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INVARIANT FUNCTIONS ON NEIL PARABOLA IN Cn

Pawe l Zapa lowski

Communicated by P. Pflug

Abstract. We present the Carathéodory and the inner Carathéodory
distances and the Carathéodory-Reiffen metric on generalized Neil parabolas
in Cn. It is a generalization of the results from [4] and [5].

1. Introduction and results. In the paper [3] the authors had asked
for an effective formula for the Carathéodory distance on the Neil parabola in
the bidisc. Such a formula was presented by G. Knese in [4], where he also
computed the formula for the Carathéodory-Reiffen pseudometric. It should
be pointed out that these are the first effective formulas for the Carathéodory
distance and the Carathéodory-Reiffen pseudometric of a non-trivial complex
space. In [5] N. Nikolov and P. Pflug generalized Knese’s result. The authors
presented formula for the inner Carathéodory distance in so called generalized
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Neil parabola (but still in bidisc) and, as a corollary, they obtained sufficient
and necessary condition for the Carathéodory distance on the Neil parabola to
be inner. Moreover, they presented also formula for the Carathéodory-Reiffen
pseudometric on the two-dimensional generalized Neil parabola.

In this paper we present next possible generalization of the definition of
Neil parabola, namely we embed the unit disc in C

n. It turns out that in such a
generalized Neil parabola all the results obtained in [5] are still valid. The aim
of this paper is to translate the results from the two-dimensional case onto the
n-dimensional one. Below we present all the necessary definitions.

Let D be the unit disc in C. For M = (m1, . . . ,mn) ∈ N
n, where mj’s are

relatively prime and such that m1 6 · · · 6 mn define

D 3 λ
p−→ (λm1 , . . . , λmn) ∈ A := p(D) ⊂ D

n.

A is called the n-dimensional generalized parabola. Note that A is one-dimen-
sional analytic subset of D

n with regA = A∗ := A \ {0}. Recall that G. Knese
worked with M = (3, 2) while N. Nikolov and P. Pflug obtained their results for
M = (n,m), where n,m are relatively prime.

The mapping p is a global bijective holomorphic parametrization for A.
Observe that there exist r1, . . . , rn ∈ Z such that r1m1 + · · · + rnmn = 1.

Define q : A→ C with the formula

q(z1, . . . , zn) =

{

zr11 . . . zrnn , z1 . . . zn 6= 0

0, z1 . . . zn = 0
.

Observe that q = p−1. Note that q is continuous on A and holomorphic on A∗.
Thus the mapping q|A∗

: A∗ → D∗ := D \ {0} is biholomorphic.
Let

OM (D) := {h ∈ O(D,D) : h(s)(0) = 0, s ∈ S},
where S := {s ∈ N : s /∈ m1Z+ + · · · +mnZ+}. Note that if m1 = 1 then S = ∅

and if m1 > 1 then maxs∈S =: s∗ < nrm1 . . . mn, where r := maxj=1,...,n |rj|.
Observe that if f ∈ O(A,D), i.e. f is locally the restriction of a holo-

morphic function on an open neighborhood of A in C
n, then f ◦ p ∈ OM (D).

Moreover, the converse is true. Indeed, we have the following

Lemma 1 (cf. Section 5 in [4]). If h ∈ OM (D), then h ◦ q ∈ O(A,D).

All the proof will be presented in Section 2. We will also use the following
identification.
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Lemma 2. O(D, A) = {p ◦ ψ : ψ ∈ O(D,D)}.
For a ∈ A let TaA denote the tangent space of A at a. Recall that if

a = p(λ), λ ∈ D∗, then Tp(λ)A is spanned by the vector p′(λ). If a = 0 then

T0A =

{

λp′(0), λ ∈ C, if m1 = 1

C
n if m1 > 1

.

We will study some invariant functions. So let us recall the objects we
will deal with in this paper. For details we refer the Reader to [2] and [3]. For
z, w ∈ A and X ∈ TzA we define

cA(z, w) := sup{pD(f(z), f(w)) : f ∈ O(A,D)},

mA(z, w) := sup{mD(f(z), f(w)) : f ∈ O(A,D)},

γA(z;X) :=max{|f ′(z)X| : f ∈ O(A,D)},

k̃A(z, w) := inf{pD(ζ, ξ) : ∃ϕ∈O(D,A) : ϕ(ζ) = z, ϕ(ξ) = w},

kA := the largest distance on A below of k̃A,

κA(z;X) := inf{α > 0 : ∃ϕ∈O(D,A) : ϕ(0) = z, αϕ′(0) = X},

where pD := tanh−1mD denotes the Poincaré distance and mD(a, b) :=

∣
∣
∣
∣

a− b

1 − ab̄

∣
∣
∣
∣
,

a, b ∈ D, is the Möbius distance on D. We set k̃A(z, w) := ∞ or κA(z;X) := ∞
if there are no respective discs ϕ. We call cA the Carathéodory distance, mA is
the Möbious distance, γA is the Carathéodory-Reiffen metric, k̃A is the Lempert
function, kA is the Kobayashi distance and κA is the Kobayashi-Royden metric
for A.

Recall that the associated inner Carathéodory distance ciA is given by

ciA(z, w) := inf{LcA(α) : α is a ‖ · ‖-rectifiable

curve in A connecting z, w}, z, w ∈ A,

where LcA denotes the cA-length. We say that the curve α is ‖ · ‖-rectifiable if its
Euclidean length is finite. Obviously, cA 6 ciA.

