Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use.

Serdica

Mathematical Journal

Сердика

Математическо списание

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.
For further information on
Serdica Mathematical Journal
which is the new series of
Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

ON CONNECTION BETWEEN CHARACTERESTIC FUNCTIONS AND THE CARATHEODORI CLASS FUNCTIONS

Vladimir A. Zolotarev, Raéd Hatamleh
Communicated by St. L. Troyanski

Abstract

Connection of characteristic functions $S(z)$ of nonunitary operator T with the functions of Caratheodori class is established. It was demonstrated that the representing measures from integral representation of the function of Caratheodori's class are defined by restrictions of spectral measures of unitary dilation, of a restricted operator T on the corresponding defect subspaces.

Introduction. The main tool to investigate a nonself-adjoint operator A is the characteristic function $S(\lambda)[2,3]$. For the operators of the class in question it is important that a homographic transformation over $S(\lambda)$ reduces to Nevanlinna function class corresponding to the restriction of the real part of resolvent A_{R} of operator the A onto the non-hermicity space of the main operator A. Problems of a similar nature concerned with a nonunitary operator T are

2000 Mathematics Subject Classification: 47A65, 45S78.
Key words: Characterestic function, Caratheodori class function, colligation, homographic transformation.
studied in the present work. We have shown that homographic transformation of a characteristic function $S(Z)[1,4]$, corresponding to the operator T, results in two operator-functions belonging to the Caratheodory class. It was ascertained that for these functions there exist upper and lower majorization inside and outside the unit disk.

1. Let T be a bounded linear operator defined in Hilbert space a H. An ensemble

$$
\triangle_{T}=\left(\sigma_{E}, H \oplus E, V=\left[\begin{array}{cc}
T & \Phi \tag{1}\\
\Psi & K
\end{array}\right], H \oplus F, \sigma_{E}\right)
$$

is called a unitary metric colligation $[1,3]$ if the operator

$$
V=\left[\begin{array}{ll}
T & \Phi \\
\Psi & K
\end{array}\right]: H \oplus E \rightarrow H \oplus F
$$

satisfies the formulas

$$
V^{*}\left[\begin{array}{cc}
I & 0 \tag{2}\\
0 & \sigma_{F}
\end{array}\right] V=\left[\begin{array}{cc}
I & 0 \\
0 & \sigma_{E}
\end{array}\right] ; V\left[\begin{array}{cc}
I & 0 \\
0 & \sigma_{E}^{-1}
\end{array}\right] V^{*}=\left[\begin{array}{cc}
I & 0 \\
0 & \sigma_{F}^{-1}
\end{array}\right]
$$

where σ_{E} and σ_{F} are self-adjoint invertible operators defined in the Hilbert spaces E and F respectively. It is known [1] that for any bounded operator T there always exists Hilbert spaces E and F and the corresponding operators

$$
\Phi: E \rightarrow H, \Psi: H \rightarrow F, K: E \rightarrow F, \sigma_{E}: E \rightarrow F, \sigma_{F}: F \rightarrow F
$$

so that (2) holds.
The function

$$
S_{\triangle_{T}}=K+\Psi(Z I-T)^{-1} \Phi
$$

is called the characteristic function of the colligation $\triangle_{T}[1,4]$.
Assume that the point $z=1$ does not belong to the spectrum of the operator T. Let us define the operator A,

$$
\begin{equation*}
A=i(I+T)(I-T)^{-1} \tag{3}
\end{equation*}
$$

which is the Cayley transformation of the operator T [3]. The inverse transformation is

$$
\begin{equation*}
T=(A-i I)(A+i I)^{-1} \tag{4}
\end{equation*}
$$

Remind [3] that the ensemble

$$
\begin{equation*}
\triangle=(A, H, \varphi, E, \sigma) \tag{5}
\end{equation*}
$$

is called a local colligation if

$$
\begin{equation*}
A-A^{*}=i \varphi^{*} \sigma \varphi \tag{6}
\end{equation*}
$$

where A is a linear bounded operator in the Hilbert space H, σ is a self-adjoint operator in the Hilbert space E and $\varphi: H \rightarrow E$.
Let us include the operator A (3) into a local colligation

$$
\begin{equation*}
\triangle_{A}=\left(A, H, \varphi, \tilde{E}, \sigma_{A}\right) \tag{7}
\end{equation*}
$$

where,

$$
\begin{equation*}
A-A^{*}=i \varphi^{*} \sigma_{A} \varphi \tag{8}
\end{equation*}
$$

and the characteristic function [3] of the colligation \triangle_{A} is equal to

$$
\begin{equation*}
S_{\triangle_{A}(\lambda)}=I-i \varphi(A-\lambda I)^{-1} \varphi^{*} \sigma_{A} \tag{9}
\end{equation*}
$$

