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ON THOM POLYNOMIALS FOR A4(−) VIA SCHUR
FUNCTIONS

Özer Öztürk
∗

Communicated by P. Pragacz

Abstract. We study the structure of the Thom polynomials for A4(−)
singularities. We analyze the Schur function expansions of these polynomials.
We show that partitions indexing the Schur function expansions of Thom
polynomials for A4(−) singularities have at most four parts. We simplify the
system of equations that determines these polynomials and give a recursive
description of Thom polynomials for A4(−) singularities. We also give Thom
polynomials for A4(3) and A4(4) singularities.

1. Introduction. Thom polynomials, express invariants of singularities
of a general map f : X → Y between complex analytic manifolds in terms of
invariants of X and Y . Knowing the Thom polynomial of a singularity η one
can compute the cohomology classes represented by η-points of f . The existence
of these polynomials are guaranteed by an early theorem of Thom (cf. [22]).
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Different methods, such as desingularization, have been developed to compute
these polynomials. A survey of these methods can be found in [7]. Although
these methods gave formulas of Thom polynomials for A1(−), A2(−) and Σi-
singularities they became very difficult for more complicated singularities. One
can see some of the difficulties of these methods in [6], where Gaffney computed
the Thom polynomial for A4(1) singularity.

Recently a new method, the “method of restriction equations” (developed
mainly by Rimanyi) converted the problem into an algebraic one. When r is fixed
and small using this method to compute the Thom polynomial for a singularity
η(r) is easier than previous methods (Compare [6] with [19], see also [21]).
However, if we want to find the Thom polynomials for a series of singularities,
containing r as a parameter, then we have to solve simultaneously a countable
family of systems of linear equations (these formulas were asked in [20] and [2]).

In [15], [16] and [17] Pragacz (in collaboration with Lascoux) combined
this method with the techniques of Schur functions and obtained many new
results including more transparent proofs of formulas of Thom, Porteous and
Ronga; formulas for the Thom polynomials for the singularities I2,2(−) and A3(−)
(for all r, as desired) and a strategy for computing Thom polynomials for Ai(−)
singularities.

In [18], Pragacz and Weber proved that the coefficients of Schur function
expansions of the Thom polynomials of stable singularities are nonnegative1 .

In this paper we study the structure of the Thom polynomials for A4(−)
singularities using this strategy and other methods of [15], [16] and [17]. We prove
that partitions indexing the Schur function expansions of Thom polynomials for
A4(−) singularities have at most four parts. We simplify the system of equations
that determines these polynomials. We give a recursive description of Thom
polynomials for A4(−) singularities. We also give Thom polynomials for A4(3)
and A4(4) singularities (note that the Thom polynomial for A4(2) singularity was
computed in [20]).

In the next two sections we will collect the necessary information on Schur
functions and Thom polynomials.

2. Schur functions. In this section we aim to give a quick introduction
to Schur functions and introduce their notation. We use the approach and
notation of Lascoux’s book [8] (also of [9] and [15]) and refer to this book or
to [10] for a more detailed study.

1This result was conjectured in [2] and [15]
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An alphabet is a multi-set2 of elements from a commutative ring.

Definition 1. For alphabets A and B, the ith complete function Si(A−B)
is defined as the coefficient of zi in the generating series

(1)
∑

Si(A − B)zi =

∏

b∈B
(1 − bz)

∏

a∈A
(1 − az)

.

Note that if B = {0} then Si(A − B) gives the complete homogeneous
symmetric function of degree i in A. Similarly when A = {0} we see that
(−1)iSi(A−B) is the ith elementary function in B. Disjoint union of two alphabets
A and A

′ is denoted by A + A
′ so that we can write

∑

Si(A − B)zi ·
∑

Sj(A′ − B
′)zj =

∑

Si

(

(A + A
′) − (B + B

′)
)

zi .

By setting A
′ = B

′ = C and simplifying the factors
∏

c∈C
(1 − cz) on the RHS we

obtain
∑

Si((A + C) − (B + C))zi =
∑

Si(A − B)zi .

This enables us to write

(2) (A + C) − (B + C) = A − B.

