Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use.

Serdica

Mathematical Journal

Сердика

Математическо списание

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.
For further information on
Serdica Mathematical Journal
which is the new series of
Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

GROUPS OF ORDER 32 AS GALOIS GROUPS*

Ivo M. Michailov
Communicated by V. Drensky

Abstract. We find the obstructions to realizability of groups of order 32 as Galois groups over arbitrary field of characteristic not 2. We discuss explicit extensions and automatic realizations as well.

1. Introduction. Let k be arbitrary field of characteristic not 2 . In this article we discuss certain embedding problems with kernel of order 2 or 4. First, let us recall the general description of the embedding problem. Let G be a finite group and let

$$
1 \rightarrow A \rightarrow G \underset{\psi}{\rightarrow} F \rightarrow 1
$$

be a finite group extension. Let also K / k be a Galois extension with Galois group F. The embedding problem then consists in determining whether there exists a Galois extension L such that $K \subset L, G \cong \operatorname{Gal}(L / k)$ and for all $g \in G$ the restriction $\left.g\right|_{K}$ equals $\psi(g)$. The embedding problem we denote by $(K / k, G, A)$.

[^0]The group A we call the kernel of the embedding problem. Now, let us restrict ourselves to the embedding problem with kernel $\mu_{2}=\{ \pm 1\}$ of order 2 , so we can regard μ_{2} as the group of the square roots of unity, contained in the multiplicative group K^{\times}. Then the injection $\mu_{2} \rightarrow K^{\times}$induces the map:

$$
i: H^{2}\left(F, \mu_{2}\right) \rightarrow H^{2}\left(F, K^{\times}\right) .
$$

Denote by γ the 2-coclass of the group extension

$$
\begin{equation*}
1 \rightarrow \mu_{2} \rightarrow G \underset{\psi}{\rightarrow} F \rightarrow 1 \tag{1.1}
\end{equation*}
$$

in $H^{2}\left(F, \mu_{2}\right)$.
The element $i(\gamma)$ is called the obstruction to solvability of the embedding problem (or simply to realizability of the group G as a Galois group over k). Given that the extension (1.1) is nonsplit, the embedding problem $\left(K / k, G, \mu_{2}\right)$ is solvable if and only if $i(\gamma)=1$ (the cohomological groups are written multiplicatively), see [5], for example.

Let $c \in Z^{2}\left(F, \mu_{2}\right)$ represent γ. It is well known that $H^{2}\left(F, K^{\times}\right)$is isomorphic to the relative Brauer group $\operatorname{Br}(K / k)$ of K / k by $i(\gamma) \mapsto[K, F, c]$, where $[K, F, c] \in \operatorname{Br}(K / k)$ is the equivalence class of the crossed product algebra (K, F, c), i.e., (K, F, c) is a central simple algebra over k, generated by K and elements u_{σ} with relations $u_{1}=c_{1,1}, u_{\sigma} u_{\tau}=c_{\sigma, \tau} u_{\sigma \tau}$ and $u_{\sigma} x=\sigma(x) u_{\sigma}$, for $\sigma, \tau \in F$ and $x \in K$.

It is well known also that the absolute $\operatorname{Brauer} \operatorname{group} \operatorname{Br}(k)$ is identified with $\underset{\longrightarrow}{\lim } \operatorname{Br}(K / k)$, where K / k runs through all finite Galois extensions. Since γ is an element of order 2, the obstruction $i(\gamma)$ lies in the 2 -torsion of the Brauer group $\operatorname{Br}(k)$. By Merkurjev's Theorem [10] the obstruction can be written as a product of classes of quaternion algebras. One of our goals is to find these products for each group under consideration.

Another goal is to describe all Galois extensions, solving the embedding problem $\left(K / k, G, \mu_{2}\right)$. That can be achieved in the following manner. Assume that the obstruction is split, i.e., $i(\gamma)=1$. Then $c \in B^{2}\left(F, K^{\times}\right)$, i.e., there exists a map $a: F \rightarrow K^{\times}$, such that $c_{\sigma, \tau}=a_{\sigma} \sigma a_{\tau} a_{\sigma \tau}^{-1}, \forall \sigma, \tau \in F$. Since $c_{\sigma, \tau}$ is in μ_{2}, we have that $\sigma \mapsto a_{\sigma}^{2}$ is a crossed homomorphism $F \rightarrow K^{\times}$. Then by Hilbert's Theorem 90, there exists an $\omega \in K^{\times}$such that $\sigma \omega / \omega=a_{\sigma}^{2}, \forall \sigma \in F$. This is part of the proof of the following theorem, proven in [5] not only for group extensions with kernel μ_{2}, but also for central group extensions with kernel μ_{p}, for an odd prime p.

Theorem 1.1. In the above notations, all solutions to the embedding problem $\left(K / k, G, \mu_{2}\right)$ are $K(\sqrt{r \omega}) / k$, where r runs through k^{\times}.

In the light of these observations we may proceed by the following scheme, when looking for the element ω :
(1) Check whether $\sigma \omega / \omega$ is in $K^{\times 2}, \forall \sigma \in F$. This will guarantee that $K(\sqrt{r \omega}) / k$ is Galois. To this end it is enough to consider only a minimal generating set of the group F.
(2) Take arbitrary preimages of the generating set in the group $\operatorname{Gal}(K(\sqrt{r \omega}) / k)$. Check that they fulfil the relations defining the group G. That this is enough is explained in the introduction of the paper [9]. For example, if $\sigma \in F$ is of order k, the preimage of σ, say $\tilde{\sigma} \in \operatorname{Gal}(K(\sqrt{r \omega}) / k)$, is of order at most $2 k$. We always may put $\tilde{\sigma} \sqrt{r \omega}=\sqrt{r \omega} a_{\sigma}$, whence $\tilde{\sigma}^{k} \sqrt{r \omega}=$ $\sqrt{r \omega} a_{\sigma} \sigma a_{\sigma} \cdots \sigma^{k-1} a_{\sigma}$. Therefore, $\tilde{\sigma}$ is of order k iff $a_{\sigma} \sigma a_{\sigma} \cdots \sigma^{k-1} a_{\sigma}=1$ and of order $2 k$ iff $a_{\sigma} \sigma a_{\sigma} \cdots \sigma^{k-1} a_{\sigma}=-1$.

In works such as [7], [2] the obstructions to realizability of the groups of orders 8 and 16 are expressed as products of quaternion classes. In [8], [11], [12] and [14] are considered several groups of order 32. Some of the obstructions to realizability of these groups are given at the end of our work. We will not consider the cyclic group C_{32}, for which our methods are inapplicable. We will not consider also groups which are a direct product of groups : $G \times H$, since their realizability depends solely on the realizability of the groups G and H. In this way, it remains to calculate the obstructions of 27 groups out of the total number of 51 groups of order 32 . We employ the computer program GAP 3 to list the presentations of the groups and some other details in the appendix. Minimal presentations for the groups of order 32 can be found also in [13] and [3].
2. Groups of orders 8 and 16. We will need some notations about the groups of orders 8 and 16 and also several criteria, which are found in [7]. The notations in this section are used throughout all the work, unless otherwise stated.

The dihedral group D_{8} of order 8 is generated by elements σ and τ such that $\sigma^{4}=\tau^{2}=1$ and $\tau \sigma=\sigma^{3} \tau$. The full set of D_{8} extensions is described thus: Let a and b be quadratically independent over k such that $(a, a b)=1 \in \operatorname{Br}(k)$, and let $\alpha_{1} \in k$ and $\alpha_{2} \in k^{\times}$be such that $a b=\alpha_{1}^{2}-a \alpha_{2}^{2}$. Then

$$
K / k=k\left(\sqrt{r\left(\alpha_{1}-\alpha_{2} \sqrt{a}\right)}, \sqrt{b}\right) / k
$$

is a D_{8} Galois extension, for all $r \in k^{\times}$. Put $\alpha=\alpha_{1}-\alpha_{2} \sqrt{a}$ and $\alpha^{\prime}=\alpha_{1}+\alpha_{2} \sqrt{a}$. Then we can assume that σ and τ act in this way:

$$
\begin{aligned}
& \sigma: \sqrt{r \alpha} \mapsto \sqrt{r \alpha^{\prime}}, \sqrt{r \alpha^{\prime}} \mapsto-\sqrt{r \alpha}, \sqrt{b} \mapsto \sqrt{b} ; \\
& \tau: \sqrt{r \alpha} \mapsto \sqrt{r \alpha}, \sqrt{r \alpha^{\prime}} \mapsto-\sqrt{r \alpha^{\prime}}, \sqrt{b} \mapsto-\sqrt{b} .
\end{aligned}
$$

The quaternion group Q_{8} of order 8 is generated by elements σ and τ, such that $\sigma^{4}=\tau^{4}=1, \sigma^{2}=\tau^{2}$ and $\tau \sigma=\sigma^{3} \tau$. We will not need the description of Q_{8} extensions.

The group $C_{4} \times C_{2}$ is generated by two elements, say, ρ_{1} and ρ_{2}, such that $\rho_{1}^{4}=\rho_{2}^{2}=1$ and $\rho_{1} \rho_{2}=\rho_{2} \rho_{1}$. The full set of $C_{4} \times C_{2}$ extensions is described thus: Let a and b be quadratically independent over k such that $(a, a)=1 \in \operatorname{Br}(k)$ and let $c \in k^{\times}$be such that $a=1+c^{2}$. Then

$$
K / k=k(\sqrt{r(a+\sqrt{a})}, \sqrt{b}) / k
$$

is a $C_{4} \times C_{2}$ extension, for all $r \in k^{\times}$. Assume also that ρ_{1} and ρ_{2} act in this way:

$$
\begin{aligned}
& \rho_{1}: \sqrt{r(a+\sqrt{a})} \mapsto \sqrt{r(a-\sqrt{a})}, \sqrt{b} \mapsto \sqrt{b} ; \\
& \rho_{2}: \sqrt{r(a+\sqrt{a})} \mapsto \sqrt{r(a+\sqrt{a})}, \sqrt{b} \mapsto-\sqrt{b} .
\end{aligned}
$$

The non abelian groups of order 16 are: M_{16}-the modular group, $S D_{16^{-}}$ the semidihedral (quasidihedral) group (also denoted as $S D_{8}$ and $Q D_{8}$), D_{16}-the dihedral group (also denoted as D_{8}), Q_{16}-the quaternion group, $Q \curlywedge C$-the pullback of the homomorphisms $Q_{8} \mapsto C_{2}$ and $C_{4} \mapsto C_{2}, D \curlywedge C$ - the pullback of the homomorphisms $D_{8} \mapsto C_{2}$ and $C_{4} \mapsto C_{2}, D C$-the central product of D_{8} and C_{4}, $D_{8} \times C_{2}$ and $Q_{8} \times C_{2}$. Their presentations by a set of generators are:

$$
\begin{aligned}
& M_{16} \cong\left\langle\sigma, \tau \mid \sigma^{8}=\tau^{2}=1, \tau \sigma=\sigma^{5} \tau\right\rangle, \\
& S D_{16} \cong\left\langle\sigma, \tau \mid \sigma^{8}=\tau^{2}=1, \tau \sigma=\sigma^{3} \tau\right\rangle, \\
& D_{16} \cong\left\langle\sigma, \tau \mid \sigma^{8}=\tau^{2}=1, \tau \sigma=\sigma^{-1} \tau\right\rangle, \\
& Q_{16} \cong\left\langle\sigma, \tau \mid \sigma^{8}=1, \tau^{2}=\sigma^{4}, \tau \sigma=\sigma^{-1} \tau\right\rangle, \\
& Q \curlywedge C \cong\left\langle\sigma, \tau \mid \sigma^{4}=\tau^{4}=1, \tau \sigma=\sigma^{3} \tau\right\rangle, \\
& D \curlywedge C \cong\left\langle\sigma, \tau, \rho \mid \sigma^{4}=\tau^{2}=\rho^{2}=1, \tau \sigma=\sigma^{3} \tau \rho,[\sigma, \rho]=[\tau, \rho]=1\right\rangle, \\
& D C \cong\left\langle\sigma, \tau, \rho \mid \sigma^{4}=\tau^{2}=1, \tau \sigma=\sigma^{3} \tau, \sigma^{2}=\rho^{2},[\sigma, \rho]=[\tau, \rho]=1\right\rangle .
\end{aligned}
$$

We will use the following criteria, proven in [7].
Theorem 2.1. Let $K / k=k\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right) / k$ be a C_{2}^{n} extension, and let $\sigma_{1}, \ldots, \sigma_{n} \in C_{2}^{n}$ be given by $\sigma_{i}\left(\sqrt{a_{j}}\right)=(-1)^{\delta_{i j}} \sqrt{a_{j}}$. Let

$$
\begin{equation*}
1 \rightarrow \mu_{2} \rightarrow G \rightarrow C_{2}^{n} \rightarrow 1 \tag{2.1}
\end{equation*}
$$

be a non split extension, and choose pre-images $s_{1}, \ldots, s_{n} \in G$ to $\sigma_{1}, \ldots, \sigma_{n}$. Define $d_{i j}, i \leq j$, by $s_{i}^{2}=(-1)^{d_{i i}}$ and $s_{i} s_{j}=(-1)^{d_{i j}} s_{j} s_{i}, i<j$. Then the obstruction to the embedding problem given by K / k and (2.1) is

$$
\prod_{i \leq j}\left(a_{i}, a_{j}\right)^{d_{i j}} \in \operatorname{Br}(k) .
$$

(Here we use the standard notation $\left(a_{i}, a_{j}\right)$ of the quaternion class in $\operatorname{Br}(k)$.)
Theorem 2.2. Let K / k be an $C_{4}^{r} \times C_{2}^{s}$ extension. We can write:

$$
K=k\left(\sqrt{q_{1}\left(a_{1}+\sqrt{a_{1}}\right)}, \ldots, \sqrt{q_{r}\left(a_{r}+\sqrt{a_{r}}\right)}, \sqrt{a_{r+1}}, \ldots, \sqrt{a_{r+s}}\right)
$$

where $a_{1}, \ldots, a_{r+s} \in k^{\times}$are quadratically independent, $a_{i}=1+c_{i}^{2}$ for $i \leq r$, and $q_{i} \in k^{\times}$. Let $\rho_{1}, \ldots, \rho_{r+s} \in \operatorname{Gal}(K / k)$, such that $\rho_{i}\left(\sqrt{a_{j}}\right)=(-1)^{\delta_{i j}} \sqrt{a_{j}}$. Let

$$
\begin{equation*}
1 \rightarrow \mu_{2} \rightarrow G \rightarrow C_{4}^{r} \times C_{2}^{s} \rightarrow 1 \tag{2.2}
\end{equation*}
$$

be a non split extension, and choose pre-images $t_{1}, \ldots, t_{r+s} \in G$ to $\rho_{1}, \ldots, \rho_{r+s}$. Then the obstruction to the embedding problem given by K / k and (2.2) is:

$$
\prod_{i=r+1}^{r+s}\left(a_{i}, a_{i}\right)^{d_{i}} \cdot \prod_{i=1}^{r}\left[\left(a_{i}, 2\right)\left(-1, q_{i}\right)\right]^{d_{i}} \cdot \prod_{i<j}\left(a_{i}, a_{j}\right)^{d_{i j}}
$$

where $t_{i}^{2}=(-1)^{d_{i}}$ for $i>r, t_{i}^{4}=(-1)^{d_{i}}$ for $i \leq r$, and $t_{i} t_{j}=(-1)^{d_{i j}} t_{j} t_{i}$.
Theorem 2.3. Let K / k be a D_{8} extension as described above, and let

$$
\begin{equation*}
1 \rightarrow \mu_{2} \rightarrow G \rightarrow D_{8} \rightarrow 1 \tag{2.3}
\end{equation*}
$$

be a non split extension, and choose pre-images s and t in G of σ and τ respectively. Then the obstruction to the embedding problem given by K / k and (2.3) is:

$$
\left[(a,-2)\left(-b, 2 \alpha_{1} r\right)\right]^{i}(b,-1)^{j}(a,-1)^{k} \in \operatorname{Br}(k),
$$

where $s^{4}=(-1)^{i}, t^{2}=(-1)^{j}$ and $t s=(-1)^{k} s^{3} t$.
Now, we extend the latter criterion for the group $D_{8} \times C_{2}$, generated by σ, τ and ρ, such that $\sigma^{4}=\tau^{2}=\rho^{2}=1, \tau \sigma=\sigma^{3} \tau$ and ρ is central. We may also apply [12], Theorem 4.1, to obtain:

Theorem 2.4. Let $K / k=k(\sqrt{r \alpha}, \sqrt{b}, \sqrt{c}) / k$ be a $D_{8} \times C_{2}$ extension and let

$$
\begin{equation*}
1 \rightarrow \mu_{2} \rightarrow G \rightarrow D_{8} \times C_{2} \rightarrow 1 \tag{2.4}
\end{equation*}
$$

be a non split extension, and choose pre-images s, t and p of σ, τ and ρ respectively. Then the obstruction to the embedding problem given by K / k and (2.4) is:

$$
\left[(a,-2)\left(-b, 2 \alpha_{1} r\right)\right]^{i}(b,-1)^{j}(a,-1)^{k}\left(c^{l} a^{d_{1}} b^{d_{2}}, c\right),
$$

where $s^{4}=(-1)^{i}, t^{2}=(-1)^{j}$, ts $=(-1)^{k} s^{3} t, p^{2}=(-1)^{l}$, $p s=(-1)^{d_{1}} s p$, $p t=(-1)^{d_{2}} t p$.
3. The groups of order 32 . We write in a table in the appendix the relations between the generators of all groups of order 32 , the rank (i.e. the minimal number of generators of the quotient group by the Frattini subgroup), the centre and the exponent. In the notations of GAP 3, each group $G_{i}(i=$ $1, \ldots, 51)$ is generated by 5 elements: a_{1}, \ldots, a_{5}. We put $\left[a_{i}, a_{j}\right]=a_{i}^{-1} a_{j}^{-1} a_{i} a_{j}$ - the commutator of the two elements a_{i} and a_{j}. The appearance of certain expression in the field with relations means that it is equal to 1 . In order to write less, we skip the commutators in which one of the elements lies in the centre. For example, the element a_{5} is in the centre for each group G_{i}, so we need not write the commutators of the kind $\left[a_{i}, a_{5}\right]$.

