Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use.

Serdica

Mathematical Journal

Сердика

Математическо списание

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.
For further information on
Serdica Mathematical Journal
which is the new series of
Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

FINITE GROUPS AS THE UNION OF PROPER SUBGROUPS

Jiping Zhang*
Communicated by V. Drensky

Abstract

As is known, if a finite solvable group G is an n-sum group then $n-1$ is a prime power. It is an interesting problem in group theory to study for which numbers n with $n-1>1$ and not a prime power there exists a finite n-sum group. In this paper we mainly study finite nonsolvable n-sum groups and show that 15 is the first such number. More precisely, we prove that there exist no finite 11 -sum or 13 -sum groups and there is indeed a finite 15 -sum group. Results in [7] and [15] are thus extended and further generalizations are possible.

It is a basic fact in group theory that a finite group is the set-theoretic union of proper subgroups if and only if the group is not cyclic. For a finite group G the least positive integer n such that G is the union of n proper subgroups is defined to be the covering number of G. Denote by $\alpha(G)$ the covering number for any finite group G and we call G an $\alpha(G)$-sum group. If G is cyclic we define

[^0]$\alpha(G)=\infty$. Covering numbers of finite groups have been well investigated in the past forty years, for references the reader is refered to [7], [10] and [15]. Haber and Rosenfield proved in 1959 that there are no finite 2 -sum groups and a finite group G is a 3 -sum group if and only if the Klein 4 -group is a homomorphic image of G [10]. Along this line Cohn proves in [7] that a finite group G is a 4-sum group if and only if $Z_{3} \times Z_{3}$ or S_{3} is a homomorphic image of G and G is a 5 -sum group if and only if A_{4} is a homomorphic image of G. Tomkinson proves in [15] that there are no finite 7 -sum groups and for finite solvable n-sum groups one has $n=1+p^{m}$ where p is a prime number, thus the two conjectures by Cohn [7] are confirmed. There are other ways to study how groups can be expressed as a union of proper subgroups, and similar arguments also apply to the study on unions of ideals in ring theory, see [3], [11] and [16] for references.

It is an important problem when a rational integer n is a covering number for some finite group G. For any prime power p^{m}, it is easy to verify that the group $Z_{p}^{m}: Z_{p^{m}-1}$ has $1+p^{m}$ as its covering number where Z_{p}^{m} is the elementary abelian p-group of order p^{m} and $Z_{p^{m}-1}$ is the cyclic group of order $p^{m}-1$. Thus one needs only to determine whether or not there exists a finite n-sum group for any rational integer n with $n-1$ not a prime power. For example, Tomkinson asked in [15] if there are 11,13 or 15 -sum groups. Of course it is very helpful and challenging to determine the covering numbers of finite simple groups. For convenience we call an integer n a solvable covering number if there exists a finite solvable n-sum group. Note that finite simple groups may have solvable covering numbers, for example, $\alpha\left(A_{5}\right)=10=1+3^{2}$. However, for a non-solvable covering number n a finite n-sum group is not solvable. In this paper we continue the study on finite n-sum groups, in particular we prove that 15 is the least nonsolvable covering number, thus we solve the problem posed by Tomkinson. We also make effort to determine the covering numbers of finite nonabelian simple groups. Our machinery can be possibly applied for further generalizations.

All groups in this paper are finite, notation and terminology are standard. Information on maximal subgroups of finite simple groups can be found in the Atlas of Finite Groups [6], sometimes we use the information implicitly.

For the convenience of the reader we quote without proof some basic results on n-sum groups.

Lemma 1 [7]. Let G be a finite group and N a normal subgroup of G. Then $\alpha(G) \leq \alpha(G / N)$.

Lemma 2 [7]. If a finite group $G=\cup_{j=1}^{n} H_{j}$ such that $\left|G: H_{j}\right| \leq \mid G$: $H_{j+1} \mid$ for $j \leq n-1$ then $|G| \leq \Sigma_{j \geq 2}\left|H_{j}\right|$ and $\left|G: H_{2}\right| \leq n-1$.

Lemma 3 [10]. If G is an n-sum group and $G=\cup_{j=1}^{n} H_{j}$ then for any $1 \leq k \leq n$ we have $\cap_{j \neq k} H_{j}=\cap_{j=1}^{n} H_{j}$.