The finite alphabet Am = (a1, a2, . . . , am), being the disjoint union of its
subsets of cardinality one, will be written as a1 + · · · + am. Similarly we write

a1 + · · · + am − b1 − · · · − bn

to denote Am−Bn, the difference of (finite) alphabets Am and Bn. We also define
the product of alphabets A · B and multiplication by a constant α in the usual
way. However there is one point that we should clarify: For a constant α we have

Si(α) =

(

α + i− 1

i

)

,

whereas

Si(u) = ui

2We allow the elements to be repeated.
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when u is a monomial. For example Si(2) =

(

i + 1

2

)

and Si(a) = ai for a letter

a. So to emphasize the difference and to avoid extra variables we write Si

(

2
)

to denote the result of Si(a) specialized at a = 2. Similarly

S2(X2) = x2
1 + x1x2 + x2

2 6= x2
1 + 2x1x2 + x2

2 = S2

(

x1 + x2

)

.

That is, we write r and take it as a single variable when we want to specialize
a letter to an expression r (e.g. to a number or to a sum).

By a partition I = (i1, . . . , il) we mean a weakly increasing sequence
0 ≤ i1 ≤ i2 ≤ . . . ≤ il of natural numbers. We write `(I) for the number of non-
zero parts of I, and |I| for the sum i1 + · · ·+ il. Often, partitions are represented
by their Young diagrams; left aligned `(I) rows of boxes, where jth row consists
of ij boxes.

We shall use the the simplified notation i1i2 · · · il or i1, i2, . . . , il for a
partition (i1, i2, . . . , il) (the latter one if il ≥ 10).

Definition 2. Given a partition I = (i1, i2, . . . , il), and alphabets A and
B, the Schur function3 SI(A − B) is

(3) SI(A − B) :=
∣

∣

∣
Siq+q−p(A − B)

∣

∣

∣

1≤p,q≤`(I)
.

For example, if I = (1, 3, 3, 4, 5) then

SI(A − B) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

S1(A − B) S4(A − B) S5(A − B) S7(A − B) S9(A − B)
1 S3(A − B) S4(A − B) S6(A − B) S8(A − B)
0 S2(A − B) S3(A − B) S5(A − B) S7(A − B)
0 S1(A − B) S2(A − B) S4(A − B) S6(A − B)
0 1 S1(A − B) S3(A − B) S5(A − B)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Note that by Equation (2), we have a cancellation property for Schur
functions:

(4) SI((A + C) − (B + C)) = SI(A − B) .

Definition 3. Given two alphabets A,B, we define their resultant:

(5) R(A,B) :=
∏

a∈A, b∈B

(a− b).

3These functions are also called supersymmetric Schur functions or Schur functions in

difference of alphabets.
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Fix two positive integers m and n. We shall say that a partition I is not
contained in the (m,n)-hook if the Young diagram of I is not contained in the
following “tickened” hook:

-�

6

?

n

m

That is, I is not contained in the (m,n)-hook if `(I) > m and i`(I)−m >
n. Now consider the alphabets Am and Bn. We have the following vanishing
property: If a partition I is not contained in the (m,n)-hook then

(6) SI(Am − Bn) = 0.

If on the other hand a partition is contained in the (m,n)-hook and
contains the rectangular partition (nm) then it is of the form

(J, I + (nm)) := (j1, . . . , jh, i1 + n, . . . , im + n)

for some partitions I = (i1, . . . , im) and J = (j1, . . . , jh). Moreover, we have the
following factorization property4 :

(7) SJ,I+(nm)(Am − Bn) = SI(Am) R(Am,Bn) SJ(−Bn) .

Let A be an alphabet of cardinality m. Consider the function

(8) F (A, •) :=
∑

I

SI(A)Sn−im,...,n−i1,n+|I|(•),

where the sum is over partitions I = (i1, i2, . . . , im) such that im ≤ n. This
function was introduced in [15], and it will be fundamental in the study of Thom
polynomials for Ai singularities. The following properties of F are collected from
[15] and [17].

4See [8] or [3] for a proof; the Sergeev-Pragacz formula of [13] (see also [14]) gives a
symmetrization generalizing this factorization.
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Lemma 4. For a variable x and an alphabet B of cardinality n,

(9) F (A, x− B) = R(x+ Ax,B) .