The 24 groups, for which we will not calculate the obstructions are: the abelian groups - $G_{1}, G_{3}, G_{16}, G_{21}, G_{36}, G_{45}, G_{51}$; the non abelian groups of exponent $16-G_{17}, G_{18}, G_{19}$ and G_{20}; the non abelian groups of the kind $H \times C_{2}$ - $G_{22}, G_{23}, G_{37}, G_{39}, G_{40}, G_{41}, G_{46}, G_{47}$ and G_{48}; the non abelian groups of the kind $H \times C_{4}-G_{24}$ and G_{25}; and the extra-special groups G_{49} and G_{50}.
4. The pullbacks. Let $\varphi^{\prime}: G^{\prime} \rightarrow F$ and $\varphi^{\prime \prime}: G^{\prime \prime} \rightarrow F$ be homomorphisms with kernels N^{\prime} and, respectively, $N^{\prime \prime}$. The pullback of the pair of homomorphisms φ^{\prime} and $\varphi^{\prime \prime}$ is called the subgroup in $G^{\prime} \times G^{\prime \prime}$ of all pairs ($\sigma^{\prime}, \sigma^{\prime \prime}$), such that $\varphi^{\prime}\left(\sigma^{\prime}\right)=\varphi^{\prime \prime}\left(\sigma^{\prime \prime}\right)$. The pullback is denoted by $G^{\prime} \curlywedge G^{\prime \prime}$. It is also called
the direct product of the groups G^{\prime} and $G^{\prime \prime}$ with amalgamated quotient group F and denoted by $G^{\prime} *_{F} G^{\prime \prime}$.

Now, let $N_{1}=N^{\prime} \times\{1\}$ and $N_{2}=\{1\} \times N^{\prime \prime}$. Then N_{1} and N_{2} are normal subgroups of $G^{\prime} \curlywedge G^{\prime \prime}$, such that $N_{1} \cap N_{2}=\{1\}$. The converse is also true (see [4], I, §12):

Lemma 4.1. Let N_{1} and N_{2} be two normal subgroups of the group G, such that $N_{1} \cap N_{2}=\{1\}$. Then G is isomorphic to the pullback $\left(G / N_{1}\right) \curlywedge\left(G / N_{2}\right)$. Also, we have the commutative diagram:

where a homomorphism of a group onto a quotient group is natural.
The application to embedding problems is given by:
Theorem 4.1. Let K / k be a Galois extension with Galois group F. In the notations of the lemma, let $F \cong G / N_{1} N_{2}$ and $G \cong\left(G / N_{1}\right) \curlywedge\left(G / N_{2}\right)$. Then the embedding problem $\left(K / k, G, N_{1} \times N_{2}\right)$ is solvable iff the embedding problems $\left(K / k, G / N_{1}, N_{2}\right)$ and $\left(K / k, G / N_{2}, N_{1}\right)$ are solvable.

Since we will consider groups of order 32, we will be looking for normal subgroups N_{1} and N_{2} of order 2 . In that case, the group G is a pullback iff the centre $Z(G)$ has at least two elements of order 2 (in other words, $Z(G)$ is not cyclic). The pullbacks, which we will discuss are 18: $G_{2}, G_{4}, G_{5}, G_{9}, G_{10}, G_{12}$, $G_{13}, G_{14}, G_{26}-G_{35}$.

Let us begin with the group G_{2}. We give all the details for this group as an example.
4.1. The group $\boldsymbol{G}_{\mathbf{2}}$. The centre $Z\left(G_{2}\right)=\left\langle a_{3}, a_{4}, a_{5}\right\rangle$ is isomorphic to C_{2}^{3}. Let $N_{1}=\left\langle a_{4}\right\rangle, N_{2}=\left\langle a_{5}\right\rangle$ and $N=N_{1} N_{2}=N_{1} \times N_{2}$. Then the quotient
group G_{2} / N is isomorphic to D_{8}. Consider the embedding problem given by K / k with Galois group D_{8} (according to the notations in Section 2) and the group extension

$$
1 \rightarrow N \rightarrow G_{2} \underset{\substack{a_{1} \mapsto \sigma_{1} \\ a_{2} \mapsto \tau_{1}}}{\longrightarrow} D_{8} \rightarrow 1
$$

where $\sigma_{1}^{2}=\tau_{1}^{2}=\left[\sigma_{1}, \tau_{1}\right]^{2}=1$. Let $\sigma=\sigma_{1} \tau_{1}$ and $\tau=\tau_{1}$. Then $|\sigma|=4,|\tau|=2$ and $\tau \sigma=\sigma^{3} \tau$.

Now, consider the embedding problem given by K / k and the group extension

$$
1 \rightarrow N_{2} \rightarrow G_{2} / N_{1} \underset{\substack{b_{1} b_{2} \mapsto \sigma \\ b_{2} \mapsto \tau}}{\longrightarrow} D_{8} \rightarrow 1 .
$$

The group G_{2} / N_{1} is generated by elements $b_{i}=a_{i}\left\langle a_{4}\right\rangle \in G_{2} / N_{1}, i \neq 4$ such that $b_{1}^{2}=b_{3}^{2}=b_{5}^{2}=1, b_{2}^{2}=b_{5},\left[b_{2}, b_{1}\right]=b_{3}, b_{3}$ is central, whence G_{2} / N_{1} is isomorphic to $D \curlywedge C$. Also, we have the relations $\left(b_{1} b_{2}\right)^{2}=b_{5} b_{3},\left(b_{1} b_{2}\right)^{4}=1$ and $b_{2}\left(b_{1} b_{2}\right)=\left(b_{1} b_{2}\right)^{3} b_{2} b_{5}=-\left(b_{1} b_{2}\right)^{3} b_{2}$. Then Theorem 2.3 implies that the obstruction to the latter embedding problem is $(a b,-1) \in \operatorname{Br}(k)$.

Now, consider G_{2} / N_{2}, which is generated by elements $b_{i}=a_{i}\left\langle a_{5}\right\rangle \in$ $G_{2} / N_{2}, i=1, \ldots, 4$, such that $b_{1}^{4}=b_{2}^{2}=b_{3}^{2}=b_{4}^{2}=1, b_{4}=b_{1}^{2},\left[b_{1}, b_{2}\right]=$ b_{3}, b_{3} is central, whence G_{2} / N_{2} is isomorphic to $D \curlywedge C$. We have the relation $b_{2}\left(b_{1} b_{2}\right)=-\left(b_{1} b_{2}\right)^{3} b_{2}$. The obstruction then to the embedding problem given by K / k and the group extension

$$
1 \rightarrow N_{1} \rightarrow G_{2} / N_{2} \underset{\substack{b_{1} b_{2} \mapsto \sigma \\ b_{2} \mapsto \tau}}{\longrightarrow} D_{8} \rightarrow 1
$$

is $(a,-1) \in \operatorname{Br}(k)$.
Thus, we obtain that the embedding problem $\left(K / k, G_{2}, N\right)$ is solvable iff $(a b,-1)=(a,-1)=1 \in \operatorname{Br}(k)$, where $a, b \in k^{\times}$are quadratically independent such that $(a, a b)=1 \in \operatorname{Br}(k)$ (a necessary condition).

The remaining groups can be investigated in the same way. We write down only the main points in our calculations.
4.2. The group \boldsymbol{G}_{4}. $Z\left(G_{4}\right)=\left\langle a_{3}, a_{4}, a_{5}\right\rangle=\left\langle a_{3}, a_{4}\right\rangle \cong C_{4} \times C_{2}, N_{1}=$ $\left\langle a_{4}\right\rangle, N_{2}=\left\langle a_{5}\right\rangle, N=N_{1} \times N_{2}, G_{4} / N_{1} \cong M_{16}, G_{4} / N_{2} \cong C_{4} \times C_{4}$. The embedding problem $\left(K / k, G_{4}, N\right)$ given by a $C_{4} \times C_{2}$ extension K / k and the group extension

$$
1 \rightarrow N \rightarrow G_{4} \underset{\substack{a_{1} \mapsto \rho_{1} \\ a_{2} \mapsto \rho_{2}}}{\longrightarrow} C_{4} \times C_{2} \rightarrow 1
$$

is solvable iff $(a, 2 b)(-1, r)=(b, b)=1 \in \operatorname{Br}(k)$, where $(a, a)=1$ is necessary for the existence of a C_{4} extension.
4.3. The group $\boldsymbol{G}_{\mathbf{5}} . Z\left(G_{5}\right)=\left\langle a_{3}, a_{4}, a_{5}\right\rangle=\left\langle a_{3}, a_{4}\right\rangle \cong C_{2} \times C_{4}, N_{1}=$ $\left\langle a_{3}\right\rangle, N_{2}=\left\langle a_{5}\right\rangle, N=N_{1} \times N_{2}, G_{5} / N_{1} \cong C_{8} \times C_{2}, G_{5} / N_{2} \cong D 人 C$. The embedding problem $\left(K / k, G_{5}, N\right)$ given by a $C_{4} \times C_{2}$ extension K / k and the group extension

$$
1 \rightarrow N \rightarrow G_{5} \underset{\substack{a_{1} \mapsto \rho_{1} \\ a_{2} \mapsto \rho_{2}}}{\longrightarrow} C_{4} \times C_{2} \rightarrow 1
$$

is solvable iff $(a, 2)(-1, r)=(a, b)=1 \in \operatorname{Br}(k)$, where $(a, a)=1$ is a necessary condition.
4.4. The group $\boldsymbol{G}_{\mathbf{9}} . Z\left(G_{9}\right)=\left\langle a_{4}, a_{5}\right\rangle \cong C_{2}^{2}, N_{1}=\left\langle a_{4}\right\rangle, N_{2}=\left\langle a_{5}\right\rangle, N=$ $N_{1} \times N_{2}, G_{9} / N_{1} \cong D_{16}, G_{9} / N_{2} \cong D \curlywedge C$. The embedding problem $\left(K / k, G_{9}, N\right)$ given by a D_{8} extension K / k and the group extension

$$
1 \rightarrow N \rightarrow G_{9} \underset{\substack{a_{1} \\ a_{2} \mapsto \tau}}{\longrightarrow} D_{8} \rightarrow 1 .
$$

is solvable iff $(a b, 2)\left(-b, \alpha_{1} r\right)=(a, a)=1 \in \operatorname{Br}(k)$, where $(a, a b)=1$ is a necessary condition.
4.5. The group $\boldsymbol{G}_{\mathbf{1 0}} . Z\left(G_{10}\right)=\left\langle a_{4}, a_{5}\right\rangle \cong C_{2}^{2}, N_{1}=\left\langle a_{4}\right\rangle, N_{2}=\left\langle a_{5}\right\rangle$, $N=N_{1} \times N_{2}, G_{10} / N_{1} \cong S D_{16}, G_{10} / N_{2} \cong D \curlywedge C$. The embedding problem $\left(K / k, G_{10}, N\right)$ given by a D_{8} extension K / k and the group extension

$$
1 \rightarrow N \rightarrow G_{10} \underset{\substack{a_{1} \\ a_{2} \mapsto \tau}}{\longrightarrow} D_{8} \rightarrow 1
$$

is solvable iff $(a,-2)\left(-b, 2 \alpha_{1} r\right)=(a, a)=1 \in \operatorname{Br}(k)$, where $(a, a b)=1$ is a necessary condition.
4.6. The group $\boldsymbol{G}_{\mathbf{1 2}}$. $Z\left(G_{12}\right)=\left\langle a_{3}, a_{4}, a_{5}\right\rangle=\left\langle a_{3}, a_{4}\right\rangle \cong C_{2} \times C_{4}$, $N_{1}=\left\langle a_{3}\right\rangle, N_{2}=\left\langle a_{5}\right\rangle, N=N_{1} \times N_{2}, G_{12} / N_{1} \cong C_{8} \times C_{2}, G_{12} / N_{2} \cong Q \curlywedge C$. The embedding problem $\left(K / k, G_{12}, N\right)$ given by a $C_{4} \times C_{2}$ extension K / k and the group extension

$$
1 \rightarrow N \rightarrow G_{12} \underset{\substack{a_{1} \mapsto \rho_{1} \\ a_{2} \mapsto \rho_{2}}}{\longrightarrow} C_{4} \times C_{2} \rightarrow 1
$$

is solvable iff $(a, 2)(-1, r)=(a b, b)=1 \in \operatorname{Br}(k)$, where $(a, a)=1$ is a necessary condition.
4.7. The group $\boldsymbol{G}_{\mathbf{1 3}} . Z\left(G_{13}\right)=\left\langle a_{4}, a_{5}\right\rangle \cong C_{2}^{2}, N_{1}=\left\langle a_{4}\right\rangle, N_{2}=\left\langle a_{5}\right\rangle$, $N=N_{1} \times N_{2}, G_{13} / N_{1} \cong S D_{16}, G_{13} / N_{2} \cong Q \curlywedge C$. The embedding problem $\left(K / k, G_{13}, N\right)$ given by a D_{8} extension K / k and the group extension

$$
1 \rightarrow N \rightarrow G_{13} \underset{\substack{a \neq \tau \\ a_{2} \mapsto \sigma}}{\longrightarrow} D_{8} \rightarrow 1 .
$$

is solvable iff $(a,-2)\left(-b, 2 \alpha_{1} r\right)=(b, b)=1 \in \operatorname{Br}(k)$, where $(a, a b)=1$ is a necessary condition.
4.8. The group $\boldsymbol{G}_{14} . Z\left(G_{14}\right)=\left\langle a_{4}, a_{5}\right\rangle \cong C_{2}^{2}, N_{1}=\left\langle a_{4}\right\rangle, N_{2}=\left\langle a_{5}\right\rangle$, $N=N_{1} \times N_{2}, G_{14} / N_{1} \cong D_{16}, G_{14} / N_{2} \cong Q \curlywedge C$. The embedding problem $\left(K / k, G_{14}, N\right)$ given by a D_{8} extension K / k and the group extension

$$
1 \rightarrow N \rightarrow G_{14} \underset{\substack{a_{1} \mapsto \tau \\ a_{2} \mapsto \sigma}}{\longrightarrow} D_{8} \rightarrow 1 .
$$

is solvable iff $(a b, 2)\left(-b, \alpha_{1} r\right)=(b, b)=1 \in \operatorname{Br}(k)$, where $(a, a b)=1$ is a necessary condition.