Lemma 4 [15]. Let N be a normal subgroup of a finite group G. Let $U_{1}, U_{2}, \ldots, U_{h}$ be proper subgroups of G containing N and $V_{1}, V_{2}, \ldots, V_{k}$ be proper subgroups such that $N V_{j}=G$ with $\left|G: V_{j}\right|=I_{j}$ and $I_{1} \leq I_{2} \leq \cdots \leq I_{k}$. If $G=U_{1} \cup \cdots \cup U_{h} \cup V_{1} \cup \cdots \cup V_{k}$ then $I_{1} \leq k$. Furthermore, if $I_{1}=k$ then $I_{1}=I_{2}=\cdots=I_{k}=k$ and $V_{i} \cap V_{j} \leq U_{1} \cup U_{2} \cup \cdots \cup U_{h}$.

Lemma 5 [13]. For the symmetric group $S_{n}, \alpha\left(S_{n}\right)=2^{n-1}$ when n is odd unless $n=9 ; \alpha\left(S_{n}\right) \leq 2^{n-2}$ when n is even; $\alpha\left(A_{n}\right) \geq 2^{n-2}$ for $n \neq 7,9$, with equality if and only if $n \equiv 2$ modulo 4 .

Lemma 6 [5]. PSL $(2,7)$ is a 15 -sum group.
Lemma 7 [5]. Let G be either $\mathrm{GL}_{2}(q), \mathrm{SL}_{2}(q), \mathrm{PSL}_{2}(q)$, or $\mathrm{PGL}_{2}(q)$. Then $\alpha(G)=q(q+1) / 2$ for q even or $q(q+1) / 2+1$ for q odd where $q \neq 5,7,9$.

Lemma 8. Let K be one of the following simple groups: $\operatorname{PSL}(2,11)$, $M_{11}, M_{12}, A_{j}, 7 \leq j \leq 12$. If G is a subgroup of $\operatorname{Aut}(K)$ containing K then $\alpha(G) \geq 15$.

Proof. Suppose that $G=\cup_{j=1}^{\alpha} H_{j}$ where $\alpha=\alpha(G)$ and H_{j} 's are maximal subgroups of G. First we consider the case where $K \neq H_{j}$ for any j. For this case we have $\alpha(K) \leq \alpha(G)$ since $K=\cup\left(K \cap H_{j}\right)$, so we need only to prove that $\alpha(K) \geq 15$.

If $K=A_{j}$ with $7 \leq j \leq 12$ then by Lemma 5 we have $\alpha(K) \geq 2^{6}>15$
If $K=\operatorname{PSL}(2,11)$ then by Lemma $7 \alpha(K) \geq 67>15$. If $K=M_{11}$ then by $[13] \alpha\left(M_{11}\right)=23>15$.

If $K=M_{12}$ then there need at least 12 maximal subgroups of M_{12} to cover all cyclic Sylow 11-subgroups. Let E be a cyclic subgroup of M_{12} of order 10 , then E is self-centralizing in M_{12} and has $\left|M_{12}\right| / 10=2^{5} \cdot 3^{3} \cdot 11$ conjugates. Note that every maximal subgroup of M_{12} containing an element of order 11 does not contain elements of order 10. By checking the maximal subgroups M of M_{12} containing an element of order 10 we see that M is not isomorphic to M_{11} and contains at most $2^{4} \cdot 3^{2} \cdot 11$ conjugates of E. Hence we need at least 6 $\left(=\left(2^{5} \cdot 3^{3} \cdot 11\right) /\left(2^{4} \cdot 3^{2} \cdot 11\right)\right)$ more maximal subgroups to cover elements of order 10 and thus $\alpha\left(M_{12}\right) \geq 12+6=18>15$.

