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SUBVARIETIES OF THE HYPERELLIPTIC MODULI

DETERMINED BY GROUP ACTIONS

T. Shaska
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Abstract. Let Hg be the moduli space of genus g hyperelliptic curves.
In this note, we study the locus Hg(G, σ) in Hg of curves admitting a G-
action of given ramification type σ and inclusions between such loci. For
each genus we determine the list of all possible groups, the inclusions among
the loci, and the corresponding equations of the generic curve in Hg(G, σ).
The proof of the results is based solely on representations of finite subgroups
of PGL2(C) and the Riemann-Hurwitz formula.

1. Introduction.Let Hg be the moduli space of genus g hyperelliptic

curves. We study the locus Hg(G,σ) in Hg of curves admitting a G-action of

given ramification type σ. All components of Hg(G,σ) have the same dimension

which depends only on the signature of the G-action. Restricting the action to

a subgroup H of G yields an inclusion of Hg(G,σ) into the corresponding locus

Hg(H,σ) for the action ofH. In this paper we study all possible loci Hg(G,σ), the
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inclusions between such loci, and determine an equation for a generic curve C in

Hg(G,σ). This is the first part of the two paper sequence, the second of which will

consider such problem for hyperelliptic curves defined over a field of characteristic

p > 0. The main goal of this paper is twofold: first to give a unified treatment

of automorphisms groups of hyperelliptic curves and the loci they determine in

characteristic zero, and second to provide the motivation needed for studying

such problem in characteristic p > 0. While some of the results of this paper

are scattered in the literature we provide a unified approach which is algebraic

and is based solely on representations of finite subgroups of PGL2(C) and the

Riemann-Hurwitz formula.

In Section 2, we give a brief introduction on hyperelliptic curves and their

automorphism groups. This material can be found in [2, 3, 15, 14] among many

other places in the literature. For a given hyperelliptic curve X , defined over k,

with automorphism group G, the reduced automorphism group is G := G/〈w〉,
where w is the hyperelliptic involution. This group G is embedded in PGL2(k)

and therefore is one of ZnDn, A4, S4, A5. G acts on e genus 0 field k(x). We

determine a rational function φ(x) that generates the fixed field k(x)G in all

cases. Using only this rational function we are able to determine the parametric

equation of each family Hg(G,σ) (cf. Section 4). Different decompositions of φ(x)

give different decompositions of f(x) in the equations of the hyperelliptic curve

y2 = f(x). An equation of an hyperelliptic curve with an extra automorphism

of order n can be written as y2 = f(xn) or y2 = xf(xn). This corresponds to a

decomposition of the rational function φ(x) in xn. For algorithms on decomposing

rational functions one can check [6] and the references from there. Furthermore,

for each fixed g we give a formula for the number of automorphism groups that

occur.

In Section 3, we discuss the locus Hg(G,σ). First, we determine the

signatures of the covers ψ : Xg → P1. The moduli space of such covers with

fixed group G and ramification σ is a Hurwitz space H. There is an obvious

map from H to the hyperelliptic moduli of curves Hg. We denote the image of

this map by Hg(G,σ) which is a subvariety of Hg. The dimension of Hg(G,σ)

is determined solely by the signature σ. For each g ≥ 2 we list all possible

groups, their signatures, and the dimension of the locus Hg(G,σ). In Section 4,

we determine the equations of the families of curves for a given group. This is

determined using the rational function φ(x) from Section 2. Weierstrass points of

the curve are points in the fibers φ−1(λ), where λ is a branch point of φ(x). Such

branch points can be determined easily when φ(x) is known. For each group an
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equation for the family of curves is determined.

In Section 5, we discuss the inclusions among the loci Hg(G,σ). We

implement a program that for each genus g ≥ 2 determines the list of groups

which occur as full automorphism group of hyperelliptic curves of genus g and

draws a the lattice of these groups.

There is plenty of literature on the automorphism groups of hyperelliptic

curves. Among many papers we mention [2], [7]. Most of these papers have

studied the automorphism groups of the hyperelliptic curve using the Fuchsian

groups. Our goal is to provide a unified simple algebraic approach of the results

with the list of all the groups G which occur as full automorphism groups of

hyperelliptic curves, all possible signatures σ for each given group G, the dimen-

sion of each locus Hg(G,σ), and the lattice of the loci Hg(G,σ).

Notation: Throughout this paper k denotes an algebraically closed field of

characteristic zero, g an integer ≥ 2, and Xg a hyperelliptic curve of genus g

defined over k.