For each of the remaining groups $G_{26}-G_{35}$ we put $N_{1}=\left\langle a_{4}\right\rangle, N_{2}=\left\langle a_{5}\right\rangle$ and $N=N_{1} \times N_{2}$. The quotient group G_{i} / N is isomorphic to C_{2}^{3}. Therefore we consider the embedding problem given by a C_{2}^{3} extension $K / k=k(\sqrt{a}, \sqrt{b}, \sqrt{c}) / k$ and the group extension

$$
1 \rightarrow N \rightarrow G_{i} \underset{\substack{a_{1} \mapsto \sigma_{1} \\ a_{2} \mapsto \sigma_{2} \\ a_{3} \mapsto \sigma_{3}}}{\longrightarrow} C_{2}^{3} \rightarrow 1,
$$

for $i=26, \ldots 35$. Now, we can apply Theorem 2.1. The obstructions to solvability of the embedding problems $\left(K / k, G_{i}, N\right)$ are given in Table 1.
5. Groups having a quotient group ot the kind $H \times C_{2}$. There are four groups, having a quotient group ot the kind $H \times C_{2}: G_{38}, G_{42}, G_{43}$ and G_{44}.
5.1. The group $\boldsymbol{G}_{\mathbf{3 8}}$. The centre $Z\left(G_{38}\right)=\left\langle a_{1}, a_{4}, a_{5}\right\rangle=\left\langle a_{1}\right\rangle$ is isomorphic to the cyclic group C_{8} and the quotient group $G_{38} /\left\langle a_{5}\right\rangle$ is isomorphic to $C_{4} \times C_{2}^{2}$. Let a, b and c be quadratically independent and $(a, a)=1 \in \operatorname{Br}(k)$. Then $K / k=k(\sqrt{r(a+\sqrt{a})}, \sqrt{b}, \sqrt{c}) / k$ is a $C_{4} \times C_{2}^{2}$ extension for all $r \in k^{\times}$.

Table 1

i	obstructions
26	$(a c, a c),(a b, b)(c, c)$
27	$(a, c),(a, b)$
28	$(a, c),(b, a b)$
29	$(a, c),(a, a b)(b, b)$
30	$(a, c),(c, c)(a, b)$
31	$(b, b)(a, c),(c, c)(a, b)$
32	$(b, b)(a, c),(a, a)(c, c)(a, b)$
33	$(b, b)(a, c),(b, b)(c, c)(a, b)$
34	$(a c, c),(a b, b)$
35	$(a c, c),(a, a b)(b, b)$

From Theorem 2.2 follows that the embedding problem given by K / k and the group extension

$$
1 \rightarrow \mu_{2} \cong\left\langle a_{5}\right\rangle \rightarrow G_{38} \underset{\substack{a_{1} \mapsto \rho_{1} \\ a_{2} \mapsto \rho_{2} \\ a_{3}}}{\longrightarrow \rho_{3}} ⿻ 上 C_{4} \times C_{2}^{2} \rightarrow 1
$$

is solvable iff

$$
(a, 2)(-1, r)(b, c)=1 \in \operatorname{Br}(k)
$$

For the remaining three groups we have that the quotient group by the cyclic subgroup $\mu_{2} \cong\left\langle a_{5}\right\rangle$ is isomorphic to the group $D_{8} \times C_{2} \cong\langle\sigma, \tau\rangle \times\langle\rho\rangle$, so we apply Theorem 2.4. Now, we discuss the following three embedding problems given by a $D_{8} \times C_{2}$ extension K / k and the group extensions

$$
1 \rightarrow \mu_{2} \cong\left\langle a_{5}\right\rangle \rightarrow G_{i} \underset{\substack{a_{2} a_{1} \mapsto \sigma \\ a_{2} \mapsto \tau \\ a_{3} \mapsto \rho}}{\longrightarrow} \quad D_{8} \times C_{2} \rightarrow 1
$$

for $i=42,43,44$. In all three cases we have that $(a, a b)=1$ is a necessary condition in order to construct the embedding problems. The obstructions to solvability of the embedding problems $\left(K / k, G_{i},\left\langle a_{5}\right\rangle\right)$ are given in Table 2.

We note that the obstruction for $i=43$ is a product of two quaternion algebras. Therefore, at this point we can turn our attention to Galois extensions, realizing the group G_{43}. Firstly, we give a parametrization of all G_{43} extensions in the general case, when $b \neq 2-1$, i.e. b and -1 are quadratically independent

Table 2

i	obstructions
42	$(a, 2)\left(-b, 2 \alpha_{1} r\right)(c, c)$
43	$(a, 2 c)\left(-b, 2 \alpha_{1} r\right)$
44	$(a,-2 c)\left(-b, 2 \alpha_{1} r\right)(b, b)$

$\bmod k^{\times 2}$ (for abuse of notation we will use the symbol $=2$ to denote that two elements are quadratically dependent, and $\neq 2$ if they are independent).

Let us give before that some notations, following [9]. For $a, b \in k^{\times}$, the quaternion algebra $(a, b / k)$ is the k-algebra generated by elements α and β with relations $\alpha^{2}=a, \beta^{2}=b$ and $\beta \alpha=-\alpha \beta$. The equivalence class as an element in the Brauer group $\operatorname{Br}(k)$ we denote by (a, b). To the quaternion algebra we associate the quadratic form in canonic type $\langle a, b,-a b\rangle=a x^{2}+b y^{2}-$ $a b z^{2}$. Then $(a, b / k)$ is split iff $\langle a, b,-a b\rangle$ is isotropic (i.e., represents 0). Two quaternion algebras $(a, b / k)$ and $(c, d / k)$ are isomorphic, iff the quadratic forms $\langle a, b,-a b\rangle$ and $\langle c, d,-c d\rangle$ are equivalent. For an abuse of notation we will denote by $\langle a, b,-a b\rangle$ also the diagonal matrix $\operatorname{diag}(a, b,-a b)$. Then the equivalence of the quadratic forms $\langle a, b,-a b\rangle$ and $\langle c, d,-c d\rangle$ is expressed by the matrix equation $\mathbf{P}^{t}\langle a, b,-a b\rangle \mathbf{P}=\langle c, d,-c d\rangle$, for some non-singular 3×3 matrix \mathbf{P} over k.

Theorem 5.1. Let K / k be a $D_{8} \times C_{2}$ extension as above, and assume $\alpha_{1} \neq 0$. Then the embedding problem $\left(K / k, G_{43},\left\langle a_{5}\right\rangle\right)$ is solvable iff the quadratic forms $\left\langle b, r \alpha_{1} c, b r \alpha_{1} c\right\rangle$ and $\langle a b, 2 c a, 2 b c\rangle$ are equivalent over k. If this equivalence is expressed by the matrix \mathbf{Q}, i.e., if

$$
\mathbf{Q}^{t}\left\langle b, r \alpha_{1} c, b r \alpha_{1} c\right\rangle \mathbf{Q}=\langle a b, 2 c a, 2 b c\rangle
$$

we may assume $\operatorname{det} \mathbf{Q}=2 a / \alpha_{1} r$ and get the solutions

$$
K(\sqrt{s \omega}) / k=k(\sqrt{s \omega}, \sqrt{b}, \sqrt{c}) / k, s \in k^{\times}
$$

where

$$
\omega=1-q_{11} / \sqrt{a}+\frac{1}{2}\left(q_{32}+q_{23} / \sqrt{a}\right) \sqrt{r \alpha}+\frac{1}{2}\left(q_{22} / b-q_{33} / \sqrt{a}\right) \sqrt{r \alpha^{\prime}} / \sqrt{a}
$$

Proof. The obstruction to the embedding problem is $(a, 2 c)\left(-b, 2 r \alpha_{1}\right)$, which is equivalent to $(-a b,-2 c a)\left(-b,-r \alpha_{1} c\right) \in \operatorname{Br}(k)$. This gives the criterion.

We now restrict ourselves to the embedding problem given by $K / k(\sqrt{c})$ and the group extension

$$
1 \rightarrow \mu_{2} \cong\left\langle a_{5}\right\rangle \rightarrow D_{16} \cong\left\langle a_{2} a_{1}, a_{2}\right\rangle \underset{\substack{a_{2} \\ a_{2} \mapsto \tau}}{\longrightarrow} D_{8} \rightarrow 1
$$

Define the matrix \mathbf{P} with entries from $k(\sqrt{c})$:

$$
\mathbf{P}=\langle 1, \sqrt{c}, \sqrt{c}\rangle \mathbf{Q}\langle 1,1 / \sqrt{c}, 1 / \sqrt{c}\rangle
$$

so that we get

$$
\mathbf{P}^{t}\left\langle b, r \alpha_{1}, b r \alpha_{1}\right\rangle \mathbf{P}=\langle a b, 2 a, 2 b\rangle .
$$

Since the subgroup generated by $a_{2} a_{1}$ and a_{2} is isomorphic to D_{16}, we obtain the criterion given in [9]. Then $K(\sqrt{s \omega}) / k(\sqrt{c})$, for $s \in k^{\times}$are the solutions to the embedding problem $\left(K / k(\sqrt{c}), D_{16}, \mu_{2}\right)$, where

$$
\omega=1-p_{11} / \sqrt{a}+\frac{1}{2}\left(p_{32}+p_{23} / \sqrt{a}\right) \sqrt{r \alpha}+\frac{1}{2}\left(p_{22} / b-p_{33} / \sqrt{a}\right) \sqrt{r \alpha^{\prime}} / \sqrt{a} .
$$

(The entries of \mathbf{P} and \mathbf{Q} are $p_{i j}$ and $q_{i j}, i, j=1,2,3$.) It is easy to show that $p_{11}=q_{11}, p_{23}=q_{23}, p_{32}=q_{32}, p_{22}=q_{22}$ and $p_{33}=q_{33}$. Furthermore, $K(\sqrt{s \omega}) / k$ is Galois, since $\rho \omega=\omega$. We let to the reader to check that this is exactly a G_{43} extension.

Now, we give the description of G_{43} extensions in the special case when b and -1 are quadratically dependent $\bmod k^{\times 2}$.

Theorem 5.2. Let $K / k=k(\sqrt[4]{a}, i, \sqrt{c}) / k$ be a $D_{8} \times C_{2}$ extension. Then the embedding problem $\left(K / k, G_{43},\left\langle a_{5}\right\rangle\right)$ is solvable iff

$$
\exists p, q \in k: p^{2}-a q^{2}=2 c
$$

In that case, the solutions are

$$
K(\sqrt{s \omega}) / k, s \in k^{\times}
$$

where $\omega=(p+q \sqrt{a}) \sqrt[4]{a}$.
Proof. The obstruction to the embedding problem is $(a, 2 c) \in \operatorname{Br}(k)$, so there exist $p, q \in k$, such that $p^{2}-a q^{2}=2 c$. Put $\omega=(p+q \sqrt{a}) \sqrt[4]{a}$. Then we have $\sigma \omega / \omega=a_{\sigma}^{2}$, where

$$
a_{\sigma}=\frac{\sqrt{c}(1+i)}{p+q \sqrt{a}} \in K
$$

$\tau \omega / \omega=1$ and $\rho \omega / \omega=1$. Therefore $K(\sqrt{s \omega}) / k$ is Galois. Here, it is easy to show that it is a G_{43} extension. Obviously, $a_{2}^{2}=1$ and $a_{3}^{2}=1$. Next, $a_{\sigma} \sigma a_{\sigma} \sigma^{2} a_{\sigma} \sigma^{3} a_{\sigma}=-1$, whence $a_{2} a_{1}$ is of order 8. Also, $a_{2} a_{1} \sqrt{s \omega}=a_{\sigma} \sqrt{s \omega}$, $a_{2} \sqrt{s \omega}= \pm \sqrt{s \omega}$ and $a_{3} \sqrt{s \omega}= \pm \sqrt{s \omega}$. Then $\left[a_{2}, a_{3}\right] \sqrt{s \omega}=\sqrt{s \omega}$, whence $\left[a_{2}, a_{3}\right]=1$; and $\left[a_{1}, a_{3}\right] \sqrt{s \omega}=-\sqrt{s \omega}$, whence $\left[a_{1}, a_{3}\right] \neq 1$, but $\left[a_{1}, a_{3}\right]^{2}=1$.

We need the so-called common slot property (see [6], Ch. III, Exercise 12) for the proof of the following Theorem.

Lemma 5.3. Let $a, b, c, d \in k^{\times}$. Then $(a, b)(c, d)=1 \in \operatorname{Br}(k) \Longleftrightarrow \exists x \in$ k^{\times}, such that $(a, b x)=(c, d x)=(a c, x)=1$.

Theorem 5.4. Realizability of G_{44} as a Galois group over k implies the realizability of G_{43} (i.e., there is an automatic realizability $G_{44} \Rightarrow G_{43}$).

Proof. Depending on the behavior of the elements -1 and 2 we consider the following cases.
(1) -1 and 2 are quadratically independent over k. Given that G_{44} is realizable, we have that $\left|k / k^{\times 2}\right| \geq 8$. We put $b=-1$ and $c=2:(a, 1)=(a, 4)\left(1,2 \alpha_{1} r\right)$ $=1$ for all a-quadratically independent with -1 and 2 . Therefore, we obtain something more in this case: if $\left|k / k^{\times 2}\right| \geq 8$, the group G_{43} is realizable.
(2) $-1 \in k^{\times 2}$. Then the obstructions to realizability of G_{43} and G_{44} are identical: $(a, 2 c)\left(b, 2 \alpha_{1} r\right) \in \operatorname{Br}(k)$.
(3) $-1 \notin k^{\times 2}, 2 \in k^{\times 2}$ and $-2 \notin k^{\times 2}$. Then G_{43} is realizable iff

$$
(a,-b)=(a, c)\left(-b, \alpha_{1} r\right)=1
$$

and G_{44} is realizable iff

$$
(a,-b)=(a,-c)\left(-b, \alpha_{1} r\right)(b,-1)=1
$$

Now, let G_{44} be realizable for some a, b and c. Consider the following sub-cases.

If $a==_{2}-b$ then $(a, c)\left(-b, \alpha_{1} r\right)=\left(-b, \alpha_{1} r c\right)=1$ for $r=\alpha_{1} c$, so G_{43} is realizable.

If $a=2-1$, then $(-1,-b)=1$ and $(b,-1)=(-1,-1)$. Whence

$$
\begin{aligned}
& (a,-c)\left(-b, \alpha_{1} r\right)(b,-1)=(-1, c)(-1,-1)\left(-b, \alpha_{1} r\right)(b,-1)= \\
& =(-1, c)\left(-b, \alpha_{1} r\right)=1
\end{aligned}
$$

If $b={ }_{2}-1$, then $(a,-c)(-1,-1)=1$. We use the common slot property: $(a,-c)(-1,-1)=1$ iff $\exists y \in k^{\times}$such that $(a,-c y)=(-1,-y)=$ $(-a, y)=1$. If $(a, a)=1$, then we can put $b^{\prime}=-a$ (quadratically independent with $a):\left(a,-b^{\prime}\right)=(a, a)=1$ and $(a, c)\left(-b^{\prime}, \alpha_{1} r\right)=\left(a, \alpha_{1} r c\right)=$ 1 for $r=\alpha_{1} c$. Now, we have several possibilities:

If $-c y=2 a$, then $(a, a)=1$ and G_{43} is realizable as we have just shown.

If $-c y={ }_{2}-1$, then again $(a, a)=1$.
If $-c y \in k^{\times 2}$, then $y={ }_{2}-c,(-1,-y)=(-1, c)=1$ and $(-a, y)=$ $(-a,-c)=1$. In this case we can put $a^{\prime}=-a$ and $c^{\prime}=-c$. Then $a^{\prime},-1$ and c^{\prime} are again quadratically independent. Thus, $\left(a^{\prime}, 1\right)=\left(a^{\prime}, c^{\prime}\right)\left(1, \alpha_{1} r\right)=1$.

If $-c y={ }_{2}-a$, then $y={ }_{2} c a,(-1,-y)=(-1,-c a)=1$ and $(-a, c a)=$ $(-a, c)=1$. We can put here $a^{\prime}=-a$ and obtain $\left(a^{\prime}, 1\right)=\left(a^{\prime}, c\right)\left(1, \alpha_{1} r\right)=$ 1.

If $-1, a$ and $-c y$ are quadratically independent, then we can put $c^{\prime}=-c y:\left(a, c^{\prime}\right)=1$, whence G_{43} is again realizable.

