Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use.

Serdica

Mathematical Journal

Сердика

Математическо списание

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.
For further information on
Serdica Mathematical Journal
which is the new series of
Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

CORRIGENDUM

for

WEIERSTRASS POINTS WITH FIRST NON-GAP FOUR ON A DOUBLE COVERING OF A HYPERELLIPTIC CURVE

Serdica Math. J. 30 (2004), 43-54
Jiryo Komeda and Akira Ohbuci

In the proof of Lemma 3.1 in [1] we need to show that we may take the two points p and q with $p \neq q$ such that

$$
p+q+(b-2) g_{2}^{1}\left(C^{\prime}\right) \sim 2\left(q_{1}+\cdots+q_{b-1}\right)
$$

where q_{1}, \ldots, q_{b-1} are points of C^{\prime}, but in the paper [1] we did not show that $p \neq q$. Moreover, we hadn't been able to prove this using the method of our paper [1]. So we must add some more assumption to Lemma 3.1 and rewrite the statements of our paper after Lemma 3.1. The following is the correct version of Lemma 3.1 in [1] with its proof:

Lemma A. Let r be a positive integer. We set $t=2 n$ with a positive integer $n \leq r$. Let s be an odd integer with $1 \leq s \leq t-1$. Assume that

$$
r+\frac{s+1}{2}=n(b+1)+\zeta \text { with } 0 \leqq \zeta \leqq \frac{s-1}{2}
$$

Since we have

$$
r=n(b+1)+\zeta-\frac{s+1}{2}=n b+\left(n+\zeta-\frac{s+1}{2}\right)
$$

with $n-\frac{s+1}{2} \leqq n+\zeta-\frac{s+1}{2} \leqq n-1$, we can construct a hyperelliptic curve C of genus r in the way in front of Lemma 3.1. Then there exist points $P_{1}, \ldots, P_{t}, Q_{1}, \ldots, Q_{\frac{s+1-t}{2}+r}$ of C such that

$$
P_{1}+P_{2}+\cdots+P_{t}+\left(r-t+\frac{s+1}{2}\right) g_{2}^{1}(C) \sim 2\left(Q_{1}+\cdots+Q_{\frac{s+1-t}{2}+r}\right)
$$

where P_{1}, \ldots, P_{t} are distinct points, P_{1}, \ldots, P_{n} are Weierstrass points and Q_{1}, \ldots, $Q_{\frac{s+1-t}{2}+r}$ are points which are different from P_{1}. Moreover, we get $h^{0}\left(\mathcal{O}_{C}\left(Q_{1}+\cdots+Q_{\frac{s+1-t}{2}+r}\right)\right)=1$.

Proof. Let p be a point on $C^{\prime}=H C(F)$. For any point q on C^{\prime} we have

$$
p+q+(b-1) g_{2}^{1}\left(C^{\prime}\right) \sim 2\left(q_{1}+\cdots+q_{b}\right)
$$

where q_{1}, \ldots, q_{b} are points on C^{\prime}. In fact, we get

$$
p+q+(b-1) g_{2}^{1}\left(C^{\prime}\right) \sim 2 D
$$

where D is a divisor of degree b, because of

$$
{ }^{\circ}\left(p+q+(b-1) g_{2}^{1}\left(C^{\prime}\right)\right)=2 b
$$

Moreover, we get $h^{0}(D) \geqq b+1-b=1$, which implies that D is linearly equivalent to some effective divisor $q_{1}+\cdots+q_{b}$. Let p be a Weierstrass point on C^{\prime} and q a point on C^{\prime} distinct from p. Then we have

$$
p+q+(b-1) g_{2}^{1}\left(C^{\prime}\right) \sim 2\left(q_{1}+\cdots+q_{b}\right)
$$

where q_{1}, \ldots, q_{b} are points on C^{\prime}. We may assume that q_{1}, \ldots, q_{b} are different from p. Let $\tilde{\phi}^{*} p=P_{1}+\cdots+P_{n}$ and $\tilde{\phi}^{*} q=P_{n+1}+\cdots+P_{2 n}$. Since p is a Weierstrass point on $C^{\prime}, P_{1}, \ldots, P_{n}$ are also Weierstrass points on C. We obtain

$$
\begin{gathered}
P_{1}+\cdots+P_{t}+\left(r-t+\frac{s+1}{2}\right) g_{2}^{1}(C) \sim \\
\tilde{\phi}^{*}\left(p+q+(b-1) g_{2}^{1}\left(C^{\prime}\right)\right)+\left(\left(r-t+\frac{s+1}{2}\right)-(n b-n)\right) g_{2}^{1}(C)
\end{gathered}
$$

because of $\tilde{\phi}^{*} g_{2}^{1}\left(C^{\prime}\right)=n g_{2}^{1}(C)$. We have

$$
\left(r-t+\frac{s+1}{2}\right)-(n b-n)=n(b+1)+\zeta-2 n-n b+n=\zeta \geqq 0 .
$$