Now we suppose that K is one of H_{j} 's, say $j=1$. Then K is a proper subgroup of G and $G=\operatorname{Aut}(K)$. Since $\operatorname{Out}\left(M_{11}\right)=1, K$ is not isomorphic to
M_{11}. If $K=\operatorname{PSL}(2,11)$ we see the lemma is true by Lemma 7 . If $K=M_{12}$ then all maximal subgroups of G other than K have index at least 24 , thus by Lemma 2 we have that $|G| \leq \Sigma_{j>1}\left|H_{j}\right| \leq \alpha(G)|G| / 24$, whence $\alpha(G) \geq 24>15$. If $K=A_{j}$ with $j=7,11$ then by Lemma $5 \alpha(G) \geq 2^{6}>15$. If $K=A_{9}$, let $x=(1234567)(89)$. Now x is not in K and the maximal subgroups of G containing a conjugate of x are isomorphic to $S_{7} \times Z_{2}$. Thus $\alpha(G) \geq 1+9!/(2((9-$ $2)!))=1+9(9-1) / 2 \geq 37>15$. Finally we consider the case where $K=A_{j}$ with $j=8,10,12$. Then $x:=(12 \ldots j)$ is not in K and the maximal subgroups of G containing a conjugate of x have index in G at least $15(j=8), 45(j=10)$ or $66(j=12)$ respectively, since x does not fix any figures $i \leq j$. Evidently $\langle x\rangle$ is self-centralizing, so any maximal subgroup M of G contains at most $|M| /|\langle x\rangle|$ conjugates of x. Since $|M| \leq|G| / 15$ and G has $|G| /|\langle x\rangle|$ conjugates of x, we need at least 15 maximal subgroups of G other than K to cover conjugates of x, so $\alpha(G) \geq 15$.

Lemma 9 . Let H be a noncyclic solvable subgroup of $\mathrm{GL}(3,2)$ or $\mathrm{GL}(2,3)$. Then $\alpha(H) \leq 8$.

Proof. If $H \leq \mathrm{GL}(3,2)$ then H is isomorphic to a subgroup of S_{4} or D_{21}. So every chief factor of H is of order at most 7. This is also true for $H \leq \mathrm{GL}(2,3)$. Thus $\alpha(H) \leq 8$ by [15].

Lemma 10. Let G be a finite group and H a normal subgroup of G which is the direct product of nonsolvable minimal normal subgroups N_{j} 's. Then any normal subgroup M of G contained in H is also a direct product of some of these N_{j} 's.

Proof. First note that each N_{j} is a direct product of isomorphic nonabelian simple groups. We need only to prove that for any $y \in M$ if $y=x_{1} x_{2} \ldots x_{n}$ with $x_{i} \in N_{i}(i \leq n)$ then $N_{j} \leq M$ whenever $x_{j} \neq 1$. Suppose that $x_{j} \neq 1$ then there is an element $x \in N_{j}$ such that $\left[x, x_{j}\right] \neq 1$. Now $\left[x, x_{j}\right]=[x, y] \in$ $M, M \cap N_{j} \neq 1$, so $N_{j} \leq M$. We are done.

Theorem 11. There are no 11- or 13-sum groups.
Proof. Suppose toward a contradiction that there are 11- or 13-groups and let $G=\cup_{j=1}^{n} H_{j}$ be an n-group of minimal possible order with H_{j} 's maximal in G and $n=11$ or 13. Then the core $\operatorname{Core}_{G}\left(\cap H_{j}\right)=1$ by Lemma 1. It follows that the Frattini subgroup $\Phi(G)=1$. Set $I_{j}=\left|G: H_{j}\right|, j=1,2, \ldots, n$. By Lemma 2 there are at least two of I_{j} 's at most $n-1$.

Step 1. If $I_{j} \leq n-1$ then either H_{j} is normal in G or $\bar{G}:=G / \operatorname{Core}_{G}\left(H_{j}\right)$ is not solvable.

Proof. If this is not true let H_{j} be not normal in G with $I_{j} \leq n-1$ and \bar{G} solvable. Since H_{j} is maximal in G, the Fitting subgroup $F(\bar{G})$ is a minimal normal subgroup of \bar{G} and $\bar{G}=\overline{H_{j}} F(\bar{G})$ with $\overline{H_{j}} \cap F(\bar{G})=1$. Thus $F(\bar{G})$ is of order at most $I_{j} \leq 13-1=12$. Since H_{j} is not normal in $G, F(\bar{G})$ is not in the center of \bar{G}. Set $p^{m}=|F(\bar{G})|$ where p is a prime, then $p^{m} \leq n-2$ since $n=11$ or 13. If $\overline{H_{j}}$ is cyclic then $\alpha(G) \leq \alpha(\bar{G}) \leq p^{m}+1 \leq n-1$ by [15], a contradiction. Thus $\overline{H_{j}}$ is not cyclic. It follows that $p^{m}=8$ or 9 and $\overline{H_{j}} \leq \mathrm{GL}(3,2)$ or $\mathrm{GL}(2,3)$. By Lemma 9 we have $\alpha(G) \leq \alpha\left(\overline{H_{j}}\right)=9<n$, again a contradiction. We are done.