It is readily seen, that

$$
\left\{\begin{array}{l}
I-T^{*} T=2\left(A^{*}-i I\right)^{-1} \frac{A-A^{*}}{i}(A+i I)^{-1} \tag{10}\\
I-T T^{*}=2(A-i I)^{-1} \frac{A-A^{*}}{i}\left(A^{*}+i I\right)^{-1}
\end{array}\right.
$$

Taking into account the colligation relation (2) for $\triangle_{T}(1)$ and for \triangle_{A} (8) we have

$$
\left\{\begin{array}{l}
2 L^{*} \varphi^{*} \sigma \varphi L=\Psi^{*} \sigma_{F} \Psi \tag{11}\\
2 L \varphi^{*} \sigma_{A} \varphi L^{*}=\Psi^{*} \sigma_{E}^{-1} \Psi^{*}
\end{array}\right.
$$

where,

$$
L=(A+i I)^{-1}=\frac{1}{2 i}(I-T) .
$$

We call the colligation $\triangle_{A}(7)$ minimal if the non-hermicity of the space $\overline{\left(A-A^{*}\right) H}$ coincides with the canal subspace $\overline{\varphi^{*} \tilde{E}} \quad[3]$,

$$
\overline{\left(A-A^{*}\right) H}=\overline{\varphi^{*} \tilde{E}}
$$

In a similar manner we will call the unitary metric colligation $\triangle_{T}(1)$ minimal if

$$
\left\{\begin{array}{l}
D_{T}=\overline{\left(T^{*} T-I\right) H}=\overline{\Psi^{*} F} \\
D_{T^{*}}=\overline{\left(T T^{*}-I\right) H}=\overline{\Phi E}
\end{array}\right.
$$

From (10) it follows that in the case of minimality of the colligations \triangle_{T} and \triangle_{A}, the spaces D_{T} and $\overline{\left(A-A^{*}\right) H}$ as well as $D_{T^{*}}$ and $\overline{\left(A-A^{*}\right) H}$ are isomorphic. This property allows us to define operators R_{E} and R_{F} by formulas

$$
\begin{array}{llll}
R_{E} \Phi^{*} L^{*^{-1}} h \stackrel{\text { def }}{=} \sqrt{2} \varphi h ; & (E \quad \rightarrow & \tilde{E}) \tag{12}\\
R_{F} \Psi L^{-1} h \stackrel{\text { def }}{=}-\sqrt{2} \varphi h ; & (F \quad \rightarrow & \tilde{E})
\end{array}
$$

where $h \in H$.
Theorem 1. Suppose that the point $z=1$ is a regular one for the main operator T of the colligation \triangle_{T} (1). If the operator A is the Cayley transformation (3) of the operator T, then the characteristic functions of the minimal colligations $\triangle_{T}(1)$ and \triangle_{A} (4) are related by the formula

$$
S_{\triangle_{A}(\lambda)} R_{E}=R_{F} S_{\triangle_{T}}\left(\frac{\lambda-i}{\lambda+i}\right) \sigma_{E}^{-1}
$$

Proof. By virtue of minimality of colligations \triangle_{T} and \triangle_{A} it is sufficient to verify (13) on the respective dense sets. Really,

$$
\begin{aligned}
& R_{F} S_{\triangle_{T}}\left(\frac{\lambda-i}{\lambda+i}\right) \sigma_{E}^{-1} \Phi^{*} L^{*^{-1}} h \\
= & R_{F}\left\{K \sigma_{E}^{-1} \Phi^{*}+\Psi\left(\frac{\lambda-i}{\lambda+i}-(A-i I)(A+i I)^{-1}\right)^{-1} \Phi \sigma_{E}^{-1} \Phi^{*}\right\} L^{*^{-1}} h \\
= & R_{F}\left\{K \sigma_{E}^{-1} \Phi^{*} L^{*^{-1}}+\frac{1}{2 i} \Psi L^{-1}(\lambda I-A)^{-1} L^{-1} \Phi \sigma_{E}^{-1} \Phi^{*} L^{*^{-1}}+\right. \\
& \left.+\frac{1}{2 i} \Psi L^{-1} \Phi \sigma_{E}^{-1} \Phi^{*} L^{*^{-1}}\right\} h .
\end{aligned}
$$