Hence, we get

$$
P_{1}+\cdots+P_{t}+\left(r-t+\frac{s+1}{2}\right) g_{2}^{1}(C) \sim 2\left(Q_{1}+\cdots+Q_{\frac{s+1-t}{2}+r}\right)
$$

where $Q_{1}, \ldots, Q_{\frac{s+1-t}{2}+r}$ are points of C distinct from P_{1} because of

$$
\zeta \leqq \frac{s-1}{2} \leqq \frac{t-1-1}{2}=n-1 \leqq r-1
$$

In the same way as in the proof of Lemma 3.1 in [1] we may assume that

$$
h^{0}\left(\mathcal{O}_{C}\left(Q_{1}+\cdots+Q_{\frac{s+1-t}{2}+r}\right)\right)=1
$$

We set

$$
\mathcal{L}=\mathcal{O}_{C}\left(Q_{1}+\cdots+Q_{\frac{s+1-t}{2}+r}-\left(r+\frac{s+1}{2}\right) P_{1}\right)
$$

Then by Lemma A we get

$$
\mathcal{L}^{\otimes 2} \cong \mathcal{O}_{C}\left(P_{1}+P_{2}+\cdots+P_{t}-t g_{2}^{1}(C)\right) \cong \mathcal{O}_{C}\left(-\iota\left(P_{1}\right)-\cdots-\iota\left(P_{t}\right)\right)
$$

where ι is the hyperelliptic involution on C. By the same proof as in Theorem 3.2 in [1] we get the correct version of Theorem 3.2:

Theorem B. Let the notation and the assumption be as in Lemma A. Let

$$
\pi: \tilde{C}=\operatorname{Spec}\left(\mathcal{O}_{C} \oplus \mathcal{L}\right) \longrightarrow C
$$

be the canonical morphism. We set $\pi^{-1}\left(P_{1}\right)=\left\{\tilde{P}_{1}\right\}$. If $r \geq 5$, then we get

$$
S\left(H\left(\tilde{P}_{1}\right)\right)=\{4,2 r+s, 2 r+2 t-s, 4 r+2\}
$$

By Theorem B we obtain the correct version of Main Theorem 3.3 in [1]:

Main Theorem C. Let H be a 4-semigroup of genus $g(H) \geq 10$ with $g(H) \leq 3 r(H)-1$. In this case, by Proposition 2.7 we have

$$
S(H)=\{4,2 r+s, 2 r+2 t-s, 4 r+2\}
$$

where $r=r(H), t=2 n$ with a positive integer $n \leq r$ and s is an odd integer with $1 \leq s \leq t-1$. Assume that

$$
r+\frac{s+1}{2}=n(b+1)+\zeta \text { with } 0 \leqq \zeta \leqq \frac{s-1}{2}
$$

Then there exist a double covering $\pi: \tilde{C} \longrightarrow C$ of a hyperelliptic curve and its ramification point $\tilde{P} \in \tilde{C}$ such that $H(\tilde{P})=H$.

In the forthcoming paper we will prove Main Theorem C without the condition where

$$
r+\frac{s+1}{2}=n(b+1)+\zeta \text { with } 0 \leqq \zeta \leqq \frac{s-1}{2}
$$

using a method completely different from the above one.

REFERENCES

[1] J. Komeda, A. Ohbuchi. Weierstrass points with first non-gap four on a double covering of a hyperelliptic curve. Serdica Math. J. 30 (2004), 43-54.

Jiryo Komeda
Department of Mathematics
Center for Basic Education and Integrated Learning
Kanagawa Institute of Technology
Atsugi, 243-0292, Japan
e-mail: komeda@gen.kanagawa-it.ac.jp
Akira Ohbuchi
Department of Mathematics
Faculty of Integrated Arts and Sciences
Tokushima University
Tokushima, 770-8502, Japan
e-mail: ohbuchi@ias.tokushima-u.ac.jp