Step 2. $F(G)=1$.
Proof. If $F(G)$ is not trivial let N be a nontrivial solvable minimal normal subgroup of G. By Lemma 3 for any $1 \leq s \neq t \leq n$ we have $\cap_{j \neq s} H_{j}=$ $\cap_{j \neq t} H_{j}=\cap H_{j}$. Since $\operatorname{Core}_{G}\left(\cap H_{j}\right)=1$ there are at least two H_{j} 's such that $N H_{j}=G$ and $N \cap H_{j}=1$. Let I_{t} be the least of these I_{j} 's with $N H_{j}=G$, then $|N|=I_{t}$ and by Lemma 4 we have $I_{j} \leq n-1$. Note that $|N|$ is a prime power and $n=11$ or 13 , so one has $|N| \leq n-2$. If H_{t} is normal in G then N is in the center of G, so $|N|$ is a prime and $\alpha(G)=|N|+1 \leq n-1$ by [7], which is a contradiction. Hence H_{t} is not normal in G. Since H_{t} is maximal in $G, F\left(G / \operatorname{Core}_{G}\left(H_{t}\right)\right)=$ $N \operatorname{Core}_{G}\left(H_{t}\right) / \operatorname{Core}_{G}\left(H_{t}\right)$. By Step $1 G / \operatorname{Core}_{G}\left(H_{t}\right)$ is not solvable, thus $|N|=8$ and $G / \operatorname{Core}_{G}\left(H_{t}\right) \cong Z_{2}^{3}: \operatorname{PSL}(3,2)$ because $|N| \leq n-2 \leq 11$ and all proper subgroups of $\operatorname{PSL}(3,2)$ are solvable. If for some $x \in N, H_{t}^{x} \neq H_{j}$ for any j then $H_{t}^{x}=\cup\left(H_{j} \cap H_{t}^{x}\right)$. Hence $n \geq \alpha\left(H_{t}^{x}\right)=\alpha(G / N)$, which is contradictory to the minimality of G. Thus $H_{t}^{x}=H_{j}$ for some j.

We claim that $\operatorname{Core}_{G}\left(H_{t}\right) \neq 1$. Suppose otherwise that $\operatorname{Core}_{G}\left(H_{t}\right)=1$. Let y be an involution of H_{t}, then there is an involution u in N such that $o(y u)=4$ and $(y u)^{2} \in N$. If an H_{s} contains a conjugate of $y u$ then $N \cap H_{s} \neq 1$, so $N \leq H_{s}$ (otherwise $N H_{s}=G$ and thus $N \cap H_{s}=1$). It follows that H_{s} / N is a maximal subgroup of $\operatorname{PSL}(3,2)$ containing an involution, whence $H_{s} / N \cong S_{4}$ and $I_{s}=7$ by [6]. So we need at least $7 H_{j}$'s containing N to cover all conjugates of $y u$, which implies that $13 \geq n \geq 8+7=15$, impossible. Thus we have $\operatorname{Core}_{G}\left(H_{t}\right) \neq 1$, as claimed. Let T be the generalized Fitting subgroup $F^{*}\left(\operatorname{Core}_{G}\left(H_{t}\right)\right)$, then $T \neq 1$. Note that $T \leq H_{t}^{x}$ for any $x \in N$, so the number f of H_{j} 's not containing T is at most $n-8 \leq 5$. For convenience we may assume that $T H_{1}=T H_{2}=\cdots=$ $T H_{f}=G$ and $I_{1} \leq I_{2} \leq \cdots \leq I_{f}$. By Lemma 4 we have $I_{1} \leq f$. Since $f \leq 5$ and $|N|=8, N \leq H_{1}$ (otherwise $N H_{j}=G$ and $I_{j}=|N|=8$, a contradiction). If $I_{1}=f$ then by Lemma $4, I_{j}=f(j=1,2, \ldots, f)$ and $H_{1} \cap H_{2} \leq H_{t}$. As above we have $N \leq H_{j}(1 \leq j \leq f)$. Thus $N \leq H_{1} \cap H_{2} \leq H_{t}$, which is contradictory to the choice of H_{t}. Therefore $I_{1}<f \leq 5$. It follows that $G /$ Core $_{G}\left(H_{1}\right)$ is solvable.