Using the colligation relation (2) $\Psi T^{*}+K \sigma_{E}^{-1} \Phi^{*}=0$ and (4) we obtain

$$
K \sigma_{E}^{-1} \Phi^{*} L^{*^{-1}}+\Psi\left(A^{*}+i I\right)=0
$$

Since

$$
\frac{1}{2 i} \Psi L^{-1} \Phi \sigma_{E}^{-1} \Phi^{*} L^{*^{-1}}=\frac{1}{i} \Psi \varphi^{*} \sigma_{A} \varphi=-\Psi\left(A-A^{*}\right)
$$

by virtue of (11) and (8). Thus

$$
\begin{aligned}
& R_{F} S_{\triangle_{T}}\left(\frac{\lambda-i}{\lambda+i}\right) \sigma_{E}^{-1} \Phi^{*} L^{*^{-1} h} \\
= & R_{F}\left\{-\Psi(A+i I)+i \Psi L^{-1}(A-\lambda I)^{-1} \varphi^{*} \sigma_{A} \varphi\right\} h \\
= & -R_{F} \Psi L^{-1} h+i R_{F} \Psi L^{-1}\left[(A-\lambda I)^{-1} \varphi^{*} \sigma_{A} \varphi h\right] \\
= & \sqrt{2} \varphi h-i \sqrt{2} \varphi(A-\lambda I)^{-1} \varphi^{*} \sigma_{A} \varphi h .
\end{aligned}
$$

Thus

$$
R_{F} S_{\triangle_{T}}\left(\frac{\lambda-i}{\lambda+i}\right) \sigma_{E}^{-1} \Phi^{*} L^{*^{-1}}=S_{\triangle_{A}}(\lambda) R_{E} \Phi^{*} L^{*^{-1}} h
$$

It is necessary to note that the relation between characteristic functions (13) of Cayley transformation (3) allows to study nonbounded operators. Really, if we consider a symmetric densely defined operator with a regular point $\lambda=$ -1 , then its Cayley transformation (4) reduces to an isometric operator with corresponding domain and range. Realizing (nonunitary!) continuation of this isometry onto the whole space H we obtain the operator T.
2. As is well known $[2,3]$ transition to the diagonal of an open system, associated with a local colligation, reduces to the Nevanlinna function class. This function class is related to characteristic functions by the homographic transformation and is the restriction of the real part of the main operator resolvents onto the canal subspace.

Let us give an appropriate analogue of this transformation for unitary metric colligations.

Let us write down an equation for an open system $F_{\triangle}=\left\{R_{\triangle}, S_{\triangle}\right\}[1]$

$$
F_{\triangle}:\left\{\begin{array}{l}
R_{\triangle}: x_{n+1}=T x_{n}+\Phi u_{n} \tag{14}\\
S_{\triangle}: v_{n}=\Psi x_{n}+K u_{n}
\end{array}\right.
$$

and for a dual system $F_{\triangle}^{+}=\left\{R_{\triangle}^{+}, S_{\triangle}^{+}\right\}[1]$

$$
F_{\triangle}^{+}:\left\{\begin{array}{l}
R_{\triangle}^{+}: x_{n}=T^{*} x_{n+1}+\Psi^{*} \sigma_{F} v_{n} \tag{15}\\
S_{\triangle}^{+}: u_{n}=\sigma_{E}^{-1} \Phi^{*} x_{n+1}+\sigma_{E}^{-1} K^{*} \sigma_{F} v_{n}
\end{array}\right.
$$

which are associated with a unitary metric colligation \triangle (1). Let us apply the operator T to the mapping equation R_{\triangle}^{+}(15). Then by making use of the colligation relation $T \Psi^{*}+\Phi \sigma_{E}^{-1} K=0$ one may derive that

$$
T T^{*} x_{n+1}=T x_{n}+\Phi \sigma_{E}^{-1} K^{*} \sigma_{F} v
$$

By summing this equality and the equation $R_{\triangle}(14)$ we find out that

$$
B_{T^{*}} x_{n+1}=2 T x_{n}+\Phi\left(u_{n}+K^{+} v_{n}\right)
$$

where, $B_{T^{*}}=T T^{*}+I$ is a self-adjoint invertible operator and $K^{+}=\sigma_{E}^{-1} K^{*} \sigma_{F}$ is an adjoint to K operator relative to σ_{E} and σ_{F} forms (i.e. $\left\langle\sigma_{F} K u, v\right\rangle=$ $\left\langle\sigma_{E} u, K^{+} v\right\rangle$).