If a, b and -1 are quadratically independent, then we can put $c=-b$: $(a,-b)=(a,-b)\left(-b, \alpha_{1} r\right)=1$ for $r=\alpha_{1}$. The last case is:
(4) $-1 \notin k^{\times 2}, 2 \notin k^{\times 2}$ and $-2 \in k^{\times 2}$. Then G_{43} is realizable iff

$$
(a,-b)=(a,-c)\left(-b,-\alpha_{1} r\right)=1 ;
$$

and G_{44} is realizable iff

$$
(a,-b)=(a, c)\left(-b,-\alpha_{1} r\right)(b,-1)=1 .
$$

Now, let G_{44} be realizable for some a, b and c. Consider the following sub-cases.

If $a={ }_{2}-b$ then $(a,-c)\left(-b,-\alpha_{1} r\right)=\left(-b, \alpha_{1} r c\right)=1$ for $r=\alpha_{1} c$, so G_{43} is realizable.

If $a=2-1$, then $(-1,-b)=1$ and $(b,-1)=(-1,-1)$. Whence

$$
\begin{aligned}
& (a, c)\left(-b,-\alpha_{1} r\right)(b,-1)=(-1,-c)(-1,-1)\left(-b,-\alpha_{1} r\right)(b,-1)= \\
& =(-1,-c)\left(-b,-\alpha_{1} r\right)=1 .
\end{aligned}
$$

If $b={ }_{2}-1$, then $(a, c)(-1,-1)=1$. Analogously to the same sub-case of case 3 , we obtain that G_{43} is realizable.

And, finally:
If a, b and -1 are quadratically independent, we can put $c={ }_{2}-1$: $(a,-c)\left(-b,-\alpha_{1} r\right)=1$ for $r=-\alpha_{1}$.

Theorem 5.5. Let K / k be a $D_{8} \times C_{2}$ extension as in Theorem 5.1 or 5.2, and let $(a b, a b)=1 \in \operatorname{Br}(k)$. In that case $\exists \gamma_{1}, \gamma_{2} \in k$, such that $\gamma_{1}^{2}-a b \gamma_{2}^{2}=a b$. Then the obstructions to solvability of the embedding problems $\left(K / k, G_{44},\left\langle a_{5}\right\rangle\right)$ and $\left(K / k, G_{43},\left\langle a_{5}\right\rangle\right)$ are identical and the solutions to the embedding problem $\left(K / k, G_{44},\left\langle a_{5}\right\rangle\right)$ are

$$
K\left(\sqrt{s\left(\gamma_{1}+\sqrt{a b} \gamma_{2}\right) \omega}\right) / k, s \in k^{\times}
$$

where ω is as in Theorem 5.1 or 5.2.
Proof. Put $\gamma=\gamma_{1}+\sqrt{a b} \gamma_{2}$. Then $\sigma(\gamma \omega) /(\gamma \omega)=a_{\sigma}^{2}, \tau(\gamma \omega) /(\gamma \omega)=a_{\tau}^{2}$, $\rho(\gamma \omega) /(\gamma \omega)=1$, where $a_{\sigma} \sigma a_{\sigma} \sigma^{2} a_{\sigma} \sigma^{3} a_{\sigma}=-1, a_{\tau} \tau a_{\tau}=-1$, whence $\left|a_{2} a_{1}\right|=$ $8,\left|a_{2}\right|=4$ and $\left|a_{3}\right|=2$. Therefore $K(\sqrt{s \gamma \omega}) / k$ is a Galois G_{44} extension.
6. The group $\boldsymbol{G}_{\mathbf{6}}$. The centre is $Z\left(G_{6}\right)=\left\langle a_{5}\right\rangle \cong C_{2}$ and the quotient group is

$$
G_{6} /\left\langle a_{5}\right\rangle=\left\langle x, y, z \mid x^{4}=y^{2}=z^{2}=1,[y, x]=z,[x, z]=[y, z]=1\right\rangle
$$

which is isomorphic to $D \curlywedge C$. In order to calculate the obstruction to realizability of the group G_{6}, we must describe all $D \curlywedge C$ extensions.

The notations in this section are slightly different from those in Section 2. Let a and b be quadratically independent over k. Let $(a, a)=1 \in \operatorname{Br}(k)$ and assume $\alpha_{1}, \alpha_{2} \in k$ are such that $\alpha_{1}^{2}-a \alpha_{2}^{2}=a$. Put $\alpha=\alpha_{1}-\alpha_{2} \sqrt{a}$ and $\alpha^{\prime}=\alpha_{1}+\alpha_{2} \sqrt{a}$. Then $\alpha \alpha^{\prime}=a$ and $K_{1} / k=k(\sqrt{r \alpha}, \sqrt{b}) / k$ is a $C_{4} \times C_{2}$ extension for all $r \in k^{\times}$. Conversely, all $C_{4} \times C_{2}$ extensions are described in this way. The group $C_{4} \times C_{2}$ is generated by elements σ and τ, such that $\sigma^{4}=\tau^{2}=1$ and the actions are:

$$
\begin{aligned}
\sigma & : \sqrt{r \alpha} \mapsto \sqrt{r \alpha^{\prime}}, \sqrt{r \alpha^{\prime}} \mapsto-\sqrt{r \alpha}, \sqrt{b} \mapsto \sqrt{b} ; \\
\tau & : \sqrt{r \alpha} \mapsto \sqrt{r \alpha}, \sqrt{r \alpha^{\prime}} \mapsto \sqrt{r \alpha^{\prime}}, \sqrt{b} \mapsto-\sqrt{b} .
\end{aligned}
$$

Then the obstruction of the embedding problem given by the extension K_{1} / k and the group extension

$$
1 \rightarrow\langle z\rangle \rightarrow D \curlywedge C \underset{\substack{x \mapsto \sigma \\ y \mapsto \tau}}{\longrightarrow} C_{4} \times C_{2} \rightarrow 1
$$

is $(a, b) \in \operatorname{Br}(k)$. Now, let $(a, b)=1$, so there exist $\beta_{1}, \beta_{2} \in k$, such that $a=$ $\beta_{1}^{2}-b \beta_{2}^{2}$. Put $\beta=\beta_{1}-\beta_{2} \sqrt{b}$ and $\beta^{\prime}=\beta_{1}+\beta_{2} \sqrt{b}$. Then $\beta \beta^{\prime}=a$ and $K_{2} / k=$ $k(\sqrt{s \beta}, \sqrt{a b}) / k$ is a D_{8} extension for all $s \in k^{\times}$. The group D_{8} is generated by elements σ_{1} and τ_{1}, such that $\sigma_{1}^{2}=\tau_{1}^{2}=1,\left|\sigma_{1} \tau_{1}\right|=4$ and their actions are:

$$
\begin{aligned}
\sigma_{1} & : \sqrt{s \beta} \mapsto-\sqrt{s \beta}, \sqrt{s \beta^{\prime}} \mapsto \sqrt{s \beta^{\prime}}, \sqrt{a b} \mapsto-\sqrt{a b} ; \\
\tau_{1} & : \sqrt{s \beta} \mapsto \sqrt{s \beta^{\prime}}, \sqrt{s \beta^{\prime}} \mapsto \sqrt{s \beta}, \sqrt{a b} \mapsto-\sqrt{a b} ; \\
\sigma_{1} \tau_{1} & : \sqrt{s \beta} \mapsto \sqrt{s \beta^{\prime}}, \sqrt{s \beta^{\prime}} \mapsto-\sqrt{s \beta}, \sqrt{a b} \mapsto \sqrt{a b} .
\end{aligned}
$$

The obstruction of the embedding problem given by the extension K_{2} / k and the group extension

$$
1 \rightarrow\left\langle x^{2}\right\rangle \rightarrow D \curlywedge C \underset{\substack{x \mapsto \sigma_{1} \\ y \mapsto \tau_{1}}}{\longrightarrow} D_{8} \rightarrow 1
$$

is $(a, a) \in \operatorname{Br}(k)$. Given that $(a, a)=(a, b)=1$, we can make the composite $K=$ $K_{1} K_{2}=k(\sqrt{r \alpha}, \sqrt{b}) k(\sqrt{s \beta}, \sqrt{a b})$. We will show that K / k is a $D \curlywedge C$ extension. Since the field K depends on r and s, we obtain in this way a description of all $D \curlywedge C$ extensions.

Clearly, K / k is a Galois extension. Now, let $x, y \in G=\operatorname{Gal}(K / k)$ be such that their restrictions on K_{1} and K_{2} are:

$$
\left.x\right|_{K_{1}}=\sigma,\left.x\right|_{K_{2}}=\sigma_{1} ;\left.y\right|_{K_{1}}=\tau,\left.y\right|_{K_{2}}=\tau_{1} .
$$

Then the actions of x and y are:

$$
\begin{aligned}
x: & \sqrt{r \alpha} \mapsto \sqrt{r \alpha^{\prime}}, \sqrt{r \alpha^{\prime}} \mapsto-\sqrt{r \alpha}, \sqrt{b} \mapsto \sqrt{b}, \\
& \sqrt{s \beta} \mapsto-\sqrt{s \beta}, \sqrt{s \beta^{\prime}} \mapsto \sqrt{s \beta^{\prime}}, \sqrt{a b} \mapsto-\sqrt{a b} ; \\
y: & \sqrt{r \alpha} \mapsto \sqrt{r \alpha}, \sqrt{r \alpha^{\prime}} \mapsto \sqrt{r \alpha^{\prime}}, \sqrt{b} \mapsto-\sqrt{b}, \\
& \sqrt{s \beta} \mapsto \sqrt{s \beta^{\prime}}, \sqrt{s \beta^{\prime}} \mapsto \sqrt{s \beta}, \sqrt{a b} \mapsto-\sqrt{a b} .
\end{aligned}
$$

Thus we obtain what we looked for: $|x|=4,|y|=2$ and the elements of K_{2} are fixed under the action of x^{2}. Now, put $z=[y, x]$. Then the action of z is:

$$
\begin{aligned}
z: & \sqrt{r \alpha} \mapsto \sqrt{r \alpha}, \sqrt{r \alpha^{\prime}} \mapsto \sqrt{r \alpha^{\prime}}, \sqrt{b} \mapsto \sqrt{b}, \\
& \sqrt{s \beta} \mapsto-\sqrt{s \beta}, \sqrt{s \beta^{\prime}} \mapsto-\sqrt{s \beta^{\prime}}, \sqrt{a b} \mapsto \sqrt{a b} .
\end{aligned}
$$

Therefore $|z|=2$ and the elements of K_{1} are fixed under the action of z. Also, it is easy to check that $[z, x]=[z, y]=1$. Whence we obtain that K / k is a $D \curlywedge C$ extension and all $D \curlywedge C$ extensions are described in this way.

Now, let $E=k(\sqrt{a}, \sqrt{b})$ and let $\gamma=-\left(\alpha_{1}+\beta_{1}\right)+\alpha_{2} \sqrt{a}+\beta_{2} \sqrt{b}$. Then for the norm map N we obtain the equations $N_{E / k(\sqrt{a})}(\gamma)=d \alpha$ and $N_{E / k(\sqrt{b})}(\gamma)=$ $d \beta$, where $d=2\left(\alpha_{1}+\beta_{1}\right)$.

Consider now the embedding problem given by the extension $K / k=$ $K_{1} K_{2} / k$, described above and the group extension

$$
1 \rightarrow \mu_{2} \cong\left\langle a_{5}\right\rangle \rightarrow G_{6} \underset{\substack{a_{1} \mapsto x \\ a_{2} \mapsto y}}{ } D \curlywedge C \rightarrow 1
$$

Denote by $\Gamma=(K, D \curlywedge C,-1)$ the crossed product algebra, corresponding to the latter group extension. The dimension of Γ is $16^{2}=4^{4}$ and Γ can be decomposed as a tensor product of 4 quaternion algebras. The algebra Γ is generated by the following elements over k : u_{x}, u_{y}, u_{z} (corresponding to x, y and z) $\sqrt{r \alpha}, \sqrt{s \beta}, \sqrt{a}$ and \sqrt{b}. The relations in G_{6} imply the following relations in Γ (recall that -1 in Γ corresponds to a_{5} in G_{6}):

$$
\begin{aligned}
& u_{x}^{4}=u_{y}^{2}=u_{z}^{2}=1, u_{y} u_{x}=u_{x} u_{y} u_{z},\left[u_{x}, u_{z}\right]=-1 \\
& {\left[u_{y}, u_{z}\right]=1,\left[u_{x}^{2}, u_{y}\right]=-1,\left[u_{x}^{2}, u_{z}\right]=1}
\end{aligned}
$$

The elements u_{x}, u_{y}, u_{z} change their places with the elements of K / k in this manner: $u_{x} \sqrt{r \alpha}=x(\sqrt{r \alpha}) u_{x}=\sqrt{r \alpha^{\prime}} u_{x}$.

In order to obtain the decomposition, we have to use the well-known theorem: If A is a central simple finite dimensional algebra over k and B is a subalgebra of A, then $A=B \otimes C_{A}(B)$, where $C_{A}(B)$ is the centralizer of B in A. Calculations show that the following subalgebras Γ_{1}, Γ_{2} and Γ_{3} centralize each other:

$$
\begin{array}{ll}
\Gamma_{1} & : i_{1}=\sqrt{b}, j_{1}=u_{y} \\
\Gamma_{2} & : \\
i_{2}=u_{x}^{2} \sqrt{b}, j_{2}=\sqrt{r \alpha^{\prime}}\left[-\left(\alpha_{1}+\beta_{1}\right)+\alpha_{2} \sqrt{a}+\beta_{2} \sqrt{b} u_{x}^{2}\right] \\
\Gamma_{3} & : \\
i_{3}=u_{z} \sqrt{a}, j_{3}=\left(\sqrt{s \beta}+\sqrt{s \beta^{\prime}}\right)\left[\left(\beta_{1}+1\right)-\sqrt{a}+\left(\left(\beta_{1}-1\right)-\sqrt{a}\right) u_{z}\right]
\end{array}
$$

where $i_{1}^{2}=b, j_{1}^{2}=1, i_{1} j_{1}=-j_{1} i_{1}, i_{2}^{2}=b, j_{2}^{2}=2 a\left(\alpha_{1}+\beta_{1}\right) r=a d r, i_{2} j_{2}=-j_{2} i_{2}$, $i_{3}^{2}=a, j_{3}^{2}=8 s\left(\beta_{1}^{2}-a\right)=8 s b \beta_{2}^{2}$. Then $\Gamma=\Gamma_{1} \otimes \Gamma_{2} \otimes \Gamma_{3} \otimes \Gamma_{4}$, where $\Gamma_{4}=$ $C_{\Gamma}\left(\Gamma_{1} \otimes \Gamma_{2} \otimes \Gamma_{3}\right) ;$ and

$$
\left[\Gamma_{1} \otimes \Gamma_{2} \otimes \Gamma_{3}\right]=\left[\Gamma_{1}\right]\left[\Gamma_{2}\right]\left[\Gamma_{3}\right]=(b, 1)(b, a d r)\left(a, 8 s b \beta_{2}^{2}\right)=(b, a d r)(a, 2 s b)
$$

We did not succeed in finding explicitly the generators of Γ_{4}, due to the enormous calculations. Some observations, however, brought us to the supposition that Γ_{4} is isomorphic to a quaternion algebra of the type (a, c), where the element
c does not depend on r or s. Fortunately, the same group G_{6} is considered in the paper [1] (there denoted as G_{1}), where is given a Galois extension, realizing the group as a Galois group over arbitrary field of char $\neq 2$. For the most part we try to conform our notations to that paper. In Proposition 3.6 there is proven that $L / k=E(\sqrt{\alpha d}, \sqrt{\beta d}, \sqrt{\gamma}) / k$ is a G_{6} Galois extension.

Therefore for $r=s=d$ the group G_{6} is realizable, so if we assume that c does not depend on r or s, we get

$$
[\Gamma]=\left(b, a d^{2}\right)(a, 2 d b)(a, c)=(b, a)(a, 2 d b)(a, c)=(a, 2 c d)=1
$$

Then for arbitrary r and s we obtain

$$
[\Gamma]=(b, a d r)(a, 2 s b)(a, c)=(b, d r)(a, d s)(a, 2 c d)=(b, d r)(a, d s) \in \operatorname{Br}(k)
$$

Now, we will prove that the obstruction is exactly this one by constructing the Galois extensions, realizing G_{6}.