2. Hyperelliptic curves and their automorphisms.Let k be an

algebraically closed field of characteristic zero and Xg be a genus g hyperelliptic

curve given by the equation y2 = F (x), where ◦(F ) = 2g + 2. Denote the

function field of Xg by K := k(x, y). Then, k(x) is the unique degree 2 genus

zero subfield of K. K is a quadratic extension field of k(x) ramified exactly at

d = 2g + 2 places α1, . . . , αd of k(x). The corresponding places of K are called

the Weierstrass points of K. Let W := {α1, . . . , αd} and G = Aut(K/k). Since

k(x) is the only genus 0 subfield of degree 2 of K, then G fixes k(x). Thus,

G0 := Gal(K/k(x)) = 〈z0〉, with z2
0 = 1, is central in G. We call the reduced

automorphism group of K the group G := G/G0. Then, G is isomorphic to one

of the following: Zn, Dn, A4, S4, A5 with branching indices of the corresponding

cover P
1
x → P

1/G given respectively by (n, n), (2, 2, n), (2, 3, 3), (2, 4, 4), (2, 3, 5).

We fix a coordinate z in P
1/G. Thus, G is the monodromy group of a cover

φ : P
1
x → P

1
z. We denote by q1, . . . , qr the corresponding branch points of φ. Let

S be the set of branch points of Φ : Xg → P
1
z. Clearly q1, . . . , qr ∈ S. As above W

denotes the images in P
1 of Weierstrass points of Xg and V := ∪r

i=1φ
−1(qi). For

each q1, . . . , qr we have a corresponding permutation σ1, . . . , σr ∈ Sn. The tuple

σ̄ := (σ1, . . . , σr) is the signature of G. Thus, G = 〈σ1, . . . , σr〉 and σ1 · · · σr = 1.

Since each of the above groups is embedded in PGL2(C) then we can have

these generating systems σ1, . . . , σr as matrices in PGL2(C). Below we display
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all the cases:

i) Zn
∼=

〈

(

ζn 0
0 1

)

,

(

ζn−1
n 0
0 1

)

〉

ii) Dn
∼=

〈

(

0 1
1 0

)

,

(

0 1
1 0

)

,

(

ζn 0
0 1

)

〉

iii) A4
∼=

〈

(

−1 0
0 1

)

,

(

1 i
1 −i

)

〉

iv) S4
∼=

〈

(

−1 0
0 1

)

,

(

0 −1
1 0

)

,

(

−1 −1
1 1

)

:
〉

v) A5
∼=

〈

(

ω 1
1 −ω

)

,

(

ω ξ45
1 −ξ45ω

)

〉

(1)

where ω =
−1 +

√
5

2
, ζn is a primitive nth root of unity, ξ5 is a primitive 5th root

of unity, and i is a primitive 4th root of unity.

2.1. Fixed fields of the reduced automorphism groups. The group

G given above acts on k(x) via the natural way. The fixed field is a genus 0 field,

say k(z). Thus, z is a degree |G| rational function in x, say z = φ(x). In this

section we determine φ(x) and its decompositions.

Lemma 1. Let H be a finite subgroup of PGL2(k). Let us identify each

element of H with the corresponding Moebius transformation and let si be the i-th

elementary symmetric polynomial in the elements of H, i = 1, . . . , |H|. Then any

non-constant si generates k(z).

P r o o f. It is easy to check that the si are the coefficients of the minimum

polynomial of x over k(z). It is well-known that any non-constant coefficient of

this polynomial generates the field. �

Lemma 2. The fixed field for each of the groups G in cases i) – v) is

generated respectively by the function

i) z = xn

ii) z = xn +
1

xn

iii) z =
x12 − 33x8 − 33x4 + 1

x2(x4 − 1)2
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iv) z =
(x8 + 14x4 + 1)3

108 (x(x4 − 1))4

v) z =

(

−x20 + 228x15 − 494x10 − 228x5 − 1
)3

1728 (x(x10 + 11x5 − 1))5

P r o o f. Apply Lemma 1 to the embedding of G given above. �

Notice that the branch points of a rational function φ(x) =
f(x)

g(x)
are

exactly the zeroes of the discriminant of the polynomial r(x) := f(x) − t · g(x)
with respect to x. Then the branch points of each of the above functions are i)

{0,∞}, ii) {−2, 2,∞}, iii) {∞,−6i
√

3, 6i
√

3}, iv) {0, 1,∞}, v) {0, 1728,∞}. The

above facts are well known in the literature, see for example Klein [9].

Decomposition of φ(x). The automorphism group of k(x)/k(φ) is

the embedding of G detailed before. As |G| = [k(x) : k(φ)], there is a degree-

preserving correspondence between subgroups of G and intermediate fields in the

extension. By Lüroth’s Theorem, each of those fields is k(h) for some rational

function h. Now, it is clear that, in general, k(f) ⊂ k(h) ⇔ f = g ◦ h for some g.

Thus, we can use computer algebra techniques to find all the decompositions of

φ and describe the lattice of intermediate fields.

It is clear from the expression of φ that there is a decomposition φ = g(xs)

for s taking the values n, n, 2, 4, 5 respectively. This comes also from the fact that

the subgroup 〈ξ5 ·x〉 of G corresponds to the field generated by x ·ξ5x · · · · ξs−1
5 x =

xs.