Let a pair of linear mappings $F_{E}(d)=\left\{R_{E}(d), V_{E}(d)\right\}$ be the E - diagonal of the open systems F_{\triangle} and F_{\triangle}^{+}, -

$$
F_{E}(d):\left\{\begin{array}{l}
R_{E}(d): B_{T^{*}} x_{n+1}=2 T x_{n}+\Phi u_{n}^{-} \tag{16}\\
V_{E}(d): u_{n}^{+}=\sigma_{E}^{-1} \Phi^{*} x_{n+1}
\end{array}\right.
$$

where the input u_{n}^{-}and the output u_{n}^{+}of the E-diagonal $F_{E}(d)$ are equal to

$$
u_{n}^{-}=u_{n}+K^{+} v_{n}, \quad u_{n}^{+}=u_{n}-K^{-} v_{n} .
$$

"Fourier transform" of the diagonal $F_{E}(d)(16)\left(h_{n} \rightarrow z^{n} h_{0}\right)$ leads to the function

$$
\begin{equation*}
V_{E}(z)=z \Phi^{*}\left(z B_{T^{*}}-2 T\right)^{-1} \Phi \tag{17}
\end{equation*}
$$

which (in the virtue of $\left.u_{0}=S_{\triangle^{+}}(z) v_{0}\right)$ is a homographic transformation of the function $S_{\triangle+}(z)$, -

$$
\begin{equation*}
V_{E}(z)\left[S_{\triangle^{+}}(z)+K^{+}\right]=\sigma_{E}\left[S_{\triangle^{+}}(z)-K^{+}\right] \tag{18}
\end{equation*}
$$

Let us evaluate $\operatorname{Re}\left\langle\sigma_{E} u_{n}^{+}, u_{n}^{-}\right\rangle$. It is easy to see that

$$
\begin{aligned}
\operatorname{Re}\left\langle\sigma_{E} u_{n}^{+}, u_{n}^{-}\right\rangle & =\left\langle\sigma_{E} u_{n}, u_{n}\right\rangle-\left\langle\sigma_{E} K^{+} v_{n}, K^{+} v_{n}\right\rangle \\
& =\left\langle\sigma_{E} u_{n}, u_{n}\right\rangle-\left\langle\sigma_{F} v_{n}, v_{n}\right\rangle+\left\langle\left(\sigma_{F}-\left(K^{+}\right)^{*} \sigma_{E} K^{+}\right) v_{n}, v_{n}\right\rangle
\end{aligned}
$$

Using the isometry (2) one may easily reduce the right-hand side to the form

$$
=\left\|x_{n+1}\right\|^{2}-\left\|x_{n}\right\|^{2}+\left\langle\left(\sigma_{F}-\left(K^{+}\right)^{*} \sigma_{E} K^{+}\right) v_{n}, v_{n}\right\rangle .
$$

Since $V_{E}(z) u_{0}^{-}=\sigma_{E} u_{0}^{+}$and $u_{0}=S_{\triangle+}(z) v_{0}$, where $v_{0}=v_{0}(z)$ and $u_{0}^{ \pm}=u_{0}^{ \pm}(z)$ then

$$
\begin{equation*}
\left\langle\operatorname{Re}_{E}(z) u_{0}^{-}, u_{0}^{-}\right\rangle=\left(|z|^{2}-1\right)\left\|x_{0}\right\|^{2}+\left\|\Psi^{*} \sigma_{F} v_{0}\right\|^{2} \tag{19}
\end{equation*}
$$

It means, that if $|z|>1$ the real part $\operatorname{Re} V_{E}(z)$ is majorized below by a Hermitianpositive majorant, such that

$$
\left\|\Psi^{*} \sigma_{F} v_{0}\right\|^{2}=\left\langle\left(\sigma_{F}-\left(K^{+}\right)^{*} \sigma_{E} K^{+}\right) v_{0}, v_{0}\right\rangle \geq 0
$$

Formula (19) leads to

$$
\begin{align*}
& \left(S_{\Delta^{+}}(z)+K^{+}\right)^{*} \operatorname{Re}(z)\left(S_{\Delta^{+}}(z)+K^{+}\right) \tag{20}\\
= & S_{\Delta^{+}}^{*}(z) \sigma_{E} S_{\triangle^{+}}(z)-\sigma_{F}-\left(\left(K^{+}\right)^{*} \sigma_{E} K^{+}-\sigma_{F}\right) .
\end{align*}
$$