Setting A = 2 + 3 + · · · + i , m = i− 1, and n = r, we obtain special

cases F
(i)
r of the function F :

(10) F (i)
r (•) :=

∑

J

SJ

(

2 + 3 + · · · + i
)

Sr−ji−1,...,r−j1,r+|J |(•),

where the sum is over partitions J ⊂ (ri−1), and for i = 1 we understand

F
(1)
r (•) = Sr(•). In particular,

(11) F (4)
r (•) =

∑

j1≤j2≤j3≤r

Sj1,j2,j3

(

2 + 3 + 4
)

Sr−j3,r−j2,r−j1,r+j1+j2+j3(•).

For example,

(12) F
(4)
1 = S1111 + 9S112 + 26S13 + 24S4.

Using Lemma 4 we obtain the most important algebraic property of F
(i)
r :

Proposition 5. We have

(13) F (i)
r (x− Br) = R

(

x+ 2x + 3x + · · · + ix ,Br

)

.

We close this section with the following corollary.

Corollary 6. Fix an integer i ≥ 1.
(i) For p ≤ i, we have

(14) F (i)
r

(

x− Br−1 − px
)

= 0.

(ii) Moreover, we have

(15)

F
(i)
r

(

x− Br−1 − (i + 1)x
)

= R
(

x+ 2x + 3x + · · · + ix ,Br−1 + (i + 1)x
)

.
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3. Thom polynomials. In this section we outline our approach of
computing Thom polynomials. We shall use a combination of the “method of
restriction equations” (developed mainly by Rimanyi, cf. [20]) and the techniques
of using Schur functions in this method (developed in [15], [16] and [17] by
Pragacz). First we recall the necessary information about singularities, Thom
polynomials and the “method of restriction equations”.

Let k ≥ 0 be a fixed integer and • ∈ N. Two stable germs κ1, κ2 :
(C•, 0) → (C•+k, 0) are said to be right-left equivalent if there exist germs of
biholomorphisms φ of (C•, 0) and ψ of (C•+k, 0) such that ψ ◦ κ1 ◦ φ−1 = κ2.
A suspension of a germ is its trivial unfolding: (x, v) 7→ (κ(x), v). Consider the
equivalence relation (on stable germs (C•, 0) → (C•+k, 0)) generated by right-
left equivalence and suspension. A singularity η is an equivalence class of this
relation.

According to Mather’s classification (cf. [4] or [1]), singularities are in
one-to-one correspondence with finite dimensional (local) C-algebras. We shall
use the following notation:

– Ai (of Thom-Boardman type Σ1i) will stand for the stable germs with
local algebra C[[x]]/(xi+1), i ≥ 0;

– I2,2 (of Thom-Boardman type Σ2) for stable germs with local algebra
C[[x, y]]/(xy, x2 + y2);

– IIIa,b (of Thom-Boardman type Σ2) for stable germs with local algebra
C[[x, y]]/(xy, xa, yb), b ≥ a ≥ 2 (here k ≥ 1).

Let f : X → Y be a general map between complex analytic manifolds
and η be a singularity. Consider the closure of the set of η-points of f :

V η(f) := {x ∈ X : the singularity of f at x is η}.

By an early result of Thom there exists a universal polynomial T η, called the
Thom polynomial of η, such that T η(c1, c2, . . .) gives the Poincaré dual of V η(f),
after the substitution of the Chern classes ci of the virtual bundle f ∗TY − TX.
That is, knowing the Thom polynomial of a singularity, we are able to express
invariants of singularities of the map f : X → Y in terms of invariants of X and
invariants of Y .

Let κ : (Cn, 0) → (Cn+k, 0) be a prototype of a stable singularity η :
(C•, 0) → (C•+k, 0). Although the right-left symmetry group

(16) Autκ = {(φ, ψ) ∈ Diff(Cn, 0) × Diff(Cn+k, 0) : ψ ◦ κ ◦ φ−1 = κ}
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is much too large to be a finite dimensional Lie group, it is possible to define
its maximal compact subgroup (up to conjugacy) in a sensible way (cf. [20]).
Let Gη denote the maximal compact subgroup of Autκ. Note that if necessary
we can replace Gη with one of its conjugates so that images of its projections to
the factors Diff(Cn, 0) and Diff(Cn+k, 0) are linear. Let λ1(η) and λ2(η) denote
the representations via the (linear) projections on the source Cn and the target
Cn+k. Using the representations λ1(η) and λ2(η) we obtain vector bundles E ′

η

and Eη associated with the universal principal Gη-bundle EGη → BGη. The
total Chern class of the singularity η is defined in H •(BGη; Z) by

(17) c(η) :=
c(Eη)

c(E′
η)
.