Finding different decompositions of φ(x) is not a trivial computational

problem. There are algorithms available to do this; see [6] for details.

For example, for G = A5 it is also possible to find decompositions invol-

ving x2 or x3 for functions that are equivalent to φ. Namely, for any σ ∈ PGL2(k),

a generator of the field fixed for the conjugate group σA5σ
−1 is φ(σ−1). If σ is

chosen in such a way as having {x,−x} < σA5σ
−1, then k(x · (−x)) = k(x2) will

be an intermediate field by Lemma 1. This can be accomplished by conjugating

any involution of A5 into −x. In the same manner, if an element of order 3 in

A5 is conjugated into ζ3x, where ζ3 is a primitive cubic root of 1, the resulting

function can be written in terms of x · ζ3x · ζ2
3x = x3; see [13] for details.

Automorphism groups and their signatures. The automorphism

groups of hyperelliptic curves have been classified by [2], [3]. Most of these
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results study automorphism groups in terms of the Fuchsian groups. Since, we

take the algebraic approach we go over some of the results briefly.

The automorphism group G of the hyperelliptic curve is a degree 2 central

extension of G. The following lemma is proved in [7].

Lemma 3. Let p ≥ 2, α ∈ G and ᾱ its image in G with order | ᾱ | = p.

Then,

i) |α | = p if and only if it fixes no Weierstrass points.

ii) |α | = 2p if and only if it fixes some Weierstrass point.

Let W denote the images in P
1
x of Weierstrass places of Xg and V :=

∪3
i=1φ

−1(qi).

Let z =
Ψ(x)

Υ(x)
, where Ψ,Υ ∈ k[x]. For each branch point qi, i = 1, 2, 3 we

have the degree |G| equation z ·Υ(x)− qi ·Υ(x) = Ψ(x), where the multiplicity of

the roots correspond to the ramification index for each qi (i.e., the index of the

normalizer in G of σi). We denote the ramification of φ : P
1
x → P

1
z, by ϕr

m, χ
s
n, ψ

t
p,

where the subscript denotes the degree of the polynomial.

Let λ ∈ S \ {q1, q2, q3}. The points in the fiber of a non-branch point λ

are the roots of the equation: Ψ(x)− λ ·Υ(x) = 0. To determine the equation of

the curve we simply need to determine the Weierstrass points of the curve. For

each fixed φ there are the following eight cases:

1) V ∩W = ∅,
2) V ∩W = φ−1(q1),

3) V ∩W = φ−1(q2),

4) V ∩W = φ−1(q3),

5) V ∩W = φ−1(q1) ∪ φ−1(q2),

6) V ∩W = φ−1(q2) ∪ φ−1(q3),

7) V ∩W = φ−1(q1) ∪ φ−1(q3),

8) V ∩W = φ−1(q1) ∪ φ−1(q2) ∪ φ−1(q3).

(2)

It turns out that the above cases also determine the full automorphism groups.

We define the following groups as follows:

Vn :=〈 x, y |x4, yn, (xy)2, (x−1y)2 〉, Hn := 〈x, y | x4, y2x2, (xy)n 〉,
Gn :=〈x, y | x2yn, y2n, x−1yxy 〉, Un := 〈x, y |x2, yn, xyxyn+1〉,

(3)
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Sometimes these groups are called twisted dihedral, double dihedral, gene-

ralized quaternion, and semidihedral. We warn the reader that these terms

are not standard in the literature. They are all four degree 2 central extensions of

the dihedral group Dn and therefore have order 4n. Notice that V2 is isomorphic

with the dihedral group of order 8 and H2
∼=U2

∼=Z2 ⊗Z4. Furthermore, we have

the following result, the proof is elementary and we skip the details.

Remark 4. i) If n ≡ 1 mod 2 then H4n
∼=G4n

ii) If n = 2s+1 then Gn = Q2s+1 for any s ∈ Z.

Further, the following groups

W2 := 〈x, y |x4, y3, yx2y−1x2, (xy)4〉, W3 := 〈x, y |x2, y3, x2(xy)4, (xy)8〉

are degree 2 central extensions of S4. Now we have the following result.

Theorem 5. The full automorphism group of a hyperelliptic curve is

isomorphic to one of the following Z2 ⊗ Zn, Zn, Z2 ⊗Dn, Vn, Dn, Hn, Gn, Un,

Z2 ⊗A4, SL2(3), Z2 ⊗ S4, GL2(3), W2, W3 Z2 ⊗A5, SL2(5). Furthermore, the

signature for each group is as in Table 1.

P r o o f. The ramification of φ : P
1
x → P

1/G is one of the following (n, n),

(2, 2, n), (2, 3, 3), (2, 4, 4), (2, 3, 5). Recall that |G| = 2|G|. Each case of Eq. (2)

determines a group of automorphisms.