Thus the above majorization is such that for $|z|>1$ implies
(21) $\operatorname{Re} V_{E}(z) \geq\left(\left[S_{\Delta^{+}}(z)+K^{+}\right]^{*}\right)^{-1}\left(\sigma_{F}-\left(K^{+}\right)^{*} \sigma_{E} K^{+}\right)\left(S_{\Delta^{+}}(z)+K^{+}\right)^{-1}$.
3. Let us apply the operator T^{*} to the equation R of the system (14), then

$$
T T^{*} x_{n}=T^{*} x_{n+1}+\Psi^{*} \sigma_{E} K u_{n}
$$

(since $T^{*} \Phi+\Psi^{*} \sigma_{F} K=0$).
By summing this relation with the equation R_{\triangle}^{+}(15) we derive that

$$
B_{T} x_{n+1}=2 T^{*} x_{n+1}+\Psi^{*} \sigma_{F}\left(K u_{n}+v_{n}\right)
$$

where $B_{T}=T^{*} T+1$.
Let a pair of linear mappings

$$
F_{F}(d):\left\{\begin{array}{l}
R_{E}(d): B_{T} x_{n}=2 T^{*} x_{n+1}+\Psi^{*} \sigma_{F} v_{n}^{-} \tag{22}\\
V_{E}(d): v_{n}^{+}=\Psi x_{n}
\end{array}\right.
$$

where,

$$
v_{n}^{-}=K u_{n}+v_{n}, \quad v_{n}^{+}=v_{n}-K u_{n}
$$

be the F-diagonal of the open systems F_{\triangle} and F_{\triangle}^{*}.
The operator-function

$$
\begin{equation*}
V_{F}(z)=\Psi\left(B_{T}-2 z T^{*}\right)^{-1} \Psi^{*} \tag{23}
\end{equation*}
$$

which is a homographic transformation of the function $S_{\triangle}(z)$,

$$
\begin{equation*}
V_{F}(z) \sigma_{F}\left[K+S_{\triangle}(z)\right]=\left[S_{\triangle}(z)-K\right] \tag{24}
\end{equation*}
$$

corresponds to the mapping $V_{F}(d)$.
Evidently,

$$
\begin{aligned}
\operatorname{Re}\left\langle\sigma_{F} v_{n}^{-}, v_{n}^{+}\right\rangle & =\left\langle\sigma_{F} v_{n}, v_{n}\right\rangle-\left\langle K^{*} \sigma_{F} K u_{n}, u_{n}\right\rangle \\
& =\left\langle\sigma_{F} v_{n}, v_{n}\right\rangle-\left\langle\sigma_{E} u_{n}, u_{n}\right\rangle+\left\|\Phi x_{n}\right\|^{2}=
\end{aligned}
$$

using (2) allows to transform the right-hand side to the form

$$
=\left\|x_{n}\right\|^{2}-\left\|x_{n+1}\right\|^{2}+\left\|\Phi u_{n}\right\|^{2}
$$

Since

$$
V_{F}(z) \sigma_{F} v_{0}^{-}=v_{0}^{+}, \text {and } v_{0}=S_{\triangle}(z) u_{0}
$$

then,

$$
\begin{equation*}
\left\langle\operatorname{Re} V_{F}(z) \sigma_{E} v_{0}^{-}, \sigma_{F} v_{0}^{-}\right\rangle=\left(1-|z|^{2}\right)\left\|x_{0}\right\|^{2}+\left\|\Phi u_{0}\right\|^{2} \tag{25}
\end{equation*}
$$

In that case, if $|z|<1, \operatorname{Re} V_{F}(z)$ is majorized below by the Hermitian-positive majorant, which generates the expression

$$
\left\|\Phi u_{0}\right\|^{2}=\left\langle\left(\sigma_{E}-K^{*} \sigma_{F} K\right) u_{0}, u_{0}\right\rangle \geq 0
$$

Thus there exists

$$
\begin{align*}
& {\left[K+S_{\triangle}(z)\right]^{*} \sigma_{F} \operatorname{Re} V_{F}(z) \sigma_{F}\left[K+S_{\triangle}(z)\right] } \tag{26}\\
= & S_{\triangle}^{*}(z) \sigma_{F} S_{\triangle}(z)-\sigma_{E}-\left(K^{*} \sigma_{F} K-\sigma_{E}\right)
\end{align*}
$$

and the above majorization means that

$$
\begin{equation*}
\operatorname{Re} V_{F}(z) \geq\left(\left[K+S_{\triangle}(z)\right]^{*}\right)^{-1}\left(\sigma_{E}-K^{*} \sigma_{F} K\right)\left(K+S_{\triangle+}(z)\right)^{-1} \tag{27}
\end{equation*}
$$

if $|z|<1$.
To sum up the reasoning of the sections $\mathbf{2}, \mathbf{3}$ we may formulate the following theorem.

