I)9(X)[U],’U> = q)Q,u,v(X)a V’LL, veH.

It is clear that

1260l = Wiy o [{@o(X)[ul, v)| < Cu|M]|; ae.

Fix 6 € aﬂ and f € C¢(G). For every x € @, we have f/9-_\1()0u € H. Next for
almost every y € GG, we obtain

(@001 ()], v) = (@(x)[u], 0) FO (x)
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— Dy, ()01 () = F(Muu /)0 )(x)
— F((M[ful,v)8~") (x)-
Consequently,
(2.4) FH(@()[FO1(ul,0)) (@) = (M[fu](x),0)0~ (),

for almost every x € GG. Now, consider the function ¥y on G defined for almost
every x € G by the formula

Wy(x) = Do) [FO 1 (x)u]

and observe that ¥y € Lz(@, H). Indeed, we have

/@ 16 (0) (et P

< / 126 COIIFO- 100 ul2dx
G

< CAIMIP L1767 0 PllulPdx < +oc.
This makes possible to apply Lemma 1, and we get
FH(@a() [0~ u()], 0)) (@) = (FH(@a()[FO7(Du]) (@), v),
for almost every x € G. It follows from (2.4) that we have
M{fu)(2)0~ (x) = F~H(Po() [fO-1(-)ul) (2),
for almost every x € G and this yields
M[fu)0~' € L*(G, H).

Moreover, we obtain

F(M[fu]o~1)(x) = ®a()[F0~1(x)ul,

for almost every x € G. O
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3. The case G = R. In [4] we have established a more complete version

of Theorem 2 concerning multipliers on weighted spaces on R. Let w be a weight
on R and denote by S, the operator Sy, on L2 (R, H). Define

L, = [~ p(S; 1), mp(S,)]
and
Q,={z€C,Imzel,}.
For f € L2 (R, H) denote by (f), the function

(Fa(z) = f(x)e™, Ya € I,.
We have the following theorem.

Theorem 4 ([4]). Let w be a weight on R and let M be a multiplier on
L2(R).
i) We have (M f), € L*(R), Vf € C2°(R) and there exists h, € L™(R) such that

o — —

(M f)a(x) = he(x)(f)a(z), Ya € I, Vf e CER), a.e.

and
HhaHoo < CwHMH

i1) If Solw # 0, then there exists h € HOO(SOIW), such that for every f € C°(R),

]\/47'(2) = h(z)f(z), Vz € Solw,

where

— (e}

m(x—i-ia) = (Mf)a(x), Vo +ia € Q.

Using the same methods as those exposed in Section 2 combined with
Theorem 4, we obtain the following interesting version of Theorem 3 in the
particular case G = R.

Theorem 5. Let w be a weight on R. Let M be a multiplier on
L2(R,H). Then
i) We have (M f)q € L?>(R, H), Vf € C.(R)Y®QH and there exists , € L (R, L(H))
such that

— —

(M f)a(z) = Bo(2)[(F)a(@)], Va € L, Vf € Co(R) ® H, ac.



224 Violeta Petkova

and

ess sup || P, (x)]| < Cu||M||.
x€R

i1) If Q, # 0, then there exists

o : Q) — L(H)

such that for every f € C.(R) ® H,

MF(z) = ®(2)[f(2)], V= € O,

where

— (e}

m(x—i-ia) = (Mf)a(x), Vo +ia € Q.

For every u,v € H the function

2z — (®(2)[u], v)
is in H® ().
Since the proof of Theorem 5 is very similar to that of Theorem 3, we
omit the details. Notice that following the results of [4] and [6], if G = R, the set
GY, given by (1.2), that we use in Theorem 3 is isomorphic to the strip Q. and

the set G&' is isomorphic to the segment I,,. Applying Theorem 5, we get the
following proposition.

Proposition 2. Let w be a weight on R. We have

1
spec(S,,) = {z € C, m <z < p(Sw)}.

Proof. Let a ¢ spec(S,). Then M = (S, — al)~! is a multiplier.
Applying Theorem 5, we get that for every a € I, there exists &, € L*(R, H)
such that

o — —

(M f)a(x) = Po(x)[(f)a(2)], Ya € L, Vf € C.(R) ® H, a.e.

and
ess sup [ (a)| < Cu|M ]|

xe
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Replacing f by (S, — al)~!g in the above formula, we obtain
(9)a(z) = ®o(z) []-'(((Sw - oJ)g)a> (:c)], Vg € Co(R) ® H, Va € I, a.e.
We have

F(((8. = al)g)a) (@) = [ (alt = 1) = agl)er'e

= (9)a(z)(e™™e" — a), Vg € C,(R) ® H, Ya € I, a.c.

Consequently, we get

Ca(2)[(9)a(@)] = == (9)a(2), a.e
and hence )
H(I)a(af)n > m, a.e

This shows that e # |a/|, for every a € I, and from the definition of I,, it follows

that )
ad {z € C, M <z < p(Sw)}.

We deduce that

1
2€C, ——=
{ P(Swl)

and this completes the proof. O

< || < p(S.) } € spec(S.)
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