By Step $1 H_{1}$ is normal in G and thus $I_{1}=2$ or 3 . Noticing that $\Phi(G)=1$, we see that $F^{*}(G)$ is the direct product of minimal normal subgroups of G. Since Core $_{G}\left(H_{t}\right)$ is normal in $G, T \leq F^{*}(G)$. So there is a minimal normal subgroup S of G such that $S H_{1}=T H_{1}=G$. It follows immediately that S is solvable and $S \cap H_{1}=1$, so $G=S \times H_{1}$. Now S is in the center of G and by [7] we have $\alpha(G) \leq 3+1=4$, contradicting the assumption on G.

Step 3. $F^{*}(G)=N_{1} \times N_{2} \times \cdots \times N_{m}$ where N_{j} 's are minimal normal subgroups of G and isomorphic to $\operatorname{PSL}(2,8), \operatorname{PSL}(3,2), \operatorname{PSL}(2,11), M_{11}, M_{12}$ or $A_{i}, 5 \leq i \leq 12$. And $G / F^{*}(G)$ is cyclic of order dividing 6.

Proof. Let N be an arbitrary minimal normal subgroup of G. By Step $2, N$ is a direct product of isomorphic nonabelian simple groups. By Lemma 3 there is an integer t such that $N H_{t}=G$ and $I_{t} \leq n-1 \leq 12$. Since $N \cap$ $\operatorname{Core}_{G}\left(H_{t}\right)=1, N$ is isomorphic to a normal subgroup of $G / \operatorname{Core}_{G}\left(H_{t}\right)$. Note that $G / \operatorname{Core}_{G}\left(H_{t}\right)$ is a primitive permutation group of degree I_{t}. By [9] we know that N is simple and isomorphic to the simple groups listed above. Thus the outmorphism group $\operatorname{Out}(N)$ is an elementary abelian 2- or 3-group [6]. Since $\Phi(G)=F(G)=1, F^{*}(G)$ is the direct product of minimal normal subgroups N_{j} 's of G. Now $G / F^{*}(G)$ acts by conjugation on N_{j} 's and it follows that $G / F^{*}(G)$ is an abelian $\{2,3\}$-group. If $G / F^{*}(G)$ is not cyclic then $\alpha\left(G / F^{*}(G)\right) \leq 4$ by [15], which is a contradiction.

Step 4. For each N_{j} there exists an H_{i} such that $N_{j} \leq H_{i}$.
Proof. If there is an N_{j} such that $N_{j} H_{i}=G$ for any i, then $m=$ $1, F^{*}(G)=N_{1}$ and $F^{*}(G)=\cup_{i}\left(F^{*}(G) \cap H_{i}\right)$. So $\alpha\left(F^{*}(G)\right) \leq 13$. By Lemmas 5, 6,7 and $8, F^{*}(G) \cong A_{5}$. Thus $G \cong S_{5}$, which is a contradiction since $\alpha\left(S_{5}\right)=16$ by [7].

Step 5. $m \leq 2$.
Proof. Suppose $m \geq 3$. Set $J_{r}=\left\{i: N_{r} H_{i}=G\right\}$ for $1 \leq r \leq m$. For convenience and without loss of generality we may assume that $s:=\left|J_{1}\right|=$ $\max \left\{\left|J_{r}\right|: 1 \leq r \leq m\right\}$ and $N_{1} H_{i}=G$ for $1 \leq i \leq s$ with $I_{1} \leq I_{2} \leq \cdots \leq I_{s}$. Thus $N_{1} \leq H_{j}$ for $j>s$. Set $M=N_{2} \times N_{3} \times \cdots \times N_{m}$, then $M \leq \cap_{j \leq s} H_{j}$.