Theorem 2. The homographic transformation (18) ((24)) leads to the transfer mapping $V_{E}(z)\left(V_{F}(z)\right)$ of the $E(F)$-diagonal of the open systems (16) $((22))$. In that case the real part of $\operatorname{Re}_{E}(z)\left(\operatorname{Re} V_{F}(z)\right)$ outside the disk $|z|>1$ or inside the disk $|z|<1$ has from below the Hermitian-positive majorant (21) $((27))$ from below. Furthermore $V_{E}(z)$ and $V_{F}(z)$ are related by the formula

$$
\begin{equation*}
V_{F}(z) \sigma_{F} K=K \sigma_{E}^{-1} V_{E}^{*}\left(\frac{1}{\bar{z}}\right) \tag{28}
\end{equation*}
$$

To derive (28) it is necessary to determine $S_{\triangle}(z)$ from (24)

$$
S_{\triangle}(z)=-K+2\left(I-V_{F}(z) \sigma_{F}\right)^{-1} K
$$

and the function $S_{\triangle^{+}}(z)$ from (18)

$$
S_{\triangle+}(z)=-K^{+}+2\left(\sigma_{E}-V_{E}(z)\right)^{-1} \sigma_{E} K^{+}
$$

Using this equality by virtue of the equation $S_{\Delta^{+}}(z)=\sigma_{E}^{-1} S^{*}\left(\frac{1}{\bar{z}}\right) \sigma_{F}$, we obtain

$$
S_{\triangle}(z)=-K+2 K\left(I-\sigma_{E}^{-1} V_{E}^{*}\left(\frac{1}{\bar{z}}\right)\right)^{-1}
$$

that leads to the formula (28) after equating of the right-hand parts.
Remark 1. It follows from the formula (20) that the majorization (21) of the real part of the function $V_{E}(z)$ guarantees realization of the J-properties of the characteristic function $S_{\triangle}(z)$ outside the disk $|z|>1$, and from formula (26) it follows that $V_{F}(z)$ guarantees realization of the J-properties of the $S_{\triangle}(z)$ inside the disk $|z|<1$ in the virtue of the lower majorant (27).

Remark 2. Recall $[2,5]$ that a function $f(z)$ belongs to the Caratheodori class (C) if $f(z)$ maps the disk $|z|<1$ into the half plane Rew ≥ 0. Such functions have the corresponding Riesz-Herglotz integral representation [2, 5]. It follows from (21) and (27) that $E(F)$-diagonals $V_{E}^{*}\left(\frac{1}{\bar{z}}\right)\left(V_{F}(z)\right)$ are the operator-functions of the Caratheodori type, but with slightly more rigid condition concerning the respective lower majorant.
4. It is not difficult to see that

$$
\begin{align*}
\tilde{S}(z) & =S_{\triangle}^{*}(0) \sigma_{F} S_{\triangle}(z)=\sigma_{E}-z \Phi^{*}(z I-T)^{-1} \Phi \tag{29}\\
\tilde{S}^{\prime}(z) & =S_{\triangle}(z) \sigma_{E}^{-1} S_{\triangle}^{*}(0)=\sigma_{F}^{-1}-z \Psi(z I-T)^{-1} \Psi^{*}
\end{align*}
$$

Elementary calculations show that

$$
\begin{align*}
W(z) & =-2 \tilde{S}(z)+\tilde{S}(0)+\sigma_{E}=\Phi^{*}(T+z I)(-T+z I)^{-1} \Phi \tag{30}\\
W^{\prime}(z) & =-2 \tilde{S}^{\prime}(z)+\tilde{S}^{\prime}(0)+\sigma_{F}^{-1}=\Psi(T+z I)(-T+z I)^{-1} \Psi^{*}
\end{align*}
$$

Let T is a contraction, $\|T\| \leq 1$. Include the operator T into the minimal unitary metric colligation

$$
\triangle=\left(I_{E}, H \oplus E, V=\left[\begin{array}{cc}
T & \Phi \tag{31}\\
\Psi & K
\end{array}\right], H \oplus F, I_{F}\right)
$$

where,

$$
\begin{aligned}
E & =D_{T^{*}}=\overline{\left(I-T T^{*}\right) H} \cdot, \quad F=D_{T}=\overline{\left(I-T^{*} T\right) H} \quad, \quad \Phi=\left|I-T T^{*}\right|^{\frac{1}{2}} \\
\Psi & =\Phi=\left|I-T T^{*}\right|^{\frac{1}{2}}, \quad K=-\left.T^{*}\right|_{E},(\text { see }[1,4])
\end{aligned}
$$