Let G = Zn and G =< α >. If α fixes no Weierstrass points then, from

the above Lemma, α lifts to an element of order n in G. Hence, G = Z2 ⊗ Zn. If

α fixes some Weierstrass points then α lifts to an element of order 2n in G and

|G| = 2n then G is the cyclic group of order 2n.

The cases left have three branch points for the cover φ : P
1
x → P

1/G.

From the above lemma we have that if the places in the fiber φ−1(q1), φ
−1(q2),

φ−1(q3), are Weierstrass points then σ1, σ2, σ3 lift in G to elements of orders 2|σ1|,
2|σ2|, and 2|σ3| respectively.

Let G∼=Dn where Dn is given as in Eq. (1). Since the branching of q1
and q2 is the same then there are basically six distinct cases which could arise.

In other words, cases 2 and 3 from Eq. (2) give the same group G. The same

happens for cases 6 and 7 from Eq. (2).

If none of the places in the fibers φ−1(q1), φ
−1(q2), φ

−1(q3), are Weier-

strass points then σ1, σ2, σ3 lift in G to elements of orders |σ1|, |σ2|, and |σ3|
respectively. Together, with the hyperelliptic involution we have G = Z2 ⊗Dn.

When places in φ−1(q1) (or φ−1(q2)) are Weierstrass points then the involution
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# G G δ(G,C) δ, n, g C = (C1, . . . Cr) φ

1 Z2 ⊗ Zn
2g+2

n
− 1 n < g + 1 (n2, n2, 2n, . . . , 2n)

2 Z2n Zn
2g+1

n
− 1 (n2, 2n, 2n, . . . , 2n) (n, n)

3 Z2n
2g
n
− 1 n < g (2n, 2n, 2n, . . . , 2n)

4 Z2 ⊗Dn
g+1
n

(n4, 22n, . . . , 22n)

5 Vn
g+1

n
− 1

2 (n4, 4n, 22n, . . . , 22n)

6 D2n Dn
g
n

((2n)2, 22n, . . . , 22n) (2n, 2n, n2)

7 Hn
g+1

n
− 1 n < g + 1 (4n, 4n, n4, 22n . . . , 22n)

8 Un
g
n
− 1

2 g 6= 2 (4n, (2n)2, 22n, . . . , 22n)

9 Gn
g
n
− 1 n < g (4n, 4n, (2n)2, 22n, . . . , 22n)

10 Z2 ⊗A4
g+1
6 (38, 38, 212, . . . , 212)

11 Z2 ⊗A4
g−1
6 (38, 64, 212, . . . , 212)

12 Z2 ⊗A4 A4
g−3
6 δ 6= 0 (64, 64, 212, . . . , 212) (26, 34, 34)

13 SL2(3) g−2
6 δ 6= 0 (46, 38, 38, 212, . . . , 212)

14 SL2(3) g−4
6 (46, 38, 64, 212, . . . , 212)

15 SL2(3) g−6
6 δ 6= 0 (46, 64, 64, 212, . . . , 212)

16 Z2 ⊗ S4
g+1
12 (316, 412, 224, . . . , 224)

17 Z2 ⊗ S4
g−3
12 (68, 412, 224, . . . , 224)

18 GL2(3) g−2
12 (316, 86, 224, . . . , 224)

19 GL2(3) S4
g−6
12 (68, 86, 224, . . . , 224) (212, 38, 46)

20 W2
g−5
12 (412, 412, 316, 224, . . . , 224)

21 W2
g−9
12 (412, 412, 68, 224, . . . , 224)

22 W3
g−8
12 (412, 316, 86, 224, . . . , 224)

23 W3
g−12
12 (412, 68, 86, 224, . . . , 224)

24 Z2 ⊗A5
g+1
30 (340, 524, 260, . . . , 260)

25 Z2 ⊗A5
g−5
30 (340, 1012, 260, . . . , 260)

26 Z2 ⊗A5
g−15
30 (620, 1012, 260, . . . , 260)

27 Z2 ⊗A5 A5
g−9
30 (620, 524, 260, . . . , 260) (230, 320, 512)

28 SL2(5) g−14
30 (430, 340, 524, 260, . . . , 260)

29 SL2(5) g−20
30 (430, 340, 1012, 260, . . . , 260)

30 SL2(5) g−24
30 (430, 620, 524, 260, . . . , 260)

31 SL2(5) g−30
30 (430, 620, 1012, 260, . . . , 260)

Table 1: Aut(Xg) and the corresponding signatures



Subvarieties of the hyperelliptic moduli 363

σ1 ∈ Dn, as in Eq (1), lifts to an element of order 4. In this case, the group has

generators

G = 〈 σ̄1, σ̄3 | σ̄4
1 , σ̄

n
3 , (σ̄1σ̄3)

2, (σ̄
(−1)
1 σ̄3)

2 〉,

where σ̄1, σ̄3 are the lifts of σ1, σ3 in G. Thus, G∼= Vn.