We claim that $s<(n+1) / 2$. Suppose othertwise that $s \geq(n+1) / 2$. Re-label H_{i} 's for $i>s$ such that $N_{2} H_{s+1}=N_{2} H_{s+2}=G$ since there are at least two H_{i} 's not containing N_{2}. Thus $N_{3} \leq H_{s+1} \cap H_{s+2}$. Now N_{3} is contained in $s+2$ of H_{i} 's. Note that $s+2 \geq 9$ for $n=13$ and 8 for $n=11$, so $n-s-2 \leq 4$. By [15] for G and the normal subgroup N_{3} we have $I_{t} \leq n-s-2 \leq 4$ with $N_{3} H_{t}=G$
for some $t>s+2$. Hence H_{t} is normal in G by Step 1 , which is impossible since H_{t} is maximal in G and N_{3} is nonabelian simple. Thus the claim holds true. By [15] for G and the normal subgroup N_{1} we have $I_{1} \leq s \leq(n-1) / 2$. If $I_{1}=s$ then $I_{1}=I_{2}=\cdots=I_{s}$ with $M \leq H_{i}$ for $i>s$. Thus M is contained in every H_{i}, which is contradictory to the assumption. So $I_{1}<s$. Since $N_{1} H_{1}=G, H_{1}$ is not normal in G. By Step $1, G \operatorname{Core}_{G}\left(H_{1}\right)$ is not solvable and $I_{1} \geq 5$. From $5 \leq I_{1}<s \leq(n-1) / 2$ we see that $n=13, s=6$ and $I_{1}=5$. Re-labeling H_{i} 's for $i>6$ we may assume that $N_{2} H_{7}=N_{2} H_{8}=\cdots=N_{2} H_{e}=G$ and $N_{2} \leq H_{i}$ for $i>e$. Note that $e-6 \geq 2$ and $N_{3} \leq H_{i}$ for $i \leq e$. By the definition of s we have $e-s \leq s$, so $8 \leq e \leq 12$. By [15] for G and $N_{3}, 5 \leq H_{i} \leq 13-e$ for some $i>e$, thus $e=8$ and $H_{i}=5$ for all $i>8$ and $H_{9} \cap H_{10} \leq H_{1} \cap H_{2} \cap \cdots \cap H_{8}$, which is a contradiction since $N_{1} \leq H_{i}$ for $i>6$ and N_{1} is not contained in H_{1}.

Step 6. Last contradiction.
Proof. We first prove that $m=1$, so $F^{*}(G)=N_{1}$ is simple. Suppose otherwise that $m=2$. Since each H_{i} contains either N_{1} or N_{2} we may assume that $N_{1} \leq H_{1} \cap H_{2} \cap \cdots \cap H_{s}$ with $N_{1} H_{i}=G$ for $i>s$ and $s \geq(n+1) / 2 \geq 6$. Thus $N_{2} \leq H_{i}$ and $\left|G: H_{i}\right| \geq 5$ for $i>s$ (see the proof in Step 5). By [15] for G and the normal subgroup N_{1} and since N_{2} is not contained in H_{j} for some $j \leq s, 5 \leq\left|G: H_{t}\right|<n-s$ for some $t>s$. It follows that $n=13, s=7$ and $\left|G: H_{t}\right|=5$, so $N_{1} \cong A_{5}$. By the definition of s we know that there is at most one $H_{i}(i \leq 7)$ containing N_{2}. Now we consider cases.

Case I. $N_{2} \leq H_{i}(i \leq 7)$, say $i=1$. Again by [15] for G and N_{2} we have $5 \leq\left|G: H_{f}\right|<6$ for some $1<f \leq 7$, thus $\left|G: H_{f}\right|=5$ and $G / \operatorname{Core}_{G}\left(H_{f}\right) \leq S_{5}$ with $N_{2} \cong A_{5}$. Now $F^{*}(G) \cong A_{5} \times A_{5}$ and $\left|G / F^{*}(G)\right|$ is at most 2 . Hence we have the following three possibilities: $G \cong A_{5} \times A_{5}, A_{5} \times S_{5}$ or $\left(N_{1} \times N_{2}\right):\langle x\rangle$ where x is of order 2 and $N_{1}\langle x\rangle \cong N_{2}\langle x\rangle \cong S_{5}$. Since $\alpha\left(A_{5}\right)=10$ we see that $G=\left(N_{1} \times N_{2}\right):\langle x\rangle$. Let $x_{i} \in N_{i}$ such that $x x_{i}=x_{i} x$ with $o\left(x x_{i}\right)=6$ for $i=1,2$. Evidently $x x_{1} x_{2}$ is of order 6 and is not contained in $F^{*}(G)$ and $\left\langle x x_{1} x_{2}\right\rangle$ is self-centralizing in G. So $x x_{1} x_{2} \in H_{j}$ for some $j>1$. Since H_{j} contains $N_{i}(i=1$ or 2$), H_{j} / N_{i}$ is isomorphic to a maximal subgroup of S_{5} containing an element of order 6 . Thus, by [6] $H_{j} / N_{i} \cong Z_{2} \times S_{3}$ and H_{j} contains exactly $\left|H_{j}\right| / 6$ $=(5!/ 2)(12 / 6)=120$ conjugates of $x x_{1} x_{2}$. Since $x x_{1} x_{2}$ has $(5!/ 2)(5!/ 6)=1200$ conjugates in G, we need at least 10 of these H_{i} 's $(i>1)$ to cover all conjugates of $x x_{1} x_{2}$. Let $y_{i} \in N_{i}$ be an involution such that $x y_{i}$ is of order $4(i=1,2)$. Then $\left\langle x y_{1} y_{2}\right\rangle$ is self-centralizing of order 4 in G and is not contained in $F^{*}(G)$, so there are $(5!/ 2)(5!/ 4)=1800$ conjugates of $x y_{1} y_{2}$ in G. Let $x y_{1} y_{2}$ be contained in H_{k} $(k>1)$, then $H_{k} / N_{j} \cong S_{4}$ or $Z_{5}: Z_{4}$ where $N_{j} \leq H_{k}$. It follows immediately
that H_{k} does not contain a conjugate of $x x_{1} x_{2}$. Since H_{k} contains at most $(5!/ 2)(4!/ 4)=360$ conjugates of $x y_{1} y_{2}$ we need at least $5=1800 / 360$ of H_{i} 's to cover all conjugates of $x y_{1} y_{2}$. Therefore $13 \geq \alpha(G) \geq 1+10+5=16$ which is absurd.