The Euler class of η is defined in H2 codim(η)(BGη ; Z) by

(18) e(η) := e(E ′
η),

where the codimension of a singularity η means the codimension of V η(f) in X.

Now we are ready to state the theorem of Rimanyi which explains the
name “method of restriction equations”.

Theorem 7. Suppose, for a singularity η, that the Euler classes of all
singularities of smaller codimension than codim(η), are not zero-divisors5 . Then
we have
(i) if ξ 6= η and codim(ξ) ≤ codim(η), then T η(c(ξ)) = 0;
(ii) T η(c(η)) = e(η).
This system of equations (taken for all such ξ’s) determines the Thom polynomial
T η in a unique way.

Sometimes it is possible to use a subgroup of Gη instead of Gη itself. We
can define these characteristic classes for a subgroup by using restrictions of the
above representations and then use Theorem 7 with these characteristic classes
(we take the homomorphic images of the equations). The equations will be still
valid for any subgroup of Gη. But if the subgroup is small they may not contain
necessary information to determine the Thom polynomial T η. For this reason,
we should chose a subgroup as close to Gη as possible. For example, in case of
η = I2,2 we have Gη = H × U(k) where H is the extension of U(1) × U(1) by
Z/2Z. To simplify computations we use the subgroup U(1)×U(1)×U(k) instead
Gη itself.

5This condition holds true for the singularities A4(−).
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To determine the representations λ1(η) and λ2(η) we follow Rimanyi (cf.
[20], Theorem 4.1). Consider the algebraic automorphism group Aut(Qη) of the
local algebra Qη. The group Gη is a subgroup of the maximal compact subgroup
of Aut(Qη) times the unitary group U(k− d), where d is the deffect6 of Qη. The
germ κ is the miniversal unfolding of another germ β : (Cm, 0) → (Cm+k, 0) with
dβ = 0. With β well chosen, Gη acts as right-left symmetry group on β with
representations µ1 and µ2. Let µV be the representation of Gη on the unfolding
space V = Cn−m given by

(19) (φ, ψ) α = ψ ◦ α ◦ φ−1,

where α ∈ V and (φ, ψ) ∈ Gη. Then we have

(20) λ1 = µ1 ⊕ µV and λ2 = µ2 ⊕ µV .

For example, for the singularity of type Ai: (C•, 0) → (C•+k, 0), we have GAi
=

U(1) × U(k). Let ρj denote the standard representation of the unitary group
U(j). Then

(21) µ1 = ρ1, µ2 = ρi+1
1 ⊕ ρk, µV = ⊕i

j=2 ρ
j
1 ⊕⊕i

j=1(ρk ⊗ ρ−1
1 ).

If we denote the Chern roots of the universal bundles on BU(1) and BU(k) by x
and y1,. . . , yk then

(22) c(Ai) =
1 + (i + 1)x

1 + x

k
∏

j=1

(1 + yj),

and

(23) e(Ai) = i! xi
k

∏

j=1

(ix− yj) · · · (2x− yj)(x− yj).

We list the characteristic classes of other singularities that we will use in the
computation of Thom polynomials for A4 singularities (cf. Theorem 7, see [15]
or [20]).

(24) c(I2,2) =
(1 + 2x1)(1 + 2x2)

(1 + x1)(1 + x2)

k
∏

j=1

(1 + yj) ,

6The deffect is the difference between the minimal number of relations and the number of
generators.
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(25) c(III2,2) =
(1 + 2x1)(1 + 2x2)(1 + x1 + x2)

(1 + x1)(1 + x2)

k−1
∏

j=1

(1 + yj) ,

(26) c(III2,3) =
(1 + 2x1)(1 + 3x2)(1 + x1 + x2)

(1 + x1)(1 + x2)

k−1
∏

j=1

(1 + yj) .

Note that the last two Chern classes are defined for k ≥ 1.