Theorem 6.1. The obstruction to solvability of the embedding problem $\left(K / k, G_{6},\left\langle a_{5}\right\rangle\right)$, described above, is $(b, d r)(a, d s) \in \operatorname{Br}(k)$. If $(b, d r)(a, d s)=1 \in$ $\operatorname{Br}(k)$, then there exist elements $\delta_{1}, \delta_{2}, \delta_{3} \in E$ and $v \in k^{\times}$, such that drv $=$ $N_{E / k(\sqrt{a})}\left(\delta_{1}\right), d s v=N_{E / k(\sqrt{b})}\left(\delta_{2}\right), v=N_{E / k(\sqrt{a})}\left(\delta_{3}\right)=N_{E / k(\sqrt{b})}\left(\delta_{3}\right)$. Then $M / k=$ $E\left(\sqrt{r \alpha}, \sqrt{s \beta}, \sqrt{t \delta_{1} \delta_{2} \delta_{3}}\right) / k, t \in k^{\times}$are all Galois extensions, solving the embedding problem $\left(K / k, G_{6},\left\langle a_{5}\right\rangle\right)$.

Proof. Firstly, assume that $(b, d r)(a, d s)=1 \in \operatorname{Br}(k)$. By the common slot property (Lemma 5.3) there exists $v \in k^{\times}$, such that $(b, d r v)=(a, d s v)=$ $(a b, v)=1$. Then there must exist elements $\delta_{1}, \delta_{2}, \delta_{3} \in E$ and $v \in k^{\times}$, as in the statement of the theorem. Recall that $N_{E / k(\sqrt{a})}(\gamma)=d \alpha$ and $N_{E / k(\sqrt{b})}(\gamma)=d \beta$. Now, put $\delta=\gamma \delta_{1} \delta_{2} \delta_{3}$. Then

$$
N_{E / k(\sqrt{a})}(\delta)=d^{2} v^{2} \delta_{2}^{2} r \alpha \in K^{\times 2}
$$

and

$$
N_{E / k(\sqrt{b})}(\delta)=d^{2} v^{2} \delta_{1}^{2} s \beta \in K^{\times 2}
$$

Therefore $M / k=E(\sqrt{r \alpha}, \sqrt{s \beta}, \sqrt{t \delta}) / k, t \in k^{\times}$, is a Galois extension. Now, we shall prove that M / k is a G_{6} extension. For convenience, we may assume that $t=1$. Calculations show that $y \delta / \delta=a_{y}^{2}$, for $a_{y}=d v \sqrt{r \alpha} /\left(\gamma \delta_{1} \delta_{3}\right)$ and $x \delta / \delta=a_{x}^{2}$, for $a_{x}=d v \sqrt{s \beta} /\left(\gamma \delta_{2} \delta_{3}\right)$. Therefore $a_{y} y a_{y}=1$, so the preimage of y in $\operatorname{Gal}(M / k)$ is of order 2 and $a_{x} x a_{x} x^{2} a_{x} x^{3} a_{x}=1$, so the preimage of x is of order 4. Denote the preimages of x, y and z by a_{1}, a_{2} and a_{3} respectively. Since $z \delta / \delta=[z, x] \delta / \delta=1$, we obtain that a_{3} and $\left[a_{3}, a_{1}\right]$ are of order 2. Additional
calculations show that the remaining relations necessary to have the group G_{6} are also fulfilled.

Now, assume that $M / k=E\left(\sqrt{r \alpha}, \sqrt{s \beta}, \sqrt{\delta^{\prime}}\right) / k$ is a G_{6} extension. According to Theorem 1.1 and some additional checks, involving the relations in the group, we conclude that $\delta^{\prime}=t \delta_{1} \delta_{2} \delta_{3}$, where $\delta_{1} \in k(\sqrt{b}), \delta_{2} \in k(\sqrt{a}), \delta_{3} \in k(\sqrt{a b})$ and $t \in k^{\times}$. Then there always exist elements v_{1}, v_{2} and $v_{3} \in k^{\times}$, such that $d r v_{1}=N_{E / k(\sqrt{a})}\left(\delta_{1}\right), d s v_{2}=N_{E / k(\sqrt{b})}\left(\delta_{2}\right)$ and $v_{3}=N_{E / k(\sqrt{a})}\left(\delta_{3}\right)=N_{E / k(\sqrt{b})}\left(\delta_{3}\right)$. Since M / k is Galois, we must have $y \delta^{\prime} / \delta^{\prime}=a_{y}^{2}$, for some $a_{y} \in k^{\times}$. But $y \delta^{\prime} / \delta^{\prime}=$ $d^{2} r \alpha v_{1} v_{3} /\left(\gamma^{2} \delta_{1}^{2} \delta_{3}^{2}\right)$, therefore $v_{1} v_{3}$ is in $K^{\times 2} \cap k=k^{\times 2} \cup a k^{\times 2} \cup b k^{\times 2} \cup a b k^{\times 2}$. The splitting of the quaternion algebras (a, b) and (a, a) implies that we can reduce the possibilities to this one: $v_{1} v_{3} \in k^{\times 2}$. Thus, we can assume that $v_{1}=v_{3}$. Similarly, from $x \delta^{\prime} / \delta^{\prime}=a_{x}^{2}$, we obtain that $v_{2}=v_{3}$. By applying the common slot property in the reverse direction, we obtain the obstruction.

Remark. Another approach for the calculation of the obstruction, valid for another description of $D \curlywedge C$ extensions, can be found in the work [15].

Finally, consider the special case $r=s$. Then $[\Gamma]=(a b, d r)$. Assume that $(a b, d r)=1$, i.e., $\exists \gamma_{1}, \gamma_{2} \in k$, such that $d r=\gamma_{1}^{2}-a b \gamma_{2}^{2}$ and denote $M=$ $E\left(\sqrt{r \alpha}, \sqrt{r \beta}, \sqrt{\left(\gamma_{1}+\gamma_{2} \sqrt{a b}\right) \gamma}\right)$. Then M / k is a Galois extension:

$$
\begin{aligned}
& \left(\gamma_{1}+\gamma_{2} \sqrt{a b}\right) \gamma x\left[\left(\gamma_{1}+\gamma_{2} \sqrt{a b}\right) \gamma\right]= \\
& \left(\gamma_{1}^{2}-a b \gamma_{2}^{2}\right) \gamma x(\gamma)=d^{2} r \beta \in K^{\times 2} \\
& \left(\gamma_{1}+\gamma_{2} \sqrt{a b}\right) \gamma y\left[\left(\gamma_{1}+\gamma_{2} \sqrt{a b}\right) \gamma\right]=d^{2} r \alpha \in K^{\times 2}
\end{aligned}
$$

Similarly to the proof of the previous Theorem we verify that M / k is a G_{6} Galois extension.
7. Embedding problems with cyclic kernel of order 4. The investigation of the groups G_{7}, G_{8}, G_{11} and G_{15} requires a different approach. Instead of embedding problems with kernel of order 2, we will discuss embedding problems with cyclic kernel of order 4 . The reason is this: for each of these groups the element a_{1} is of order 8 and $\left\langle a_{1}^{2}\right\rangle$ is a normal cyclic subgroup of order 4.

Now, we write down the criteria from [8]. Let K / k be a finite Galois extension with Galois group F and assume that $i=\sqrt{-1}$ is in K. Also, let

$$
\begin{equation*}
1 \rightarrow C_{4} \rightarrow G \underset{\psi}{\rightarrow} F \rightarrow 1 \tag{7.1}
\end{equation*}
$$

be a group extension. We identify C_{4} with the group μ_{4} of the fourth roots of unity. We then have two F-module actions on $\mu_{4} \cong C_{4}$: the Galois action of F on $\mu_{4} \subset K^{\times}$, which we will write as $(\sigma, \zeta) \mapsto \sigma \zeta$, and the action of F on C_{4} induced by (7.1), which we will write as $(\sigma, \zeta) \mapsto{ }^{\sigma} \zeta$. If ${ }^{\sigma} \zeta=\sigma \zeta, \forall \sigma \in F$, the embedding problem $\left(K / k, G, C_{4}\right)$ is called Brauer. If the embedding problem $\left(K / k, G, C_{4}\right)$ is not Brauer, it is always possible to reduce the embedding problem to two Brauer problems as is seen in the following theorems.

Theorem 7.1. Let $i \in K$ and let K^{N} be the fixed field of $N=\{\sigma \in F \mid$ $\left.\sigma i={ }^{\sigma} i\right\}$. Then the embedding problem $\left(K / k, G, C_{4}\right)$ is solvable iff the embedding problems given by K / K^{N} and

$$
1 \rightarrow \mu_{4} \rightarrow \psi^{-1}(N) \underset{\psi}{\rightarrow} N \rightarrow 1,
$$

respectively by K / k and

$$
1 \rightarrow \mu_{2} \rightarrow G / C_{2} \xrightarrow[\psi^{\prime}]{\rightarrow} F \rightarrow 1
$$

are solvable.
Theorem 7.2. Let $i \notin K$. Extend the elements $\sigma \in F$ to $K(i)$ by $\sigma i=i$, and let κ be the generator of $\operatorname{Gal}(K(i) / K)$. Let $N=\left\{\sigma \in F \mid{ }^{\sigma} i=i\right\}, K(i)^{N}=$ $k(\sqrt{b})$, and let $L=k(i \sqrt{b})$. Then $\operatorname{Gal}(K(i) / L) \cong F$ by restriction, and the embedding problem $\left(K / k, G, C_{4}\right)$ is solvable iff the embedding problems given by $K(i) / L$ and

$$
1 \rightarrow \mu_{4} \rightarrow G \underset{\psi}{\rightarrow} F \rightarrow 1,
$$

respectively by K / k and

$$
1 \rightarrow \mu_{2} \rightarrow G / \mu_{2} \underset{\psi^{\prime}}{ } F \rightarrow 1
$$

are solvable.
8. The group $\boldsymbol{G}_{\mathbf{7}}$. As we noted in the previous section, $\left\langle a_{4}\right\rangle$ is a normal subgroup of G_{7}, and also $G_{7} /\left\langle a_{4}\right\rangle \cong D_{8}$. We have to find the Brauer problem, i.e., to determine the position of i in a D_{8} extension K / k, such that the action of D_{8} on $\left\langle a_{4}\right\rangle$ and $\mu_{4} \subset K^{\times}$is the same. Let $a=2-1$ and $b \in k^{\times}$be quadratically
independent over k, and let K / k be a D_{8} extension, described in Section 2. (For example, we have $-b=\alpha_{1}^{2}+\alpha_{2}^{2}$ and $\alpha=\alpha_{1}-\alpha_{2} i$.) In this case the embedding problem given by K / k and the group extension

$$
\begin{equation*}
1 \rightarrow\left\langle a_{4}\right\rangle \rightarrow G_{7} \underset{\substack{a_{1} \mapsto \tau \\ a_{2} \mapsto \tau}}{\longrightarrow} D_{8} \rightarrow 1 \tag{8.1}
\end{equation*}
$$

is Brauer. Indeed, $\tau i=i,{ }^{\tau} a_{4}=a_{1} a_{4} a_{1}^{-1}=a_{4}, \sigma \tau i=-i,{ }^{\sigma \tau} a_{4}=a_{2} a_{4} a_{2}^{-1}=$ $a_{4} a_{5}=a_{4}^{3}$.

Denote by $\Gamma=\left(K, G_{7}, i\right)$ the crossed product algebra, related to the group extension (8.1). Let u_{1} correspond to τ in Γ, u_{2} correspond to $\sigma \tau$, and $u=u_{2} u_{1}$. We then have the relations:

$$
\begin{aligned}
& u_{1}^{2}=i, u_{2}^{2}=1, u^{4}=-1 \\
& u \sqrt{r \alpha}=\sqrt{r \alpha^{\prime}} u, u \sqrt{r \alpha^{\prime}}=-\sqrt{r \alpha} u, u i=-i u, u \sqrt{b}=\sqrt{b} u \\
& u_{1} \sqrt{r \alpha}=\sqrt{r \alpha} u_{1}, u_{1} \sqrt{r \alpha^{\prime}}=-\sqrt{r \alpha^{\prime}} u_{1}, u_{1} i=i u_{1}, u_{1} \sqrt{b}=-\sqrt{b} u_{1}
\end{aligned}
$$

The relations $a_{3}=a_{1}^{2}\left(a_{2} a_{1}\right)^{2}$ and $a_{1}^{-1}\left(a_{2} a_{1}\right) a_{1}=\left(a_{2} a_{1}\right)^{3} a_{4} a_{5}$ imply $u u_{1}=i u_{1} u^{3}$. Calculations show that Γ is decomposed as tensor product of the following three quaternion subalgebras:

$$
\begin{array}{ll}
\Gamma_{1} & : \quad i_{1}=\sqrt{b}, j_{1}=(1+i) u_{1} \\
\Gamma_{2} & : i_{2}=\sqrt{b} u^{2}, j_{2}=i\left(\sqrt{r \alpha}+\sqrt{r \alpha^{\prime}} u^{2}\right) \\
\Gamma_{3} & : \quad i_{3}=i, j_{3}=u+u^{3}
\end{array}
$$

Therefore $[\Gamma]=(b,-2)\left(-b, 2 \alpha_{1} r\right)(-1,-2)=\left(-b,-\alpha_{1} r\right)$. We can summarize:
Theorem 8.1. The obstruction to solvability of the Brauer embedding problem $\left(K / k, G_{7},\left\langle a_{4}\right\rangle\right)$, described above, is $\left(-b,-\alpha_{1} r\right) \in \operatorname{Br}(k)$.

Note that a necessary condition to solvability of the Brauer problem $\left(K / k, G_{8},\left\langle a_{4}\right\rangle\right)$ is the solvability of the associated embedding problem given by K / k and the group extension

$$
1 \rightarrow\left\langle a_{4}\right\rangle /\left\langle a_{5}\right\rangle \rightarrow G_{7} /\left\langle a_{5}\right\rangle \cong D \curlywedge C \underset{\substack{a_{1} \mapsto \tau \\ a_{2} \mapsto \tau}}{\longrightarrow} D_{8} \rightarrow 1
$$

The obstruction is $(-1,-b)$ which equals 1 . This explains why we have obtained the decomposition of Γ so easily. If the obstruction were not trivial, the calculations would have been much complicated. Fortunately, the same situation happens for the groups G_{8}, G_{11} and G_{15}.