Case II. $N_{2} H_{i}=G$ for $i \leq 7$. By [15] for G and N_{2} we have $5 \leq \mid G$: $H_{f} \mid<7$ for some $1 \leq f \leq 7$, thus $\left|G: H_{f}\right|=5$ or 6 and $G / \operatorname{Core}_{G}\left(H_{f}\right) \leq S_{6}$ with $N_{2} \cong A_{5}$ or A_{6}. Now $F^{*}(G) \cong A_{5} \times A_{5}$ or $A_{5} \times A_{6}$ and $G / F^{*}(G)$ is of order at most 2 . Hence we have the following possibilities: $G \cong A_{5} \times A_{5}, A_{5} \times S_{5}$, $A_{5} \times A_{6}, A_{5} \times S_{6}$ or $\left(N_{1} \times N_{2}\right):\langle x\rangle$ where x is of order 2 and $N_{1}\langle x\rangle \cong S_{5}$ and $N_{2}\langle x\rangle \cong S_{5}, S_{6}$ or $A_{6} \times Z_{2}$. Since $\alpha\left(A_{5}\right)=10, A_{5}$ cannot be a direct factor of G. Thus $G=\left(N_{1} \times N_{2}\right):\langle x\rangle$. If $N_{1} \cong N_{2} \cong A_{5}$ then as proved in Case I we know that we need at least $10+5$ maximal subgroups to cover all elements of orders 4 and 6 outside $F^{*}(G)$, so $N_{2} \cong A_{6}$. By [6] G contains exactly $(4!)(6!/ 5)=24 \times 144=3456$ elements $a b$ of order 5 with $a \in N_{1} \backslash\{1\}$ and $b \in N_{2} \backslash\{1\}$, and each maximal subgroup of G contains at most $144 \times 4=576$ such elements. Thus we need at least $3456 / 576=6$ maximal subgroups of G to cover all such elements of order 5. Since $N_{2} \cong A_{6}$ there is an element $v \in N_{2}$ such that $\langle v\rangle$ is of order 3 corresponding to a product of two 3 -cycles in A_{6} and such that $x v=v x$. Let $u \in N_{1}$ be an element of order 3 such that $x u=u x$. Then $\langle x u v\rangle$ is of order 6 and self-centralizing in G. Now G contains $|G| / 6$ conjugates of xuv and the maximal subgroups M of G containing a conjugate of $x u v$ are isomorphic to $N_{i} L\langle x\rangle$ where $N_{i} \leq M$ with $i=1$ or 2 and $L \cong Z_{3}^{2}: Z_{4}$ or $S_{3}\left(L \leq N_{j}, j \leq 2, j \neq i\right)$. Hence M is of order at most $|G| / 10$ and does not contain 5-elements of the type $a b$ with $a \in N_{1} \backslash\{1\}$ and $b \in N_{2} \backslash\{1\}$. We now have $\alpha(G) \geq 10+6>13$, a contradiction. Therefore $m=1$, as claimed.