4. Thom polynomials for A4(3), A4(4) and towards A4(−).
We now focus on the structure of Thom polynomials for A4 singularities. The
results of this section are inspired by those from [15] and [17] but we use different
methods. As in [15], we will use a “shifted” parameter r instead of k:

(27) r := k + 1 .

We shall write η(r) for the singularity η : (C•, 0) → (C•+r−1, 0), and T η
r to

denote the Thom polynomial for η(r).
We have

ci(f
∗TY − TX) = Si(TX

∗ − f∗(TY ∗)),

where Si means the Segre class. Working with Schur functions we shall follow of
the notation on the RHS and that from Section 2.

Let us write the conditions imposed on T A4

r by the singularities with
codimension at most 4r = codimA4(r). From A0(r), A1(r), A2(r) and A3(r) we
have

(28)

P (−Br−1) = P
(

x− Br−1 − 2x
)

= P
(

x− Br−1 − 3x
)

= P
(

x− Br−1 − 4x
)

= 0.

Then III2,2(r), I2,2(r) and III2,3(r) impose that

(29) P
(

X2 − 2x1 − 2x2 − x1 + x2 − Br−2

)

= 0,

(30) P
(

X2 − 2x1 − 2x2 − Br−1

)

= 0,
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and

(31) P
(

X2 − 2x1 − 3x2 − x1 + x2 − Br−2

)

= 0.

Additionally, A4(r) imposes

(32) P
(

x− Br−1 − 5x
)

= R
(

x+ 2x + 3x + 4x ,Br−1 + 5x
)

.

Consider the functions of the form

F (4)
r +

∑

(r+1,r+1)⊂I

αISI

where the αI are arbitrary integers. By Corollary 6 and the vanishing property
all these functions satisfy the conditions imposed by Ai(r) for i = 0, 1, 2, 3 and
i = 4. Also notice that Equation (29) can be obtained from Equation (30) by
substituting br−1 = x1 + x2. Thus, to determine T A4

r we need only to find the
coefficients αI such that the equations

(33)



F (4)
r +

∑

(r+1,r+1)⊂I

αISI





(

X2 − 2x1 − 2x2 − Br−1

)

= 0

and

(34)



F (4)
r +

∑

(r+1,r+1)⊂I

αISI





(

X2 − 2x1 − 3x2 − x1 + x2 − Br−2

)

= 0

are satisfied.

Set E = 2x1 + 2x2 and F = 2x1 + 3x2 + x1 + x2 .

Lemma 8. (i) R(X2,E + Br−1) divides F
(4)
r (X2 − E − Br−1) and

(ii) R(X2,F + Br−2) divides F
(4)
r (X2 − F − Br−2).

P r o o f. (i) We use Proposition 5. Substituting x2 = 0 we get

F (4)
r (X2 − E − Br−1) = F (4)

r

(

x1 − 2x1 − Br−1

)

= R
(

x1 + 2x1 + 3x1 + 4x1 , Br−1 + 2x1

)

= 0.
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Substituting x2 = 2x1 we obtain

F (4)
r (X2 − E − Br−1) = F (4)

r

(

x1 − 4x1 − Br−1

)

= R
(

x1 + 2x1 + 3x1 + 4x1 , Br−1 + 4x1

)

= 0.

Substituting br−1 = x2 we have

F (4)
r (X2 − E − Br−1) = F (4)

r

(

x1 − 2x1 − 2x2 − Br−2

)

= R
(

x1 + 2x1 + 3x1 + 4x1 , Br−2 + 2x1 + 2x2

)

= 0.

Therefore by symmetry R(X2,E + Br−1) divides F
(4)
r (X2 − E − Br−1).

(ii) As in the proof of part (i) we use Proposition 5 with the substitutions
x1 = 0, x2 = 0, x1 = 3x2, x2 = 2x1, br−2 = x1 and br−2 = x2. �

Lemma 9. (i) If SI(X2−E−Br−1) has degree d in br−1 (as a polynomial
over Z [x1, x2, b1, . . . , br−2]) then I has at least d parts.

(ii) If a partition I appears as an index in the Schur function expansion
of T A4

r then I has at most 4 parts.