Next, we will discuss in details all five possibilities regarding to the position of i in K / k.
(1) Let $i \in k$ and let K / k be arbitrary D_{8} extension. Consider now the embedding problem given by K / k and the group extension (8.1). We then obtain

$$
\begin{aligned}
& N=\left\{\rho \in D_{8} \mid{ }^{\rho} a_{4}=\rho i=i\right\}=\left\{1, \tau, \sigma^{2}, \sigma^{2} \tau\right\} \cong C_{2}^{2} \\
& \psi^{-1}(N)=\left\langle a_{1},\left(a_{2} a_{1}\right)^{2}\right\rangle=\left\langle a_{1}, a_{3}\right\rangle \cong M_{16}
\end{aligned}
$$

where ψ is the homomorphism $G_{7} \rightarrow D_{8}$ from the group extension (8.1). Let $E=K^{N}=k(\sqrt{a})$. Then we can write $K=E(\sqrt{c}, \sqrt{d})$, where $c=r \alpha$ and $d=b$. By Theorem 7.1 the embedding problem $\left(K / k, G_{7},\left\langle a_{4}\right\rangle\right)$ is reduced to the embedding problem given by K / E and the group extension

$$
1 \rightarrow \mu_{4} \cong\left\langle a_{4}\right\rangle \rightarrow \psi^{-1}(N) \cong M_{16} \rightarrow \underset{\psi}{ } N \cong C_{2}^{2} \rightarrow 1
$$

respectively by K / k and

$$
1 \rightarrow\left\langle a_{4}\right\rangle /\left\langle a_{5}\right\rangle \rightarrow G_{7} /\left\langle a_{5}\right\rangle \cong D \curlywedge C \underset{\substack{a_{1} \mapsto \tau \\ a_{2} \mapsto \sigma \tau}}{\longrightarrow} D_{8} \rightarrow 1
$$

Let $N \cong C_{2}^{2}$ be generated by σ_{1} and σ_{2}, such that

$$
\begin{aligned}
\sigma_{1} & : \sqrt{c} \mapsto-\sqrt{c}, \quad \sqrt{d} \mapsto \sqrt{d} ; \\
\sigma_{2} & : \sqrt{c} \mapsto \sqrt{c}, \quad \sqrt{d} \mapsto-\sqrt{d} .
\end{aligned}
$$

In this way the homomorphism $\psi: M_{16}=\left\langle a_{1}, a_{3}\right\rangle \rightarrow N$ is described by $a_{1} \mapsto \sigma_{2}$ and $a_{3} \mapsto \sigma_{1}$. Then the embedding problem $\left(K / E, M_{16}, \mu_{4}=\left\langle a_{4}\right\rangle\right)$ is solvable iff $(d, d)=(d, 2 c)(-1, x)=1 \in \operatorname{Br}(E)$ for some $x \in E$. But $i \in k$, whence the embedding problem is solvable iff $(d, 2 c)=\left(b, 2 r\left(\alpha_{1}-\right.\right.$ $\left.\left.\alpha_{2} \sqrt{a}\right)\right)=1 \in \operatorname{Br}(E)$. Furthermore, the embedding problem $(K / k, D \curlywedge$ $\left.C, \mu_{2}\right)$ is solvable iff $(b,-1)(a,-1)=1$ i.e., $(a b,-1)=1 \in \operatorname{Br}(k)$, which holds in this case.
(2) $a={ }_{2}-1$. This is the Brauer problem (see Theorem 8.1).
(3) $b==_{2}-1$. Here $b=-\beta^{2}, \beta \in k^{\times}$and $a b=-a \beta^{2}=\alpha_{1}-a \alpha_{2}^{2}$ for $\alpha_{1}=0$, $\alpha_{2}=-\beta$. For $\alpha=\alpha_{1}-\alpha_{2} \sqrt{a}=\sqrt{\beta^{2} a}$, we get $\sqrt{r \alpha}=\sqrt[4]{a^{\prime}}$, where $a^{\prime}=r^{2} \beta^{2} a$. Then $K / k=k\left(\sqrt[4]{a^{\prime}}, i\right) / k$ is a D_{8} extension. The generators σ and τ of D_{8} act, for example, thus:

$$
\begin{aligned}
\sigma & : \quad \sqrt[4]{a^{\prime}} \mapsto \sqrt[4]{a^{\prime}} i, \quad i \mapsto i \\
\tau: & \sqrt[4]{a^{\prime}} \mapsto \sqrt[4]{a^{\prime}}, \quad i \mapsto-i
\end{aligned}
$$

We have that

$$
N=\left\{1, \sigma^{2}, \sigma \tau, \sigma^{3} \tau\right\}=\left\{\left.\rho \in D_{8}\right|^{\rho} i=\rho i\right\}
$$

Put $x=\left(a_{2} a_{1}\right)^{2}=a_{3} a_{4}^{-1}, y=a_{2}, z=a_{3}$ and $E=K^{N}=k\left(\sqrt[4]{a^{\prime}} i\right)$. Then we have $\psi^{-1}(N)=\left\langle x, y, a_{4}\right\rangle=\langle x, y\rangle \times\langle z\rangle \cong D_{8} \times C_{2}$ and $K=E(\sqrt{c}, \sqrt{d})$, where $c=2 \sqrt{a^{\prime}} i, d=-1$. The group $N \cong C_{2}^{2}$ is generated by elements σ_{1} and σ_{2}, such that

$$
\begin{aligned}
\sigma_{1} & : \sqrt{c} \mapsto-\sqrt{c}, \quad \sqrt{d} \mapsto \sqrt{d} ; \\
\sigma_{2} & : \sqrt{c} \mapsto \sqrt{c}, \quad \sqrt{d} \mapsto-\sqrt{d}
\end{aligned}
$$

The homomorphism $\psi: D_{8} \times C_{2} \rightarrow C_{2}^{2}$ can be described in this way: $x \mapsto \sigma_{1}, y \mapsto \sigma_{2}, z \mapsto \sigma_{1}$, since $z=a_{4} x$.
Consider now the associated embedding problem given by K / E and the group extension

$$
1 \rightarrow \mu_{4} \cong\left\langle a_{4}\right\rangle \rightarrow \psi^{-1}(N) \cong D_{8} \times C_{2} \underset{\psi}{ } N \cong C_{2}^{2} \rightarrow 1
$$

A necessary condition to solvability of the latter embedding problem is the solvability of the associated embedding problem given by K / E and

$$
1 \rightarrow \mu_{2} \cong\left\langle a_{4}\right\rangle /\left\langle a_{5}\right\rangle \rightarrow \psi^{-1}(N) /\left\langle a_{5}\right\rangle \cong C_{2}^{3} \underset{\psi}{\rightarrow} N \cong C_{2}^{2} \rightarrow 1
$$

The associated embedding problem is solvable iff $\exists e \in E^{\times}$, such that c, d and e are quadratically independent over E. Denote $K_{1}=E(\sqrt{c}, \sqrt{d}, \sqrt{e})$ and let us consider the embedding problem given by K_{1} / E and

$$
1 \rightarrow \mu_{2} \cong\left\langle a_{5}\right\rangle \rightarrow \psi^{-1}(N) \cong D_{8} \times C_{2} \underset{\substack{x \\ y \\ \\ a_{4} \mapsto \sigma_{2} \\ \mapsto \sigma_{3}}}{\longrightarrow} C_{2}^{3} \rightarrow 1
$$

We have the relations $x^{2}=-1, y^{2}=1, a_{4}^{2}=-1, x y=-y x, a_{4} x=x a_{4}$ and $a_{4} y=-y a_{4}$. From Theorem 2.1 follows that the latter embedding problem is solvable iff $(c, c)(c, d)(e, e)(d, e)=1 \in \operatorname{Br}(E)$, which, clearly, always holds (here $d=-1$).
The embedding problem given by K / k and the group extension

$$
1 \rightarrow\left\langle a_{4}\right\rangle /\left\langle a_{5}\right\rangle \rightarrow G_{7} /\left\langle a_{5}\right\rangle \cong D \curlywedge C \underset{\substack{a_{1} \mapsto \tau \\ a_{2} \mapsto \sigma \tau}}{ } D_{8} \rightarrow 1
$$

is solvable iff $(-a,-1)=1 \in \operatorname{Br}(k)$.
Thus we can summarize: The embedding problem $\left(K / k, G_{7},\left\langle a_{4}\right\rangle\right)$ is solvable iff $\exists e \in E^{\times}$, such that $c=2 \sqrt{a^{\prime}} i, d=-1$ and e are quadratically independent over $E=k\left(\sqrt[4]{a^{\prime}} i\right)$ and $(-a,-1)=1 \in \operatorname{Br}(k)$.
(4) $a b={ }_{2}-1$. Here $\sigma(i)=-i$ and $\tau(i)=-i$, whence $N=\langle\sigma\rangle$. Let K / k be a D_{8} extension. Denote $E=K^{N}=k(\sqrt{b})=k(\sqrt{a} i)$. Put $x=a_{2} a_{1}$ and $y=a_{3}$. Then $\psi^{-1}(N)=\langle x, y\rangle \cong M_{16}$ and $\psi^{-1}(N) /\left\langle a_{5}\right\rangle \cong C_{4} \times C_{2}$. The embedding problem $\left(K / E, C_{4} \times C_{2}, \mu_{2}\right)$ is solvable iff $\exists e \in E^{\times}$, such that a and e are quadratically independent over E. Denote $K_{1}=K(\sqrt{e})$ and consider the embedding problem given by K_{1} / E and the group extension

$$
1 \rightarrow \mu_{2} \cong\left\langle a_{5}\right\rangle \rightarrow \psi^{-1}(N) \underset{\substack{x \mapsto \rho_{1} \\ y \mapsto \rho_{2}}}{\longrightarrow} C_{4} \times C_{2} \rightarrow 1
$$

Here we need some preparation before applying Theorem 2.2. Let $\beta_{1}=r \alpha_{1}$, $\beta_{2}=r \alpha_{2}$ and $a b=-\beta^{2}$, where $\beta \in k^{\times}$. Then $\beta_{1}^{2}-a \beta_{2}^{2}=r^{2} a b=-r^{2} \beta^{2}$. For $\gamma=i r / \sqrt{a} \in E$ we get $a \gamma^{2}=-r^{2}$. From [2] now follows that the embedding problem is solvable iff $(a, 2 e)\left(-1, \beta_{1}\right)=\left(a, 2 r \alpha_{1} e\right)=1 \in \operatorname{Br}(E)$, since $a=2-1\left(\bmod E^{2}\right)$.
Therefore the embedding problem $\left(K / E, \psi^{-1}(N),\left\langle a_{4}\right\rangle\right)$ is solvable iff $\exists e \in$ E^{\times}, such that $\left(a, 2 r \alpha_{1} e\right)=1 \in \operatorname{Br}(E)$. The associated embedding problem $\left(K / k, G_{7} /\left\langle a_{5}\right\rangle, \mu_{2}\right)$ is solvable iff $(-1,-1)=1 \in \operatorname{Br}(k)$. Whence the embedding problem $\left(K / k, G_{7},\left\langle a_{4}\right\rangle\right)$ is solvable iff $\exists e \in E^{\times}$, such that $\left(a, 2 r \alpha_{1} e\right)=1 \in \operatorname{Br}(E)$ and $(-1,-1)=1 \in \operatorname{Br}(k)$, where a and e are quadratically independent over E.
Finally,
(5) $i \notin K / k$ - arbitrary D_{8} extension. Let κ generate $\operatorname{Gal}(K(i) / K)$ and identify $\operatorname{Gal}(K / k)$ with $\operatorname{Gal}(K(i) / k(i))$. According to Theorem 7.2 we must take the group $N=\langle\sigma \kappa, \tau\rangle$, which is the Galois group of $K(i) / k(i \sqrt{a})$. Then the embedding problem given by $K(i) / k(i \sqrt{a})$ and

$$
1 \rightarrow\left\langle a_{4}\right\rangle \rightarrow G_{7} \underset{\substack{a_{1} \mapsto \tau \\ a_{2} \mapsto \sigma \kappa \tau}}{\longrightarrow} D_{8} \rightarrow 1
$$

is Brauer. Since $-a \in k(i \sqrt{a})^{2}$, we get $\alpha=\alpha_{1}-\alpha_{2} \sqrt{a}=\alpha_{1}-i \alpha_{2}^{\prime}$ for proper $\alpha_{2}^{\prime} \in k(i \sqrt{a})^{\times}$. Thus we obtain that the embedding problem $\left(K(i) / k(i \sqrt{a}), G_{7},\left\langle a_{4}\right\rangle\right)$ is solvable iff $\left(-b,-\alpha_{1} r\right)=1 \in \operatorname{Br}(k(i \sqrt{a}))$. It remains only to add the condition $(a b,-1)=1 \in \operatorname{Br}(k)$ to solvability of the associated embedding problem $\left(K / k, G_{7} /\left\langle a_{5}\right\rangle,\left\langle a_{5}\right\rangle\right)$.
9. The group G_{8}. Here again $\left\langle a_{4}\right\rangle$ is a normal subgroup of G_{8}, and $G_{8} /\left\langle a_{4}\right\rangle \cong D_{8}$. Let $a=2-1$ and $b \in k^{\times}$be quadratically independent over k, and let K / k be a D_{8} extension, described in Section 2. We then have that the embedding problem given by K / k and the group extension

$$
\begin{equation*}
1 \rightarrow\left\langle a_{4}\right\rangle \rightarrow G_{8} \underset{\substack{a_{1} \mapsto \tau \\ a_{2} \mapsto \tau \tau}}{\longrightarrow} D_{8} \rightarrow 1 \tag{9.1}
\end{equation*}
$$

is Brauer. Let $\Gamma=\left(K, G_{8}, i\right)$ be the crossed product algebra, related to the group extension (9.1). Let u_{1} correspond to τ in Γ, u_{2} correspond to $\sigma \tau$, and $u=u_{2} u_{1}$. Then we have the relations $u_{1}^{2}=i, u_{2}^{2}=-1, u^{4}=-1$ and $u u_{1}=-i u_{1} u^{3}$. The algebra Γ is decomposed as tensor product of the following three quaternion subalgebras:

$$
\begin{array}{ll}
\Gamma_{1} & : i_{1}=\sqrt{b}, j_{1}=(1-i) u_{1} \\
\Gamma_{2} & : i_{2}=\sqrt{b} u^{2}, j_{2}=i\left(\sqrt{r \alpha}+\sqrt{r \alpha^{\prime}} u^{2}\right) \\
\Gamma_{3} & : \quad i_{3}=i, j_{3}=u+u^{3}
\end{array}
$$

Therefore $[\Gamma]=(b, 2)\left(-b, 2 \alpha_{1} r\right)(-1,-2)=\left(-b, \alpha_{1} r\right)(-1,-1)$. We can summarize:
Theorem 9.1. The obstruction to solvability of the Brauer embedding problem $\left(K / k, G_{8},\left\langle a_{4}\right\rangle\right)$, described above, is $\left(-b, \alpha_{1} r\right)(-1,-1) \in \operatorname{Br}(k)$.

The associated embedding problem $\left(K / k, G_{8} /\left\langle a_{5}\right\rangle,\left\langle a_{5}\right\rangle\right)$ is always solvable. We will again discuss all 5 cases. Our goal is to prove the automatic realizability $G_{8} \Rightarrow G_{7}$.
(1) $i \in k$. The embedding problem $\left(K / k, G_{8},\left\langle a_{4}\right\rangle\right)$ is solvable iff $(d, 2 c)=1 \in$ $\operatorname{Br}(E)$, i.e., $\left(b, 2 r\left(\alpha_{1}-\alpha_{2} \sqrt{a}\right)\right)=1 \in \operatorname{Br}(E)$. Therefore in this case we obtain the automatic realizability $G_{7} \Leftrightarrow G_{8}$.
(2) $a={ }_{2}-1$. This is the Brauer problem. If we replace r by $-\alpha_{1}$ in the obstruction $\left(-b,-\alpha_{1} r\right)$ to solvability of the embedding problem $\left(K / k, G_{7}\right.$, μ_{4}), we obtain the automatic realizability $G_{8} \Rightarrow G_{7}$.
(3) $b={ }_{2}-1$. We keep the notations of the same case for the group G_{7}. Consider the embedding problem given by K / k and the group extension (9.1). Again, $N=\left\{1, \sigma^{2}, \sigma \tau, \sigma^{3} \tau\right\}$. Put $x=\left(a_{2} a_{1}\right)^{2}=a_{3} a_{4}, y=a_{2}$ and $z=a_{3}$. Then $\psi^{-1}(N)=\left\langle x, y, a_{4}\right\rangle=\langle x, y\rangle \times\langle z\rangle \cong Q_{8} \times C_{2}$.
Since $z=x a_{4}^{-1}$, the homomorphism $\psi: Q_{8} \times C_{2} \rightarrow C_{2}^{2}$ can be described by $x \mapsto \sigma_{1}, y \mapsto \sigma_{2}, z \mapsto \sigma_{1}$. Consider the associated embedding problem given
by K / E and the group extension

$$
1 \rightarrow \mu_{4} \cong\left\langle a_{4}\right\rangle \rightarrow \psi^{-1}(N) \cong Q_{8} \times C_{2} \underset{\psi}{\rightarrow} N \cong C_{2}^{2} \rightarrow 1
$$

A necessary condition to solvability of the latter embedding problem is the solvability of the associated embedding problem given by K / E and

$$
1 \rightarrow \mu_{2} \cong\left\langle a_{4}\right\rangle /\left\langle a_{5}\right\rangle \rightarrow \psi^{-1}(N) /\left\langle a_{5}\right\rangle \cong C_{2}^{3} \underset{\psi}{\rightarrow} N \cong C_{2}^{2} \rightarrow 1
$$

The latter associated embedding problem is solvable iff $\exists e \in E^{\times}$, such that c, d and e are quadratically independent over E. Denote $K_{1}=E(\sqrt{c}, \sqrt{d}$, \sqrt{e}) and let us consider the embedding problem given by K_{1} / E and

$$
1 \rightarrow \mu_{2} \cong\left\langle a_{5}\right\rangle \rightarrow \psi^{-1}(N) \cong Q_{8} \times C_{2} \underset{\substack{x \\ y \\ \\ a_{4} \\ a_{2} \\ \longrightarrow \sigma_{2}\\}}{ } C_{2}^{3} \rightarrow 1
$$

We have the relations $x^{2}=y^{2}=a_{4}^{2}=-1, x y=-y x, a_{4} x=x a_{4}$ and $a_{4} y=y a_{4}$. From Theorem 2.1 follows that the latter embedding problem is solvable iff $(c, c)(d, d)(e, e)(c, d)(d, e)=1 \in \operatorname{Br}(E) \Longleftrightarrow(-1,-1)=1 \in$ $\operatorname{Br}(E)$.
The embedding problem given by K / k and the group extension

$$
1 \rightarrow\left\langle a_{4}\right\rangle /\left\langle a_{5}\right\rangle \rightarrow G_{8} /\left\langle a_{5}\right\rangle \cong D \curlywedge C \underset{\substack{a_{1} \mapsto \tau \\ a_{2} \mapsto \sigma \tau}}{\longrightarrow} D_{8} \rightarrow 1
$$

is solvable iff $(-a,-1)=1 \in \operatorname{Br}(k)$.
Thus we can summarize: The embedding problem $\left(K / k, G_{8},\left\langle a_{4}\right\rangle\right)$ is solvable iff $\exists e \in E^{\times}$, such that $c=2 \sqrt{a^{\prime}} i, d=-1$ and e are quadratically independent over $E=k\left(\sqrt[4]{a^{\prime}} i\right),(-1,-1)=1 \in \operatorname{Br}(E)$ and $(-a,-1)=1 \in \operatorname{Br}(k)$. In particular, we obtain again the automatic realizability $G_{8} \Rightarrow G_{7}$.
(4) Analogously to the group G_{7}, we obtain that the embedding problem $\left(K / k, G_{8},\left\langle a_{4}\right\rangle\right)$ is solvable iff $\left(a, 2 r \alpha_{1} e\right)=1 \in \operatorname{Br}(E)$ and $(-1,-1)=1 \in$ $\operatorname{Br}(k)$.