When places in φ−1(q3) are Weierstrass points then the element of order

σ1 ∈ Dn of order n lifts to an element of order 2n. In this case, the group G has

generators of order 2n and the hyperelliptic involution. Thus, G∼=D2n.

The other three cases from Eq. (2), namely case 5), 6) or 7), and case 8)

give groups Hn, Un, Gn with presentation as in Eq. (3).

If G∼=A4 then again we have two branch cycles which are the same.

Hence, we have 6 cases. When the involution lifts to an element of order 4 then

the degree 2 central extension of A4 is SL2(3), otherwise the extension is Z2⊗A4.

The proof when G∼=S4 or A5 goes similarly and we skip the details. The

signature for each group follows accordingly for each case. �

The above theorem was first proven in [3] using Fuchsian groups. Notice

that representations of groups are given in that paper.

Remark. i) In cases 4, 5, and 7–9 we have n ≡ 0 mod 2.

2.4. The number of automorphism groups for a fixed genus. For

a fixed g we denote by Ng the number of groups that occur as automorphism

groups of genus g curves. We would like to determine what happens to Ng as g

increases.

Let n ∈ Z such that n = pα1

1 · · · pαs

s . Denote by d(n) the number of

divisors of n. It is well known that d(n) =
∏s

i=1(αi + 1). Further, we denote by

d̄(n) the number of even divisors of n. We have the following lemma:

Lemma 7. Let g be fixed. Then the number of automorphism groups that

can occur as automorphism groups Aut(Xg) of genus g hyperelliptic curves is

i) if Aut(Xg)∼= Zn then n1 = d(g + 1) + d(2g + 1) + d(2g) − 1

ii) if Aut(Xg)∼=Dn then n2 = 3d̄(g + 1) + 2d̄(g) + d(g) − 2

iii) if Aut(Xg)∼=A4 and g > 6 then n3 = 1

iv) if Aut(Xg)∼=S4 then n4 = 1 or 0.

v) if Aut(Xg)∼=A5 then n5 = 1 or 0.

P r o o f. The proof is elementary and we skip the details. �
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3. Moduli spaces of covers. Fix an integer g ≥ 2 and a finite group

G. Let C1, . . . , Cr be nontrivial conjugacy classes of G. Let C = (C1, . . . , Cr),

viewed as unordered tuple, repetitions are allowed. We allow r to be zero, in which

case C is empty. Consider pairs (X , µ), where X is a curve and µ : G→ Aut(X )

is an injective homomorphism. We will suppress µ and just say X is a curve with

G-action, or a G-curve. Two G-curves X and X ′ are called equivalent if there is

a G-equivariant isomorphism X → X ′.

We say a G-curve X is of ramification type (g,G,C) if the following

holds: Firstly, g is the genus of X . Secondly, the points of the quotient X/G
that are ramified in the cover X → X/G can be labeled as p1, . . . , pr such that

Ci is the conjugacy class in G of distinguished inertia group generators over pi

(for i = 1, . . . , r). (Distinguished inertia group generator means the generator

that acts in the tangent space as multiplication by exp(2π
√
−1/e), where e is the

ramification index). For short, we will just say X is of type (g,G,C).

If X is a G-curve of type (g,G,C) then the genus g0 of X/G is given by the

Riemann-Hurwitz formula. Define H = H(g,G,C) to be the set of equivalence

classes of G-curves of type (g,G,C). By covering space theory, H is non-empty

if and only if G can be generated by elements α1, β1, . . . , αg0
, βg0

, γ1, . . . , γr with

γi ∈ Ci and
∏

j [αj , βj ]
∏

i γi = 1, where [α, β] = α−1β−1αβ.

Let Mg be the moduli space of genus g curves, and Mg0,r the moduli space

of genus g0 curves with r distinct marked points, where we view the marked points

as unordered (contrary to usual procedure). Consider the map Φ : H → Mg,

forgetting the G-action, and the map Ψ : H → Mg0,r mapping (the class of) a

G-curve X to the class of the quotient curve X/G together with the (unordered)

set of branch points p1, . . . , pr. If H 6= ∅ then Ψ is surjective and has finite fibers,

by covering space theory. Also Φ has finite fibers, since the automorphism group

of a curve of genus ≥ 2 is finite. By [1], the set H carries a structure of quasi-

projective variety (over C) such that the maps Φ and Ψ are finite morphisms.

If H 6= ∅ then all components of H map surjectively to Mg0,r (through a finite

map), hence they all have the same dimension

δ(g,G,C) := dim Mg0,r = 3g0 − 3 + r

Since also Φ is a finite map, we get

Lemma 8. Let M(g,G,C) denote the image of Φ, i.e., the locus of genus

g curves admitting a G-action of type (g,G,C). If this locus is non-empty then

each of its components has dimension δ(g,G,C).
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For a description of some of the loci M(g,G,C), not in the hyperelliptic

locus, in terms of the theta nulls see [10].