Recall some information concerning function theory and dilation theory [4]. For the function $\omega=f(z)$ of the class C (Caratheodori), analytic with $|z|<1$ and performing mapping the disk $|z|<1$ into the half plane Rew ≥ 0, the Riesz-Herglotz integral representation $[2,5]$ is valid

$$
\begin{equation*}
f(z)=i \operatorname{Im} f(0) \frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{e^{i \theta}+z}{e^{i \theta}-z} d \sigma(\theta) \tag{32}
\end{equation*}
$$

where $\sigma(\theta)$ is a non-decreasing function of constrained variation, which in essence is defined unambiguously by $f(z)$.

A subspace $L \subset G$ is called wandering for isometric V in G if $V^{k} L \perp V^{s} L$ where $k, s \in Z,(k \neq s)$.

Theorem 3 [4]. Let U in G is a minimal unitary dilation for completely nonunitary contraction of T in H. Then the subspaces

$$
L=\overline{(U-T) H} \quad, \quad L^{*}=\overline{\left(U^{*}-T^{*}\right) H}
$$

are the wandering subspaces for U and moreover

$$
G=\operatorname{span}\left\{l_{Z}^{2}(L), l_{Z}^{2}\left(L^{*}\right)\right\}=\cdots \oplus U^{*} L^{*} \oplus L^{*} \oplus H \oplus L \oplus U L \oplus \cdots
$$

where

$$
l_{Z}^{2}(L)=\sum_{-\infty}^{\infty} \oplus U^{k} L, \quad l_{Z}^{2}\left(L^{*}\right)=\sum_{-\infty}^{\infty} \oplus U^{k} L^{*}
$$

It is evident that the function

$$
W(\xi)=W\left(\xi^{-1}\right)=\Phi^{*}(I+\xi T)(I-\xi T)^{-1} \Phi
$$

is analytical function if $|\xi|<1$.
If

$$
U^{*}=\int_{-\pi}^{\pi} e^{i \varphi} d E(\varphi)
$$

is the spectral representation of U^{*}, then

$$
\begin{aligned}
(I+\xi T)(I-\xi T)^{-1} & =\left.P_{H}(I+\xi U)(I-\xi U)^{-1}\right|_{H} \\
& =\left.P_{H}\left(U^{*}+\xi\right)\left(U^{*}-\xi\right)^{-1}\right|_{H} \\
& =\left.P_{H} \int_{-\pi}^{\pi} \frac{e^{i \varphi}+\xi}{e^{i \varphi}-\xi} d E(\varphi)\right|_{H}
\end{aligned}
$$

Thus $\hat{W}(\xi)$ belongs to the Caratheodori class since

$$
\begin{equation*}
W(\xi)=\int_{-\pi}^{\pi} \frac{e^{i \varphi}+\xi}{e^{i \varphi}-\xi} d F(\varphi) \tag{33}
\end{equation*}
$$

where $F(\varphi)=\Phi^{*} E(\varphi) \Phi$ is nonnegative, non-decreasing operator- function in the space E if $\varphi \in[-\pi, \pi]$.
It is evident that

$$
L_{*}=U L^{*}=\overline{\left(I-U T^{*}\right) H}
$$

and in the virtue of inclusion in the colligation (31) it is clear that $\overline{\Phi E}=P_{H} L_{*}$. From the representation of the subspace G in Theorem 3 and wandering property of the subspace L^{*} we have $L_{*} \subset H \oplus L$. Thus, every vector $f_{L_{*}} \in L_{*}$ may be expanded into the sum

$$
f_{L_{*}}=f_{H} \oplus f_{L}
$$

It is evident that

$$
\left(U^{*}+I \xi\right)\left(U^{*}-I \xi\right)^{-1}=\sum_{0}^{\infty} \xi^{k} U^{k}+\sum_{1}^{\infty} \xi^{k+1} U^{k+1}, \quad(|\xi|<1)
$$