Finally,
(5) a, b and -1 are quadratically independent over k. Similarly to the group G_{7} we obtain that the embedding $\operatorname{problem}\left(K / k, G_{8},\left\langle a_{4}\right\rangle\right)$ is solvable iff $\left(-b, \alpha_{1} r\right)(-1,-1)=1 \in \operatorname{Br}(k(i \sqrt{a}))$ and $(-1, a b)=1 \in \operatorname{Br}(k)$.

Comparing each case for the groups G_{7} and G_{8} we have shown in this way that the automatic realizability $G_{8} \Rightarrow G_{7}$ holds.
10. The group $\boldsymbol{G}_{\mathbf{1 1}}$. We did not discover an automatic realizability between the groups G_{11} and G_{15}, so we decided to investigate only the Brauer problem. Again, the centre $Z\left(G_{11}\right)=\left\langle a_{4}\right\rangle$ is isomorphic to C_{4} and the quotient group $G_{11} /\left\langle a_{4}\right\rangle$ is isomorphic to D_{8}. Let K / k be a D_{8} extension, and let $i \in k$. Then the embedding problem given by K / k and the group extension

$$
\begin{equation*}
1 \rightarrow\left\langle a_{4}\right\rangle \rightarrow G_{11} \underset{\substack{a_{1} \mapsto \tau \\ a_{2} \mapsto \sigma \tau}}{\longrightarrow} D_{8} \rightarrow 1 \tag{10.1}
\end{equation*}
$$

is Brauer. Indeed, $\tau i=i,{ }^{\tau} a_{4}=a_{1} a_{4} a_{1}^{-1}=a_{4}, \sigma \tau i=i,{ }^{\sigma \tau} a_{4}=a_{2} a_{4} a_{2}^{-1}=a_{4}$. Denote by $\Gamma=\left(K, G_{11}, i\right)$ the crossed product algebra, related to the group extension (10.1). Let u_{1} correspond to τ in Γ, u_{2} correspond to $\sigma \tau$, and $u=u_{2} u_{1}$. We then have the relations:

$$
\begin{aligned}
& u_{1}^{2}=i, u_{2}^{2}=1, u^{4}=1, u u_{1}=i u_{1} u^{3} \\
& u \sqrt{r \alpha}=\sqrt{r \alpha^{\prime}} u, u \sqrt{r \alpha^{\prime}}=-\sqrt{r \alpha} u, u \sqrt{a}=-\sqrt{a} u, u \sqrt{b}=\sqrt{b} u \\
& u_{1} \sqrt{r \alpha}=\sqrt{r \alpha} u_{1}, u_{1} \sqrt{r \alpha^{\prime}}=-\sqrt{r \alpha^{\prime}} u_{1}, u_{1} \sqrt{a}=\sqrt{a} u_{1}, u_{1} \sqrt{b}=-\sqrt{b} u_{1}
\end{aligned}
$$

Calculations show that Γ is decomposed as tensor product of the following three quaternion subalgebras:

$$
\begin{array}{ll}
\Gamma_{1} & : \quad i_{1}=\sqrt{b}, j_{1}=u_{1} \\
\Gamma_{2} & : \\
i_{2}=\sqrt{b} u^{2}, j_{2}=\sqrt{a}\left[\sqrt{r \alpha}+i \sqrt{r \alpha^{\prime}} u^{2}\right] \\
\Gamma_{3} & : \quad i_{3}=\sqrt{a}, j_{3}=u+i u^{3}
\end{array}
$$

Therefore $[\Gamma]=(b, i)\left(b, 2 \alpha_{1} r a\right)(a, 2 i)=\left(b, \alpha_{1} r\right) \in \operatorname{Br}(k)$, since $2 i=(1+i)^{2} \in k^{2}$ and $(a,-b)=1 \in \operatorname{Br}(k)$. We can summarize:

Theorem 10.1. The obstruction to solvability of the Brauer embedding problem $\left(K / k, G_{11},\left\langle a_{4}\right\rangle\right)$, described above, is $\left(b, \alpha_{1} r\right) \in \operatorname{Br}(k)$.

In particular, if $i \in k$, we obtain the automatic realizability $D_{8} \Rightarrow G_{11}$ (we have to replace r by α_{1} in the obstruction). Here again the associated embedding problem $\left(K / k, G_{11} /\left\langle a_{5}\right\rangle \cong D \curlywedge C,\left\langle a_{5}\right\rangle\right)$ is always solvable.
11. The group $\boldsymbol{G}_{\mathbf{1 5}}$. As before, the centre $Z\left(G_{15}\right)=\left\langle a_{4}\right\rangle$ is isomorphic to C_{4} and the quotient group $G_{15} /\left\langle a_{4}\right\rangle$ is isomorphic to D_{8}. Let K / k be a D_{8}
extension, and let $i \in k$. Then the embedding problem given by K / k and the group extension

$$
\begin{equation*}
1 \rightarrow\left\langle a_{4}\right\rangle \rightarrow G_{15} \underset{\substack{a_{1} \mapsto \tau \\ a_{2} \mapsto \sigma}}{ } D_{8} \rightarrow 1 \tag{11.1}
\end{equation*}
$$

is Brauer. Denote by $\Gamma=\left(K, G_{15}, i\right)$ the crossed product algebra, related to the group extension (11.1). Let u_{1} correspond to τ in Γ and u_{2} correspond to σ. We then have the relations:

$$
\begin{aligned}
& u_{1}^{2}=i, u_{2}^{4}=-1, u_{1} u_{2}=-u_{2}^{3} u_{1} ; \\
& u_{1} \sqrt{r \alpha}=\sqrt{r \alpha} u_{1}, u_{1} \sqrt{r \alpha^{\prime}}=-\sqrt{r \alpha^{\prime}} u_{1}, u_{1} \sqrt{a}=\sqrt{a} u_{1}, u_{1} \sqrt{b}=-\sqrt{b} u_{1} ; \\
& u_{2} \sqrt{r \alpha}=\sqrt{r \alpha^{\prime}} u_{2}, u_{2} \sqrt{r \alpha^{\prime}}=-\sqrt{r \alpha} u_{2}, u_{2} \sqrt{a}=-\sqrt{a} u_{2}, u_{2} \sqrt{b}=\sqrt{b} u_{2} .
\end{aligned}
$$

The algebra Γ is decomposed as tensor product of the following three quaternion subalgebras:

$$
\begin{array}{ll}
\Gamma_{1} & : i_{1}=\sqrt{b}, j_{1}=\sqrt{a} u_{1} \\
\Gamma_{2} & : i_{2}=\sqrt{b} u_{2}^{2}, j_{2}=\sqrt{a}\left[\sqrt{r \alpha}+\sqrt{r \alpha^{\prime}} u_{2}^{2}\right] \\
\Gamma_{3} & : i_{3}=\sqrt{a}, j_{3}=u_{2}+u_{2}^{3}
\end{array}
$$

Therefore $[\Gamma]=(b, a i)\left(-b, 2 \alpha_{1} r a\right)(a,-2)=\left(b, \alpha_{1} r\right)(a, 2) \in \operatorname{Br}(k)$, since $2 i=$ $(1+i)^{2} \in k^{2}$ and $(a,-b)=1 \in \operatorname{Br}(k)$. We can summarize:

Theorem 11.1. The obstruction to solvability of the Brauer embedding problem $\left(K / k, G_{15},\left\langle a_{4}\right\rangle\right)$, described above, is $\left(b, \alpha_{1} r\right)(a, 2) \in \operatorname{Br}(k)$.

Here again the associated embedding problem $\left(K / k, G_{15} /\left\langle a_{5}\right\rangle \cong Q \curlywedge\right.$ $\left.C,\left\langle a_{5}\right\rangle\right)$ is always solvable.
12. The groups $\boldsymbol{G}_{17}, \boldsymbol{G}_{18}, \boldsymbol{G}_{\mathbf{1 9}}, \boldsymbol{G}_{\mathbf{2 0}}, \boldsymbol{G}_{\mathbf{4 9}}$ and $\boldsymbol{G}_{\mathbf{5 0}}$. We decided to include in this section the main obstructions to realizability of these groups for convenience of the reader. The non abelian groups of exponent 16 are: G_{17} - the modular group M_{32}, G_{18} - the dihedral group D_{32}, G_{19} - the semidihedral group $S D_{32}$, and G_{20} - the quaternion group Q_{32}. We begin by giving the obstructions to solvability of the Brauer problems for these groups found in [8], [11] and [12].

Let the group G be generated by two elements s and t, such that s is of order 16. Identify the cyclic subgroup $\left\langle s^{4}\right\rangle$ with the group μ_{4} of the fourth roots of unity, i.e., $s^{4}=i, s^{8}=-1$. Let also $t^{2}=\varepsilon_{1}$ and $t s=\varepsilon_{2} s^{-1} t$, where $\varepsilon_{1}, \varepsilon_{2} \in\{ \pm 1\}$. Then we have the isomorphisms: for $\varepsilon_{1}=\varepsilon_{2}=1, G \cong D_{32}$; for
$\varepsilon_{1}=1, \varepsilon_{2}=-1, G \cong S D_{32}$; for $\varepsilon_{1}=-1, \varepsilon_{2}=1, G \cong Q_{32}$. Let $K / k=k(\sqrt[4]{a}, i) / k$, where a and -1 are quadratically independent over k. Then the embedding problem given by the D_{8} extension K / k and the group extension

$$
1 \rightarrow \mu_{4} \underset{i \mapsto s^{4}}{\longrightarrow} G \underset{\substack{s \mapsto \sigma \\ t \mapsto \tau}}{\longrightarrow} D_{8} \rightarrow 1
$$

is Brauer. The obstruction to solvability of this embedding problem is

$$
\left(-1, \varepsilon_{1}\right)\left(2, \alpha_{1} \beta_{1}\right)\left(a, \varepsilon_{2} \alpha_{1}\left(\alpha_{1}-1\right)\right) \in \operatorname{Br}(k),
$$

where $\alpha_{1} \in k^{\times}, \beta_{1} \in k$ are such that $\alpha_{1}^{2}+a \beta_{1}^{2}=2$. For the remaining cases see [8].

Now, let the modular group M_{32} be generated by elements s and t, such that $s^{16}=t^{2}=1, t s=s^{9} t$. Let $i \in k$, and let $K / k=k(\sqrt[4]{a}, \sqrt{b}) / k$, where a and b are quadratically independent over k. Assume the group $C_{4} \times C_{2}$ is generated by elements ρ_{1} and ρ_{2}, which act on K / k thus:

$$
\begin{aligned}
& \rho_{1}: \sqrt[4]{a} \mapsto \sqrt[4]{a} i, \sqrt{b} \mapsto \sqrt{b} ; \\
& \rho_{2}: \\
& : \sqrt[4]{a} \mapsto \sqrt[4]{a}, \sqrt{b} \mapsto-\sqrt{b} .
\end{aligned}
$$

Then the embedding problem given by K / k and the group extension

$$
1 \rightarrow \mu_{4} \underset{i \mapsto s^{4}}{\longrightarrow} M_{32} \underset{\substack{s \mapsto \rho_{1} \\ t \mapsto \rho_{2}}}{\longrightarrow} C_{4} \times C_{2} \rightarrow 1
$$

is Brauer. The obstruction is $(a, \alpha b)(i, \alpha \beta) \in \operatorname{Br}(k)$, where is necessary that $\exists \alpha \in k^{\times}, \beta \in k$, such that $\alpha^{2}-a \beta^{2}=i$. For the remaining cases see [12].

Finally, for the two extra-special groups $D D \cong G_{49}$ and $D Q \cong G_{50}$ we have from [14]:

Proposition 12.1. There exists a Galois extension L / k with Galois group $\operatorname{Gal}(L / k) \cong D D$ iff there exist $a, b, c, d \in k^{\times}$, quadratically independent over k, such that $(a, b)(c, d)=1 \in \operatorname{Br}(k)$.

Proposition 12.2. There exists a Galois extension L / k with Galois group $\operatorname{Gal}(L / k) \cong D Q$ iff there exist $a, b, c, d \in k^{\times}$, quadratically independent over k, such that $(-a,-b)(-1,-1)(c, d)=1 \in \operatorname{Br}(k)$.