P r o o f. (i) Assume that SI(X2 − E − Br−1) has degree d in br−1 and I
has l parts. Let I = (i1, i2, . . . , il). Then

SI(X2 − E − Br−1) =
∣

∣Sip+p−q(X2 − E − Br−1)
∣

∣

1≤p,q≤l

=
∣

∣Sip+p−q(X2 − E − Br−2) − br−1Sip+p−q−1(X2 − E − Br−2)
∣

∣

1≤p,q≤l
.

According to this determinant the degree in br−1 is at most l. Hence d ≤ l.

(ii) It is proved in [17], the 1 − part of T A4

r is given by F
(4)
r . That is we

can assume that T A4

r = F
(4)
r +

∑

(r+1,r+1)⊂I αISI . Since the partitions indexing

F
(4)
r have at most 4 parts, it is enough to show that if I contains the partition

(r + 1, r + 1) and `(I) ≥ 5 then αI = 0. For this we will show that for such a
partition I, if αJ = 0 for every partition J such that `(J) > `(I) then αI = 0 too.
Observe that |I| = 4r and (r + 1, r + 1) ⊂ I give us `(I) ≤ 2r. If `(I) = 2r then
I is necessarily (1, . . . , 1, r + 1, r + 1) (1 appears 2r − 2 times). The coefficient
of b2r−2

r−1 in Equation (33) is zero. By part (i) this coefficient comes from αISI .
Therefore if `(I) = 2r then αI = 0. Next fix d between 5 and 2r − 1 and assume
that `(J) > d implies that αJ = 0. Note that the set of coefficients of bdr−1’s
collected from all SI(X2−E−Br−1)s for I runs through the partitions containing
(r + 1, r + 1) and `(I) = d is linearly independent over Z. So we will look at the
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coefficient of bdr−1 in the LHS of Equation (33). By our assumption and part (i)
this coefficient comes from the sum

(35)
∑

`(I)=d, (r+1,r+1)⊂I

αISI(X2 − E − Br−1).

That is the coefficient of bdr−1 in Equation (33) is a linear combination of Z-
linearly independent functions. On the RHS of Equation (33) this coefficient is
zero. Therefore αI = 0 for all I with `(I) ≥ 5. �

Denote by Hr the part of T A4

r corresponding to the sum of the Schur
functions over the partitions containing the partition (r+1, r+1). Using Lemma 9
we can obtain a recursive description ofHr. Let τ denote the linear endomorphism
on the Z-module of Schur functions corresponding to partitions of length ≤ 4 that
sends a Schur function

Si1,i2,i3,i4 to Si1+1,i2+1,i3+1,i4+1.

Let Ho
r denote the sum of those terms in the Schur function expansion of Hr

which corresponds to partitions of length ≤ 3.

Proposition 10. Keeping the above notation, for r ≥ 2, we have the
following recursive equation:

Hr = Ho
r + τ(Hr−1) .

P r o o f. Write

(36) Hr =
∑

I

αISI =
∑

J

αJSJ +
∑

K

αKSK ,

where J have at most 3 parts and K = (k1, k2, k3, k4) have 4 parts (we assume
that αI 6= 0). We set

(37) Q =
∑

K

αKSk1−1,k2−1,k3−1,k4−1 ,

and our aim is to show that Q = Hr−1. For this it is enough to show that

T A4

r−1 = F
(4)
r−1 + Q. This is equivalent to saying the function F

(4)
r−1 + Q satisfies

equations (30) and (31) (for r − 1). We can also write F
(4)
r as

(38) F (4)
r =

∑

I

αISI =
∑

M

αMSM +
∑

N

αNSN ,
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where M have at most 3 parts and N = (n1, n2, n3, n4) have 4 parts (we assume
that αI 6= 0). Note that

(39)
∑

N

αNSn1−1,n2−1,n3−1,n4−1 = F
(4)
r−1.

Consider Equation (30) for r. We have

(40) T A4

r (X2 − E − Br−1) = 0.

Since T A4

r = F
(4)
r +Hr we get

(41) F (4)
r (X2 − E − Br−1) = −Hr(X2 − E − Br−1),

Using the previous lemma in the expansion of this equation we see that the

coefficient of b4r−1 on the LHS is F
(4)
r−1(X2−E−Br−2). On the RHS it is −Q(X2−

E − Br−2). Therefore we get Equation (30) for r − 1. The case of Equation (31)
is similar. �

Note that the function F
(4)
r is given by the formula (11). Therefore using

Proposition 10 we also obtain a description of T A4

r :

(42) T A4

r = F (4)
r + τ(Hr−1) +Ho

r , for r ≥ 2.