Next we focus on the hyperelliptic locus. Let φ0 : Xg → P
1 be the cover

which corresponds to the degree 2 extension K/k(X). Then, ψ := φ ◦ φ0 has

monodromy group G := Aut(Xg). From basic covering theory, the group G is

embedded in the group Sn, where n =◦ ψ. There is an r-tuple σ̄ := (σ1, . . . , σr),

where σi ∈ Sn such that σ1, . . . , σr generate G and σ1 · · · σr = 1. The signature

of ψ is an r-tuple of conjugacy classes C := (C1, . . . , Cr) in Sn such that Ci is

the conjugacy class of σi. We use the notation np to denote the conjugacy class

of permutations which are a product of p cycles of length n. Using the signature

of φ : P
1 → P

1 and the Riemann-Hurwitz formula, one finds out the signature of

ψ : Xg → P
1 for any given g and G.

The following theorem describes the list of all the subvarieties of the

hyperelliptic moduli which are determined by group actions.

Theorem 9. For each g ≥ 2, the groups G that occur as automorphism

groups and their signatures C are given in Table 1. Moreover; the locus H(G,C)

in Hg of curves with automorphism group G and signature C is an irreducible

algebraic variety of dimension δ(G,C) as given in Table 1.

P r o o f. The dimension of each locus is an immediate consequence of

Lemma 8. Next, we will show the irreducibility of the Hurwitz space H(G,C) in

each case.

The cases 1–3, 10–15, and 24–31 of Table 1 follow from the results of [14]

and [13] respectively. It is left to prove cases 4–9 and 16–23 which correspond to

the cases when G is isomorphic to Dn and A5 respectively. To prove this we make

use the GAP and the Braid program written by K. Magaard. For each case we

construct the group G as a subgroup of S|G|. In each case we find a generating

tuple and compute its braid action. There is only one braid orbit which shows

that the corresponding space is irreducible. This completes the proof. �

4. Determining equations of families of curves. In this section

we state the equations of curves in each case of Table 1. For a more detailed

treatment of these spaces, including proofs, the reader can check results in [3],

[13], [14], [15], among others. Recall that G is the monodromy group of a cover

φ : P
1 → P

1 with signature σ̄ := (σ1, σ2, σ3) as in Table 1. We fix the coordinates

in P
1 as x and z respectively and from now on denote the cover φ : P

1
x → P

1
z.

Thus, z is a rational function in x of degree |G|. We denote by q1, q2, q3 the
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corresponding branch points of φ. Let S be the set of branch points of Φ : Xg →
P

1. Clearly q1, q2, q3 ∈ S. As above W denotes the images in P
1
x of Weierstrass

points of Xg and V := ∪3
i=1φ

−1(qi).

Let

z =
Ψ(x)

Υ(x)

where Ψ,Υ ∈ k[x]. For each branch point qi, i = 1, 2, 3 we have z − qi =
p(x)

Υ(x)
.

Hence, we have the degree |G| equation

p(x) = Ψ(x) − qi · Υ(x) = 0,

where the multiplicity of all the roots is the same and correspond to the ramifi-

cation index of qi (i.e., the index of the normalizer in G of σi). We denote the

ramification of φ : P
1
x → P

1
z, by

ϕr
m(x) := Ψ(x) − q1 · Υ(x),

χs
n(x) := Ψ(x) − q2 · Υ(x)

ψt
p(x) := Ψ(x) − q3 · Υ(x),

(4)

where the subscript denotes the degree of the polynomial and the superscript is

the index of the normalizer in G of σi.

It is obvious that

φ−1 (S \ {q1, q2, q3}) ⊂W.

Let λ ∈ S \ {q1, q2, q3}. The points in the fiber φ−1(λ) are the roots of the

equation:

(5) Ψ(x) − λ · Υ(x) = 0

To determine the equation of the curve we simply need to determine the Weier-

strass points of the curve. Let

G(x) :=
∏

λ∈S\{q1,q2,q3}

(Ψ(x) − λ · Υ(x)) .

For each fixed φ there are the following cases and the corresponding

equation of the curve is y2 = f(x) where f(x) is as below:
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1) V ∩W = ∅,
2) V ∩W = Φ−1(q1),

3) V ∩W = Φ−1(q2),

4) V ∩W = Φ−1(q3),

5) V ∩W = Φ−1(q1) ∪ Φ−1(q2),

6) V ∩W = Φ−1(q2) ∪ Φ−1(q3),

7) V ∩W = Φ−1(q1) ∪ Φ−1(q3),

8) V ∩W = Φ−1(q1) ∪ Φ−1(q2) ∪ Φ−1(q3),

G(x),

ϕ(x) ·G(x),

χ(x) ·G(x),

ψ(x) ·G(x),

ϕ(x) · χ(x) ·G(x),

χ(x) · ψ(x) ·G(x),

ϕ(x) · ψ(x) ·G(x),

ϕ(x) · χ(x) · ψ(x) ·G(x)

(6)

Since we know z =
Ψ(x)

Υ(x)
in each case, then we can easily compute the

equation of the curve for all cases of Table 1.