Therefore

$$
\begin{equation*}
\left(U^{*}+I \xi\right)\left(U^{*}-I \xi\right)^{-1} f_{L_{*}}=\left(U^{*}+I \xi\right)\left(U^{*}-I \xi\right)^{-1} f_{H}+\left(U^{*}+I \xi\right)\left(U^{*}-I \xi\right)^{-1} f_{L} \tag{34}
\end{equation*}
$$

thus in the virtue of the above remarks

$$
\begin{aligned}
\left(U^{*}+\xi\right)\left(U^{*}-\xi\right)^{-1} f_{L_{*}} & \in l_{Z}^{2}\left(L_{*}\right) \\
\left(U^{*}+I \xi\right)\left(U^{*}-I \xi\right)^{-1} f_{L} & \in l_{Z_{+}}^{2}(L)=\sum_{0}^{\infty} U^{k} L
\end{aligned}
$$

Therefore

$$
P_{H}\left(U^{*}+I \xi\right)\left(U^{*}-I \xi\right)^{-1} f_{L_{*}}=P_{H}\left(U^{*}+I \xi\right)\left(U^{*}-I \xi\right)^{-1} f_{H}
$$

Thus we conclude that "bordering" of $\Phi^{*} E(\varphi) \Phi$ means restriction of the spectral measure $E(\varphi)$ on $l_{Z}^{2}\left(L_{*}\right)$.

Theorem 4. Functions $W(\xi)=W\left(\xi^{-1}\right)$ and $\hat{W}^{\prime}(\xi)=W^{\prime}\left(\xi^{-1}\right)$, halomorphic inside the unit disk $|\xi|<1$ belong to the Caratheodori class. For $\hat{W}(\xi)$ and $\hat{W}^{\prime}(\xi)$ there exists Riesz-Herglotz integral representation (33) on the measures $d F(\varphi)=\Phi^{*} d E(\varphi) \Phi$ and $d F^{\prime}(\varphi)=\Psi d E(\varphi) \Psi^{*}$ respectively. The spectral measure $d E(\varphi)$ of the unitary minimal dilation U of the operator T in the case when $d F(\varphi)$ describes the restriction of the operator U onto a subspace of the double-sided shift operator $l_{Z}^{2}\left(L_{*}\right)$ and in the case of $d F^{\prime}(\varphi)$ onto $l_{Z}^{2}(L)$.

Remark 3. It is reasonable that the representing measures $d F(\varphi)$ and $d F^{\prime}(\varphi)$ must be connected with each other by some concordance condition. The assertion may be deduced by the space G structure (Theorem 3.). The problem of dilation constructing by the representing measures $d F(\varphi)$ and $d F^{\prime}(\varphi)$ taking into account the above mentioned concordance conditions of these measures is quite natural and interesting.

Remark 4. For non-selfadjoint operators, the resolvent narrowing on the defect subspace leads to Nevanlinna function class, and exactly the same
type of problems has been studied in the work of Naboko S. N. [6] in the very complete fashion. In this case, there appear two functions $W(z)$ and $W^{\prime}(z)(30)$ from Caratheodori class, which gives us two representative measures $d F(\varphi)$ and $d F^{\prime}(\varphi)$, and this leads us to new non-standard type of problems in this field.

REFERENCES

[1] M. S. BrodskiǏ. Unitary Operator Colligations and their Characteristic Functions. Usp. Math. Nauk 33, 4 (1978), 141-168 (in Russian).
[2] M. S. Brodskiř. Triangular and Jordan Representations of Linear Operators. Nauka, Moscow, 1996; English transl. Translations of Mathematical Monographs, Vol. 32. American Mathematical Society, Providence, R.I., 1971.
[3] M. S. Livshits, A. A. Yantsevich. Theory of Operator Colligation in Hilbert Space. J. Wiley, New York, 1979.
[4] B. Sz.-Nagy, C. Foias. Harmonic Analysis of Operators on Hilbert Space. North Holland, Amsterdam, 1970.
[5] N. I. Akhiezer. The Classicl Moment Problem. Oliver and Boyd, Edinburgh, 1965.
[6] S. N. Naboka. Nontangential boundary values of operator R-functions in a half-plane. Algebra i Analiz 1, 5 (1989), 197-222 (in Russian); English transl. Leningrad Math. J. 1, 5 (1990), 1255-1278.

Vladimir A. Zolotarev

Department of Higher Mathematics and Information Science
Kharkiv National University
Kharkiv, Ukraine
e-mail: Vladimir.A.Zolotarev@univer.kharkov.ua
Raéd Hatamleh
Dept. of Mathematics
Irbid National University
Irbid, Jordan
e-mail: raedhat@yahoo.com