Then from Equation (33) we get

T A4

r (X2 − E − Br−1) =
(

F (4)
r + τ(Hr−1) +Ho

r

)

(X2 − E − Br−1) = 0.

Therefore

(43) Ho
r (X2 − E − Br−1) = −

(

F (4)
r + τ(Hr−1)

)

(X2 − E − Br−1).

Similarly from Equation (34) we obtain

(44) Ho
r (X2 − F − Br−2) = −

(

F (4)
r + τ(Hr−1)

)

(X2 − F − Br−2).

Here Ho
r =

∑

αISI with I = (a, r+1+p, r+1+q) and a+p+q = 2r−2. At this
point one can expand the equations (43) and (44) to obtain a system of linear
equations which determines αI . However it is still possible to further simplify
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these equations: First using the factorization property on the LHS of Equation
(43) we get

∑

αISI(X2 − E − Br−1)

=
∑

αISa(−E − Br−1) ·R(X2,E + Br−1) · Sp,q(X2)

= R(X2,E + Br−1) ·
∑

αISa(−E − Br−1) · Sp,q(X2).

On the LHS of Equation (44) this property gives

∑

αISI(X2 − F − Br−2)

=
∑

αISa(−F − Br−2) ·R(X2,F + Br−2) · Sp,q(X2)

= R(X2,F + Br−2) ·
∑

αISa(−F − Br−2) · Sp,q(X2).

Next using once more the factorization property, this time for τ(Hr−1), and
Lemma 8 we define Ur(X2 − E − Br−1) and Vr(X2 − F − Br−2) as the quotients

Ur(X2 − E − Br−1) = −

(

F
(4)
r + τ(Hr−1)

)

(X2 − E − Br−1)

R(X2,E + Br−1)

and

Vr(X2 − F − Br−2) = −

(

F
(4)
r + τ(Hr−1)

)

(X2 − F − Br−2)

R(X2,F + Br−2)
.

Thus we obtain

(45)
∑

αISa(−E − Br−1) · Sp,q(X2) = Ur(X2 − E − Br−1)

and

(46)
∑

αISa(−F − Br−2) · Sp,q(X2) = Vr(X2 − F − Br−2).

Now we can expand these equations and compare the coefficients of mono-
mials on both sides to obtain a system of linear equations whose solution gives
the coefficients αI . Since H2 is already computed we will start with r = 3. By
Proposition 10 we have

H3 = Ho
3 + 21S1344 + 76S1155 + 104S1245 + 240S1146 + 10S2244.
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To determine Ho
3 we need to study partitions I containing the partition (4, 4)

and such that `(I) ≤ 3. There are nine of them:

I1 = 147, I4 = 255, I7 = 48,

I2 = 156, I5 = 345, I8 = 57,

I3 = 246, I6 = 444, I9 = 66.

So we can write

(47) Ho
3 =

9
∑

i=1

αiSIi

for some coefficients αi ∈ Z. We will first use Equation (46). We will compare
the coefficients of monomials on both sides of this equation. For this we need to
expand the corresponding product Sa(−F − B1) · Sp,q(X2) for I = I1, I2, . . . , I9
and V3(X2 −F−Br−2). For a fixed partition it is not difficult to do this by direct
computation. For example, the corresponding product for I1 is

S1(−F − B1) · S3(X2) = −(2x1 + 3x2 + (x1 + x2) + b1)(x3
1 + x2

1x2 + x1x
2
2 + x3

2)

= −(3x1 + 4x2 + b1)(x3
1 + x2

1x2 + x1x
2
2 + x3

2).

So the coefficient of x3
1b1 in this product is −1. For I3 the coefficient of this

monomial is 3 since

S2(−F − B1) = 3x1b1 + 4x2b1 + 2x2
1 + 11x1x2 + 3x2

2 ,

S2(X2) = x2
1 + x1x2 + x2

2 .

However when we have too many partitions for which we need to repeat
similar computations it is better to use a computer. So we use ACE 3.0 (cf.
[23]) to expand these products and V3(X2 − F − Br−2). (In this paper this is
the only use of computers.) We see that the coefficient of x3

1b1 is zero in the
corresponding product for partitions different from I1 and I3. The coefficient in
V3(X2 − F − Br−2) is −568. Therefore we obtain the equation

2α3 − α1 = −568.