Note that $F^{*}(G) \cong \operatorname{PSL}(3,2), \operatorname{PSL}(2,8), \operatorname{PSL}(2,11), M_{11}, M_{12}$ or $A_{j}, 5 \leq$ $j \leq 12, G / F^{*}(G)$ is of order at most 3. By Lemma 8 and $[7]$ we know that $F^{*}(G)$ is a proper subgroup of G and $F^{*}(G) \cong \operatorname{PSL}(2,7), \operatorname{PSL}(2,8)$ or A_{6} (note that $\operatorname{PSL}(3,2) \cong \operatorname{PSL}(2,7))$. By Lemma $5 G$ is not isomorphic to S_{6}. Now by [6] G contains an element x of order m^{\prime} outside $F^{*}(G)$ such that all maximal subgroups of G containing an element of order m^{\prime} are conjugate to $N_{G}(\langle x\rangle)$. The information about ($\left.G, m^{\prime}, N_{G}(\langle x\rangle),|G| /\left|N_{G}(\langle x\rangle)\right|\right)$ are as follows [6]:

$$
\begin{aligned}
& \left(\operatorname{PSL}(2,7): Z_{2}, 8, D_{16}, 21\right),\left(\operatorname{PSL}(2,8): Z_{3}, 9, Z_{9}: Z_{6}, 28\right), \\
& \left(A_{6} \cdot 2_{2}, 10, D_{20}, 36\right),\left(A_{6} \cdot 2_{3}, 9, D_{16}, 45\right) .
\end{aligned}
$$

Thus $\alpha(G) \geq|G| /\left|N_{G}(\langle x\rangle)\right| \geq 21>13$, which is contradictory to the assumption on G. We are done.

REFERENCES

[1] A. R. Ashrafi. On the n-sum groups $n=6,7$. Southeast Asian Bull. Math. 22, 2 (1998), 111-114.
[2] M. Bruckheimer, A. C. Bryan, A. Muir. Groups which are the union of three subgroups. Amer. Math. Monthly 77 (1970), 52-57.
[3] K. P. S. Bhaskara Rao, J. D. Reid. Abelian groups that are unions of proper subgroups. Bull. Austral. Math. Soc. 45, 1 (1992), 1-7.
[4] R. A. Bryce, V. Fedri, L. Serena. Covering groups with subgroups. Bull. Austral. Math. Soc. 55, 3 (1997), 469-476.
[5] R. A. Bryce, V. Fedri, L. Serena. Subgroup coverings of some linear groups. Bull. Austral. Math. Soc. 60, 2 (1999), 227-238.
[6] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson. Atlas of Finite groups. Clarendon Press, Oxford, 1985.
[7] J. H. E. Cohn. On n-sum groups. Math. Scand. 75, 1 (1994), 44-58.
[8] R. R. Crawford, K. D. Wallace. On the number of subgroups of index two-an application of Goursat's theorem for groups. Math. Mag. 48 (1975), 172-174.
[9] J. D. Dixon, B. Mortimer. Permutation groups. Graduate Texts in Mathematics, vol. 163. New York, Springer-Verlag, 1996.
[10] S. Haber, A. Rosenfeld. Groups as unions of proper subgroups. Amer. Math. Monthly 66 (1959), 491-494.
[11] C. Gottlieb. On finite unions of ideals and cosets. Comm. Algebra 22, 8 (1994), 3087-3097.
[12] A. Mann. Finite groups whose n-maximal subgroups are subnormal. Trans. Amer. Math. Soc. 132 (1968), 395-409.
[13] A. Maroti. Covering the symmetric groups with proper subgroups. J. Combin. Theory Ser. A 110, 1 (2005), 97-111.
[14] M. Suzuki. Group Theory I. Translated from the Japanese by the author. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 247. Springer-Verlag, Berlin-New York, 1982.
[15] M. J. Tomkinson. Groups as the union of proper subgroups. Math. Scand. 81, 2 (1997), 191-198.
[16] M. J. Tomkinson. Groups covered by finitely many cosets or subgroups. Comm. Algebra 15, 4 (1987), 845-859.
[17] J. P. Zhang. Finite groups with many conjugate elements. J. Algebra 170, 2 (1994), 608-624.

School of Mathematical Sciences
Peking University
Beijing 100871, China
e-mail: jzhang@pku.edu.cn
jzhang@math.pku.edu.cn Received June 2, 2006

[^0]: 2000 Mathematics Subject Classification: 20D60,20E15.
 Key words: Finite Group, simple group, covering number.
 *Supported by Cheung Kong Scholar's Programme, National 973 project and RFDP.