Remark 10. When G = Zn,Dn, A4, then two of the branch points of

φ : P
1 → P

1 correspond to the same conjugacy class. Then, cases 2) and 3) are

the same. So are also the cases 6) and 7). This explains the number of cases in

Table 1.

Remark 11. The polynomial G(x) can also be computed by computing

an orbit of G using the generators in Eq. (1). This follows from the fact that G

is the monodromy group of φ : P1
x → P1

z and therefore has a complete orbit on

the fiber φ−1(λ) for each λ 6= q1, q2, q3.

4.1. G ∼= Zn. The branch points of the cover φ(x) = xn are 0 and ∞.

For λ ∈ S \ {0,∞}, the points φ−1(λ) satisfy the equation Gλ(x) = xn − λ.

We have

(7) G(x) =
∏

λ∈S\{0,∞}

Gλ(x) = xnt + · · · + aix
n(t−i) + . . . at−1x

n + 1,

Then Xg belongs to cases 1, 2, 3 in Table 1. The equation of each family is y2 =

F (x), where F (x) is G(x), G(x), x · G(x) and t respectively
2g + 2

n
,
2g + 1

n
,
2g

n
.

See [14] for details.

4.2. G ∼= Dn. In this case, the branch points of z(x) are ∞, and ±2. We

have G(x) as below:

G(X) =
δ

∏

i=1

(X2n − λiX
n + 1).
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Then,

(8) G(X) = X2nt + a1X
2nt−n + · · · + atX

nt + at−1X
(n−1)t + · · · + a1X

n + 1

where ai, i = 1, . . . t are polynomials in terms of the symmetric polynomials

s1, . . . , st of λi (i.e., etc.).

a1 = s1, a2 = t+ s2, a3 = (t− 1)s1 + s3, a4 :=

(

t

n/2

)

+ (t− 2)s2 + s4,

Then, each family is parameterized as in Table 2.

4.3. G ∼= A4. The branch points of the cover φ are {∞, 6i
√

3,−6i
√

3}.
The polynomials over these branch points are

ϕm(x) := x4 + 2i
√

3x2 + 1,

χn(x) := x8 + 14x4 + 1,

ψp(x) := x(x4 − 1)

(9)

For λ ∈ S \ {∞, 6i
√

3,−6i
√

3} (equivalently λ2 + 108 6= 0) we have

(10) Gλ(x) = x12 − λx10 − 33x8 + 2λx6 − 33x4 − λx2 + 1,

There are δ =
g + 1

6
points in S \ {∞,±6i

√
3}. Denote by

G(x) :=

δ
∏

i=1

(

x12 − λix
10 − 33x8 + 2λix

6 − 33x4 − λix
2 + 1

)

Then, each family is parameterized as cases 10-15 in Table 2.

4.4. G ∼= S4. The branch points of φ(x) are {0, 1,∞}. Then,

ϕ(x) :=x12 − 33x8 − 33x4 + 1,

χ(x) :=x8 + 14x4 + 1,

ψ(x) :=x4 − 1.

(11)

For λ ∈ S \ {0, 1,∞}, points in φ−1(λ) are roots of the polynomial

Gλ(x) = x24 + λx20 + (759 − 4λ)x16 + 2(3λ+ 1288)x12 + (759 − 4λ)x8 + λx4 + 1
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# y2 = f(x)

1 x2g+2 + a1x
n(t−1) + · · · + aδx

n + 1, t = 2g+2
n

2 x2g+1 + a1x
n(t−1) + · · · + aδx

n + 1, t = 2g+1
n

3 x(xnt + a1x
n(t−1) + · · · + aδx

n + 1), t = 2g
n

4 F (x) :=
∏t

i=1(x
2n + λix

n + 1), t = g+1
n

5 (xn − 1) · F (x)

6 x · F (x)

7 (x2n − 1) · F (x)

8 x(xn − 1) · F (x)

9 x(x2n − 1) · F (x)

10 G(x) :=
∏δ

i=1

(

x12 − λix
10 − 33x8 + 2λix

6 − 33x4 − λix
2 + 1

)

11 (x4 + 2i
√

3x2 + 1) ·G(x)

12 (x8 + 14x4 + 1) ·G(x)

13 x(x4 − 1) ·G(x)

14 x(x4 − 1)(x4 + 2i
√

3x2 + 1) ·G(x)

15 x(x4 − 1)(x8 + 14x4 + 1) ·G(x)

16 M(x)

17 S(x) ·M(x)

18 T (x) ·M(x)

19 S(x) · T (x) ·M(x)

20 R(x) ·M(x)

21 R(x) · S(x) ·M(x)

22 R(x) · T (x) ·M(x)

23 R(x) · S(x) · T (x) ·M(x)

24 Λ(x)

25
(

x20 − 228x15 + 494x10 + 228x5 + 1
)

· Λ(x)