Comparing also the coefficients of other monomials in equations (45) and (46) we
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get the following system of equations:

−α1 +2α3 = −568

α1 −4α3 +3α5 = −284

α1 −3α3 +2α5 = 222

α1 + α2 −7α3 − 3α4 +13α5 − 6α6 = −562

α1 + α2 −7α3 − 4α4 +14α5 − 6α6 = −602

3α1 +2α3 −α7 = 664

−4α1 − 2α2 +4α3 +α7 + α8 = −110

−4α1 − 4α2 +4α3 + 4α4 +α7 + α8+α9 =−1392

7α1 + 7α2−16α3 − 11α4+12α5 −α7 − α8−α9 = 2032

Solving this system we see that

α1 = 1900, α4 = 200, α7 = 3704,

α2 = 804, α5 = 160, α8 = 1736,

α3 = 666, α6 = 14, α9 = 520.

Therefore we have computed

Ho
3 = 1900S147 + 804S156 + 666S246 + 200S255 + 160S345 + 14S444+

3704S48 + 1736S57 + 520S66.

Repeating the same procedure for r = 4 we get

Ho
4 = 116S556 + 280S466 + 889S457 + 1476S277 + 1490S367 + 3376S88+

3520S358 + 5120S268 + 5504S178 + 10840S259 + 11520S79+

13520S169 + 25280S6,10 + 27536S1,5,10 + 50624S5,11.

These formulas enable us to write the Thom polynomials for the singularities
A4(3) and A4(4).

Theorem 11. We have

T A4

3 = S3333 + 9S2334 + 24S2226 + 26S2235 + 55S1335 + 210S1236

+ 216S1227 + 285S336 + 460S1137 + 576S1119 + 624S1128

+ 1214S237 + 1320S228 + 3516S138 + 5040S129 + 5184S1,1,10

+ 6920S39 + 11040S2,10 + 13824S0,12 + 14976S1,11

+ 10S2244 + 21S1344 + 76S1155 + 104S1245 + 240S1146

+ 14S444 + 160S345 + 200S255 + 520S66 + 666S246

+ 804S156 + 1736S57 + 1900S147 + 3704S48,
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T A4

4 = S4444 + 9S3445 + 24S3337 + 26S3346 + 55S2446 + 210S2347

+ 216S2338 + 285S1447 + 460S2248 + 576S2,2,2,10 + 624S2239

+ 1214S1348 + 1320S1339 + 1351S448 + 3516S1249

+ 5040S1,2,3,10 + 5184S1,2,2,11 + 6090S349 + 6840S3,3,10

+ 6920S1,1,4,10 + 11040S1,1,3,11 + 13824S1,1,1,13 + 14976S1,1,2,12

+ 19684S2,4,10 + 29136S2,3,11 + 31680S2,2,12 + 51240S1,4,11

+ 84384S1,3,12 + 95536S4,12 + 120960S1,2,13 + 124416S1,1,14

+ 166080S3,13 + 264960S2,14 + 331776S0,16 + 359424S1,15

+ 10S3355 + 21S2455 + 76S2266 + 104S1356 + 240S2257

+ 14S1555 + 160S1456 + 200S1366 + 520S1177 + 666S1357

+ 804S1267 + 1736S1168 + 1900S1258 + 3704S159

+ 116S556 + 280S466 + 889S457 + 1476S277 + 1490S367 + 3376S88

+ 3520S358 + 5120S268 + 5504S178 + 10840S259 + 11520S79

+ 13520S169 + 25280S6,10 + 27536S1,5,10 + 50624S5,11.
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1989-1990 (Ed. M-P. Malliavin), Springer LNM vol. 1478, 1991, 130–191.

[14] P. Pragacz, A. Thorup. On a Jacobi-Trudi identity for supersymmetric
polynomials. Adv. in Math. 95 (1992), 8–17.

[15] P. Pragacz. Thom polynomials and Schur functions I. Preprint, August
2005, math.AG/0509234.

[16] P. Pragacz. Thom polynomials and Schur functions: the singularities
I2,2(−). Ann. Inst. Fourier, to appear.
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