Appendix

Group	Relations	Centre	Rank	Exp
G_{1}	$a_{1}^{2} a_{2}^{-1}, a_{2}^{2} a_{3}^{-1}, a_{3}^{2} a_{4}^{-1}, a_{4}^{2} a_{5}^{-1}, a_{5}^{2}$	G_{1}	1	32
G_{2}	$\begin{gathered} a_{1}^{2} a_{4}^{-1}, a_{2}^{2} a_{5}^{-1},\left[a_{2}, a_{1}\right] a_{3}^{-1}, a_{3}^{2} \\ a_{4}^{2}, a_{5}^{2} \end{gathered}$	$\left\langle a_{3}, a_{4}, a_{5}\right\rangle$	2	4
G_{3}	$a_{1}^{2} a_{3}^{-1}, a_{2}^{2} a_{4}^{-1}, a_{3}^{2} a_{5}^{-1}, a_{4}^{2}, a_{5}^{2}$	G_{3}	2	8
G_{4}	$\begin{gathered} a_{1}^{2} a_{3}^{-1}, a_{2}^{2} a_{4}^{-1},\left[a_{2}, a_{1}\right] a_{5}^{-1}, a_{3}^{2} a_{5}^{-1}, \\ a_{4}^{2}, a_{5}^{2} \end{gathered}$	$\left\langle a_{3}, a_{4}, a_{5}\right\rangle$	2	8
G_{5}	$\begin{gathered} a_{1}^{2} a_{4}^{-1}, a_{2}^{2},\left[a_{2}, a_{1}\right] a_{3}^{-1}, a_{3}^{2}, a_{4}^{2} a_{5}^{-1}, \\ a_{5}^{2} \end{gathered}$	$\left\langle a_{3}, a_{4}, a_{5}\right\rangle$	2	8
G_{6}	$a_{1}^{2} a_{4}^{-1}, a_{2}^{2},\left[a_{2}, a_{1}\right] a_{3}^{-1}, a_{3}^{2}$, $\left[a_{3}, a_{1}\right] a_{5}^{-1},\left[a_{3}, a_{2}\right], a_{4}^{2},\left[a_{4}, a_{1}\right]$, $\left[a_{4}, a_{2}\right] a_{5}^{-1},\left[a_{4}, a_{3}\right], a_{5}^{2}$	$\left\langle a_{5}\right\rangle$	2	8
G_{7}	$\begin{gathered} a_{1}^{2} a_{4}^{-1}, a_{2}^{2},\left[a_{2}, a_{1}\right] a_{3}^{-1}, a_{3}^{2}, \\ {\left[a_{3}, a_{1}\right] a_{5}^{-1},\left[a_{3}, a_{2}\right], a_{4}^{2} a_{5}^{-1}} \\ {\left[a_{4}, a_{1}\right],\left[a_{4}, a_{2}\right] a_{5}^{-1},\left[a_{4}, a_{3}\right], a_{5}^{2}} \end{gathered}$	$\left\langle a_{5}\right\rangle$	2	8
G_{8}	$\begin{gathered} a_{1}^{2} a_{4}^{-1}, a_{2}^{2} a_{5}^{-1},\left[a_{2}, a_{1}\right] a_{3}^{-1} \\ a_{3}^{2},\left[a_{3}, a_{1}\right] a_{5}^{-1},\left[a_{3}, a_{2}\right], a_{4}^{2} a_{5}^{-1} \\ {\left[a_{4}, a_{1}\right],\left[a_{4}, a_{2}\right] a_{5}^{-1},\left[a_{4}, a_{3}\right], a_{5}^{2}} \end{gathered}$	$\left\langle a_{5}\right\rangle$	2	8
G_{9}	$\begin{gathered} a_{1}^{2} a_{4}^{-1}, a_{2}^{2},\left[a_{2}, a_{1}\right] a_{3}^{-1}, a_{3}^{2} a_{5}^{-1} \\ {\left[a_{3}, a_{1}\right] a_{5}^{-1}, a_{4}^{2}, a_{5}^{2}} \end{gathered}$	$\left\langle a_{4}, a_{5}\right\rangle$	2	8
G_{10}	$\begin{gathered} a_{1}^{2} a_{4}^{-1}, a_{2}^{2} a_{5}^{-1},\left[a_{2}, a_{1}\right] a_{3}^{-1}, \\ a_{3}^{2} a_{5}^{-1},\left[a_{3}, a_{1}\right] a_{5}^{-1},\left[a_{3}, a_{2}\right] a_{5}^{-1}, \\ a_{4}^{2}, a_{5}^{2} \end{gathered}$	$\left\langle a_{4}, a_{5}\right\rangle$	2	8
G_{11}	$\begin{gathered} a_{1}^{2} a_{4}^{-1}, a_{2}^{2},\left[a_{2}, a_{1}\right] a_{3}^{-1}, a_{3}^{2} a_{5}^{-1}, \\ {\left[a_{3}, a_{1}\right] a_{5}^{-1},\left[a_{3}, a_{2}\right] a_{5}^{-1}, a_{4}^{2} a_{5}^{-1},} \\ a_{5}^{2} \end{gathered}$	$\left\langle a_{4}, a_{5}\right\rangle$	2	8
G_{12}	$\begin{gathered} a_{1}^{2} a_{4}^{-1}, a_{2}^{2} a_{3}^{-1},\left[a_{2}, a_{1}\right] a_{3}^{-1}, a_{3}^{2}, \\ a_{4}^{2} a_{5}^{-1}, a_{5}^{2} \end{gathered}$	$\left\langle a_{3}, a_{4}, a_{5}\right\rangle$	2	8
G_{13}	$\begin{gathered} a_{1}^{2} a_{4}^{-1}, a_{2}^{2} a_{3}^{-1},\left[a_{2}, a_{1}\right] a_{3}^{-1}, \\ a_{3}^{2} a_{5}^{-1},\left[a_{3}, a_{1}\right] a_{5}^{-1},\left[a_{3}, a_{2}\right], a_{4}^{2}, \\ a_{5}^{2} \end{gathered}$	$\left\langle a_{4}, a_{5}\right\rangle$	2	8
G_{14}	$\begin{gathered} a_{1}^{2} a_{4}^{-1}, a_{2}^{2} a_{5}^{-1} a_{3}^{-1},\left[a_{2}, a_{1}\right] a_{3}^{-1}, \\ a_{3}^{2} a_{5}^{-1},\left[a_{3}, a_{1}\right] a_{5}^{-1},\left[a_{3}, a_{2}\right], a_{4}^{2}, \\ a_{5}^{2} \end{gathered}$	$\left\langle a_{4}, a_{5}\right\rangle$	2	8
G_{15}	$\begin{gathered} a_{1}^{2} a_{4}^{-1}, a_{2}^{2} a_{3}^{-1},\left[a_{2}, a_{1}\right] a_{3}^{-1}, \\ a_{3}^{2} a_{5}^{-1},\left[\begin{array}{c} 3 \\ , \end{array}, a_{1}\right] a_{5}^{-1},\left[a_{3}, a_{2}\right], \\ a_{4}^{2} a_{5}^{-1}, a_{5}^{2} \end{gathered}$	$\left\langle a_{4}, a_{5}\right\rangle$	2	8
G_{16}	$a_{1}^{2} a_{3}^{-1}, a_{2}^{2}, a_{3}^{2} a_{4}^{-1}, a_{4}^{2} a_{5}^{-1}, a_{5}^{2}$	G_{16}	2	16

$\left.\begin{array}{|c|c|c|c|c|}\hline G_{17} & a_{1}^{2} a_{3}^{-1}, a_{2}^{2},\left[a_{2}, a_{1}\right] a_{5}^{-1}, a_{3}^{2} a_{4}^{-1}, & \left\langle a_{3}, a_{4}, a_{5}\right\rangle & 2 & 16 \\ \hline G_{18} & \begin{array}{c}a_{1}^{2}, a_{2}^{2},\left[a_{2}, a_{1}\right] a_{3}^{-1}, a_{3}^{2} a_{5}^{-1} a_{4}^{-1}, \\ {\left[a_{3}, a_{1}\right] a_{4}^{-1},\left[a_{3}, a_{2}\right] a_{4}^{-1}, a_{4}^{2} a_{5}^{-1},} \\ {\left[a_{4}, a_{1}\right] a_{5}^{-1},\left[a_{4}, a_{2}\right] a_{5}^{-1},\left[a_{4}, a_{3}\right], a_{5}^{2}}\end{array} & \left\langle a_{5}\right\rangle & 2 & 16 \\ \hline G_{19} & a_{1}^{2} a_{5}^{-1}, a_{2}^{2},\left[a_{2}, a_{1}\right] a_{3}^{-1}, \\ a_{3}^{2} a_{5}^{-1} a_{4}^{-1},\left[a_{3}, a_{1}\right] a_{4}^{-1},\left[a_{3}, a_{2}\right] a_{4}^{-1}, \\ \left.\left.a_{4}^{2} a_{5}^{-1},\left[a_{4}, a_{1}\right] a_{5}^{-1},\right] a_{4}, a_{3}\right], a_{5}^{2}\end{array}\right)$

G_{36}	$a_{1}^{2} a_{4}^{-1}, a_{2}^{2}, a_{3}^{2}, a_{4}^{2} a_{5}^{-1}, a_{5}^{2}$	G_{36}	3	8
G_{37}	$\begin{gathered} a_{1}^{2} a_{4}^{-1}, a_{2}^{2},\left[a_{2}, a_{1}\right] a_{5}^{-1}, a_{3}^{2}, \\ a_{4}^{2} a_{5}^{-1}, a_{5}^{2} \end{gathered}$	$\left\langle a_{3}, a_{4}, a_{5}\right\rangle$	3	8
G_{38}	$\begin{gathered} a_{1}^{2} a_{4}^{-1}, a_{2}^{2}, a_{3}^{2},\left[a_{3}, a_{2}\right] a_{5}^{-1}, \\ a_{4}^{2} a_{5}^{-1}, a_{5}^{2} \end{gathered}$	$\left\langle a_{1}, a_{4}, a_{5}\right\rangle$	3	8
G_{39}	$\begin{gathered} a_{1}^{2}, a_{2}^{2},\left[a_{2}, a_{1}\right] a_{4}^{-1}, a_{3}^{2}, a_{4}^{2} a_{5}^{-1} \\ {\left[a_{4}, a_{1}\right] a_{5}^{-1},\left[a_{4}, a_{2}\right] a_{5}^{-1}, a_{5}^{2}} \end{gathered}$	$\left\langle a_{3}, a_{5}\right\rangle$	3	8
G_{40}	$\begin{gathered} a_{1}^{2} a_{5}^{-1}, a_{2}^{2},\left[a_{2}, a_{1}\right] a_{4}^{-1}, a_{3}^{2}, a_{4}^{2} a_{5}^{-1} \\ {\left[a_{4}, a_{1}\right] a_{5}^{-1},\left[a_{4}, a_{2}\right] a_{5}^{-1}, a_{5}^{2}} \end{gathered}$	$\left\langle a_{3}, a_{5}\right\rangle$	3	8
G_{41}	$\begin{gathered} a_{1}^{2} a_{5}^{-1}, a_{2}^{2} a_{5}^{-1},\left[a_{2}, a_{1}\right] a_{4}^{-1}, a_{3}^{2}, \\ a_{4}^{2} a_{5}^{-1},\left[a_{4}, a_{1}\right] a_{5}^{-1},\left[a_{4}, a_{2}\right] a_{5}^{-1}, a_{5}^{2} \end{gathered}$	$\left\langle a_{3}, a_{5}\right\rangle$	3	8
G_{42}	$\begin{gathered} a_{1}^{2}, a_{2}^{2},\left[a_{2}, a_{1}\right] a_{4}^{-1}, a_{3}^{2} a_{5}^{-1}, \\ a_{4}^{2} a_{5}^{-1},\left[a_{4}, a_{1}\right] a_{5}^{-1},\left[a_{4}, a_{2}\right] a_{5}^{-1}, a_{5}^{2} \end{gathered}$	$\left\langle a_{3}, a_{5}\right\rangle$	3	8
G_{43}	$\begin{gathered} a_{1}^{2}, a_{2}^{2},\left[a_{2}, a_{1}\right] a_{4}^{-1}, a_{3}^{2},\left[a_{3}, a_{1}\right] a_{5}^{-1} \\ {\left[a_{3}, a_{2}\right], a_{4}^{2} a_{5}^{-1},\left[a_{4}, a_{1}\right] a_{5}^{-1}} \\ {\left[a_{4}, a_{2}\right] a_{5}^{-1},\left[a_{4}, a_{3}\right], a_{5}^{2}} \end{gathered}$	$\left\langle a_{5}\right\rangle$	3	8
G_{44}	$\begin{gathered} a_{1}^{2}, a_{2}^{2} a_{5}^{-1},\left[a_{2}, a_{1}\right] a_{4}^{-1}, a_{3}^{2}, \\ {\left[a_{3}, a_{1}\right] a_{5}^{-1},\left[a_{3}, a_{2}\right], a_{4}^{2} a_{5}^{-1},} \\ {\left[a_{4}, a_{1}\right] a_{5}^{-1},\left[a_{4}, a_{2}\right] a_{5}^{-1},\left[a_{4}, a_{3}\right], a_{5}^{2}} \end{gathered}$	$\left\langle a_{5}\right\rangle$	3	8
G_{45}	$a_{1}^{2} a_{5}^{-1}, a_{2}^{2}, a_{3}^{2}, a_{4}^{2}, a_{5}^{2}$	G_{45}	4	4
G_{46}	$a_{1}^{2}, a_{2}^{2},\left[a_{2}, a_{1}\right] a_{5}^{-1}, a_{3}^{2}, a_{4}^{2}, a_{5}^{2}$	$\left\langle a_{3}, a_{4}, a_{5}\right\rangle$	4	4
G_{47}	$\begin{gathered} a_{1}^{2} a_{5}^{-1}, a_{2}^{2} a_{5}^{-1},\left[a_{2}, a_{1}\right] a_{5}^{-1}, a_{3}^{2}, \\ a_{4}^{2}, a_{5}^{2} \end{gathered}$	$\left\langle a_{3}, a_{4}, a_{5}\right\rangle$	4	4
G_{48}	$\begin{gathered} a_{1}^{2}, a_{2}^{2},\left[a_{2}, a_{1}\right] a_{5}^{-1}, a_{3}^{2} a_{5}^{-1}, \\ a_{4}^{2}, a_{5}^{2} \end{gathered}$	$\left\langle a_{3}, a_{4}, a_{5}\right\rangle$	4	4
G_{49}	$\begin{gathered} a_{1}^{2}, a_{2}^{2},\left[a_{2}, a_{1}\right] a_{5}^{-1}, a_{3}^{2}, \\ {\left[a_{3}, a_{1}\right],\left[a_{3}, a_{2}\right] a_{5}^{-1}, a_{4}^{2},} \\ {\left[a_{4}, a_{1}\right] a_{5}^{-1},\left[a_{4}, a_{2}\right],\left[a_{4}, a_{3}\right], a_{5}^{2}} \end{gathered}$	$\left\langle a_{5}\right\rangle$	4	4
G_{50}	$\begin{gathered} a_{1}^{2}, a_{2}^{2} a_{5}^{-1},\left[a_{2}, a_{1}\right] a_{5}^{-1}, a_{3}^{2} a_{5}^{-1} \\ {\left[a_{3}, a_{1}\right],\left[a_{3}, a_{2}\right] a_{5}^{-1}, a_{4}^{2},} \\ {\left[a_{4}, a_{1}\right] a_{5}^{-1},\left[a_{4}, a_{2}\right],\left[a_{4}, a_{3}\right], a_{5}^{2}} \end{gathered}$	$\left\langle a_{5}\right\rangle$	4	4
G_{51}	$a_{1}^{2}, a_{2}^{2}, a_{3}^{2}, a_{4}^{2}, a_{5}^{2}$	G_{51}	5	2

REFERENCES

[1] W. Gao, D. Leep, J. Mináč, T. Smith. Galois groups over nonrigid fields. In: Valuation Theory and Its Applications, Vol. II, Fields Institute Communications 33 (2003), 61-77.
[2] H. G. Grundman, T. L. Smith, and J. R. Swallow. Groups of order 16 as Galois groups. Expo. Math. 13 (1995), 289-319.
[3] M. Hall Jr., J. Senior. The groups of order $2^{n}(n \leq 6)$. The Macmillan Co., New York, 1964.
[4] V. V. Ishanov, B. B. Lur'e, D. K. Faddeev. The embedding problem in Galois theory. Amer. Math. Soc., Providence, 1997.
[5] I. Kiming. Explicit classifications of some 2-extensions of a field of characteristic different from 2. Canad. J. Math. 42 (1990), 825-855.
[6] T. Y. Lam. The algebraic theory of quadratic forms. Benjamin, Reading, MA, 1973.
[7] A. Ledet. On 2-groups as Galois groups. Canad. J. Math. 47 (1995), 1253-1273.
[8] A. Ledet. Embedding problems with cyclic kernel of order 4. Israel J. Math. 106 (1998), 109-131.
[9] A. Ledet. Embedding problems and equivalence of quadratic forms. Math. Scand. 88 (2001), 279-302.
[10] A. Merkurjev. On the norm residue symbol of degree 2. Soviet Math. Dokl. 24 (1981), 546-551.
[11] I. Michailov. Embedding obstructions for the dihedral, semidihedral and quaternion 2-groups. J. Algebra 245 (2001), 355-369.
[12] I. Michailov. Embedding obstructions for the cyclic and modular 2groups. Math. Balk., to appear.
[13] T. Sag, J. Wamsley. Minimal presentations for groups of order $2^{n}, n \leq 6$. J. Austral. Math. Soc. 15 (1973), 461-469.
[14] T. Smith. Extra-special groups of order 32 as Galois groups. Can. J. Math. 46, 4 (1994), 886-896.
[15] J. Swallow, F. ThiEm. Quadratic corestriction, C_{2}-embedding problems, and explicit construction. Communications in Algebra 30 (2002), 32273258.

Faculty of Mathematics and Informatics
Constantin Preslavski University
9712 Shumen, Bulgaria
e-mail: i.michailov@fmi.shu-bg.net

Received July 25, 2006
Revised February 12, 2007

[^0]: 2000 Mathematics Subject Classification: 12F12.
 Key words: embedding problem, Galois extension, quaternion algebra, obstruction.
 *This work is partially supported by project of Shumen University