26
(

x (x10 + 11x5 − 1)
)

· Λ(x)

27 ψ · Λ(x)

28
(

x20 − 228x15 + 494x10 + 228x5 + 1
)

·
(

x (x10 + 11x5 − 1)
)

· Λ(x)

29
(

x (x10 + 11x5 − 1)
)

· ψ · Λ(x)

30
(

x20 − 228x15 + 494x10 + 228x5 + 1
)

· ψ · Λ(x)

31
(

x20 − 228x15 + 494x10 + 228x5 + 1
)

·
(

x (x10 + 11x5 − 1)
)

· ψ · Λ(x)

Table 2: The equation of the generic hyperelliptic curve with group G.
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There are δ points in S \ {0, 1,∞}, where δ is given as in Table 1; see [14] for

details. We denote

(12) M(x) :=

δ
∏

i=1

Gλi
(x)

4.5. G ∼= A5. The branch points of φ are 0, 1728 and ∞. At the place

z = 1728 the function has the following ramification:

φ(x) − 1728 = −
(

x30 + 522x25 − 10005x20 − 10005x10 − 522x5 + 1
)2

x5 (x10 + 11x5 − 1)5
.

Then,

ϕ(x) = x20 − 228x15 + 494x10 + 228x5 + 1

χ(x) = x (x10 + 11x5 − 1)

ψ(x) = x30 + 522x25 − 10005x20 − 10005x10 − 522x5 + 1.

(13)

Then for each λi ∈ S \ {0, 1728,∞} the places in φ−1(λi) are the roots of the

following polynomial

Gi(x) = −x60 + (684 − λi)x
55 − (55λi + 157434)x50 − (1205λi − 12527460)x45

− (13090λi+77460495)x40+(130689144−69585λi)x
35+(33211924−134761λi )x

30

+ (69585λi − 130689144)x25− (13090λi+77460495)x20− (12527460 − 1205λi)x
15

− (157434 + 55λi)x
10 + (λi − 684)x5 − 1

Then, we let

(14) Λ(x) :=

δ
∏

i=1

Gi(x)

where M(x) is as in Eq. (12) and Λ(x) as in Eq. (14).

Further, we notice that curves with automorphism do have something in

common. Let I4 be the invariant of binary forms defined in terms of transvections

as in [15].

Lemma 12. Let Xg be a hyperelliptic curve given with equation y2 = f(x)

such that |Aut(Xg)| > 2. Then, I4(f) = 0.
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5. Lattice of groups and inclusion among the loci. In this

section we will study the inclusions between the automorphism groups for a

fixed genus g. This was also studied in [16], however, the author focuses only

on automorphism groups with reduced automorphism groups isomorphic to a

dihedral group.

For any genus g we determine completely the lattice of loci HG
g in Hg.

Using GAP we can determine the list of all groups that occur as automorphism

groups of genus g. This can be done for any fixed genus g ≤ 299.

We identify groups in GAP by their identity in the library of SmallGroups.

This library contains only groups of order up to 2400. We know that the order

of the automorphism group is ≤ 8(g + 1). Hence, we can determine the list of

groups for all g ≤ 299.

Let L be the list of all groups occurring as automorphism groups of genus

g hyperelliptic curves. Each entry in L is an ordered pair [m,n] where m denotes

the order of the group and n the position that this group is stored in the Gap

library. We order L as follows

[m,n] < [r, s] if m ≤ r and n ≤ s

Consider L = {G1, . . . GN} such that

G1 < G2 < · · · < GN

with respect to the above ordering. The incidence matrix of L is

M = [mi,j]

where

mi,j =

{

1, if Gi is a subgroup of Gj

0, otherwise

Then M is an upper triangular N ×N matrix.

Example 1. The lattice of the groups for genus 4 is given in Fig. 1.

Each group is presented by its GAP identity. Each level contains cases with the

same dimension. The boxed entries correspond to groups with extra involutions.

Such matrix can be easily determined for any g. We have implemented a

program in GAP which gives the lattice and the incidence matrix for any g ≥ 2.
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Figure 1: The lattice of automorphism groups for g = 4.

6. Concluding remarks. This main goal of this paper was to give a

more unified algebraic approach of the case of automorphism groups of algebraic

curves in zero characteristic. As part II of this project we intend to ask the same

questions on characteristic p > 0. Such questions are very much unexplored for

algebraic curves defined over fields of positive characteristic.

One would like to describe such loci in terms of invariants of the curves

as already done for genus g = 2, 3; see [7, 8]. There have been attempts to do this

in [14, 15, 13] using invariant of binary forms. Since such invariants are unknown

for degree ≥ 7 which makes this method unlikely to succeed. Further, invariants

of binary forms are huge polynomials in terms of the coefficients of the curve.

Even, if they are completely known they would be computationally not efficient.

Hence, one is tempted to try to describe such loci in terms of theta nulls; see

[10, 11, 12].

REFERE NC ES
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