Theorem 3 (cf. Theorem 3 in [5]). Let λ ∈ D. Then

γA(p(λ); p′(λ)) =
m1|λ|m1−1

1 − |λ|2m1
.
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Theorem 4 (cf. Theorem 1 in [5]). Let λ, µ ∈ D. Then

ciA(p(λ), p(µ)) =







pD(λm1 , µm1) if Re(λµ̄) > cos(π/m1)|λµ|
pD(λm1 , 0) + pD(0, µm1) otherwise

.

Theorem 5 (cf. Theorem 4.1 in [4]). Let λ, µ ∈ D.
(a) If S = ∅, i.e. m1 = 1, then

cA(p(λ), p(µ)) = pD(λ, µ).

(b) If S = {1}, i.e. m1 = 2,mj = 3 for some 1 < j 6 n, then

cA(p(λ), p(µ)) =







pD(λ2, µ2) if |a| > 1

pD

(

λ2 a− λ

1 − āλ
, µ2 a− µ

1 − āµ

)

if |a| < 1
,

where a = aλ,µ :=
1

2

(

λ+
1

λ̄
+ µ+

1

µ̄

)

. In the case when λµ = 0 the formula

should be read as in the case |a| > 1.

Due to the results above we have the following correspondence between
the Carathéodory distance and its associated inner one.

Corollary 6 (cf. Corollary 2 in [5]). Let λ, µ ∈ D.
(a) If Re(λµ̄) > cos(π/m1)|λµ| then

ciA(p(λ), p(µ)) = cA(p(λ), p(µ)).

(b) If Re(λµ̄) < cos(π/m1)|λµ| then

ciA(p(λ), p(µ)) = cA(p(λ), p(µ)) iff (λµ̄)m1 < 0.

Thus, the following conditions are equivalent

• ciA(p(λ), p(µ)) = cA(p(λ), p(µ));

• ciA(p(λ), p(µ)) = pD(λm1 , µm1);

• Re(λµ̄) > cos(π/m1)|λµ| or (λµ̄)m1 < 0.

In particular, cA is inner iff m1 = 1.
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It turns out that (as in the case of domains in C
n) γA is the infinitesimal

form of cA outside the origin.

Corollary 7 (cf. [5]). Let λ ∈ D∗ (if m1 = 1 we may take λ ∈ D). Then

lim
µ→λ

cA(p(λ), p(µ))

|λ− µ| = γA(p(λ); p′(λ)).

Now assume that m1 > 1. Let X ∈ T0A = C
n. Observe that

γA(0;X) = max{|f ′(0)X| : f ∈ O(A,D), f(0) = 0}.

Then for such an f we have (f ◦ p)(λ) = λm1h(λ), λ ∈ D, where h ∈ O(D, D̄).
Observe that

∂f

∂zj
(0) =

h(mj−m1)(0)

(mj −m1)!
, j = 1, . . . , n.

Thus, for X = (X1, . . . , Xn) ∈ C
n we have

γA(0;X) = max
{∣
∣
∣

n∑

j=1

h(mj )(0)

mj!
Xj

∣
∣
∣ : h ∈ OM (D), h(0) = 0

}

= max
{∣
∣
∣

n∑

j=1

h(mj−m1)(0)

(mj −m1)!
Xj

∣
∣
∣ :

h ∈ O(D, D̄), h(j)(0) = 0, j +m1 ∈ S
}

.

(1)

In particular, γA(0;X) = ‖X‖ if n − 1 coordinates of X is equal 0. Using the
first equality above, we will prove the following infinitesimal result at the origin.

Proposition 8 (cf. Prop. 4 in [5]). Let Xλ,µ := (λm1 − µm1 , . . . , λmn −
µmn). Then

lim
λ,µ→0
λ6=µ

cA(p(λ), p(µ))

γA(0;Xλ,µ)
= 1.

Corollary 9 (cf. Corollary 5 in [5]). Let m1 > 1. For any j ∈ {2, . . . , n}
there are points λ, µ ∈ D such that

(2) cA(p(λ), p(µ)) > max{pD(λm1 , µm1), pD(λmj , µmj )}.
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In the proof of Proposition 8 we use the following

Lemma 10 (cf. [5]). There exists a constant c > 0 such that for any
λ, µ ∈ D

cA(p(λ), p(µ)) > max{pD(λmj , µmj ) : j = 1, . . . , n} > c‖Xλ,µ‖,(3)

max{|λ|k−mn , |µ|k−mn}‖Xλ,µ‖ >
c

k
|λk − µk|, mn < k,(4)

γA(0;Xλ,µ) > c‖Xλ,µ‖.(5)

Moreover,

(6) lim
λ,µ→0
λ6=µ

∞∑

j=m1+1

|λj − µj|
‖Xλ,µ‖

= 0.

Proposition 11 (cf. Proposition 7 in [5]). Let M = (m1, . . . ,mn) be
such that m1 = · · · = mj = 2, mj+1 = 2k+ 1 for some 1 6 j 6 n− 1 and k ∈ N.
Then

mA(p(λ), p(−λ)) =
2|λ|2k+1

1 + |λ|4k+2
, λ ∈ D.

Finally, we discuss the Kobayashi distance and Kobayashi-Royden metric
on A. Due to Lemma 2, we have the following result.

Proposition 12 (cf. Proposition 8 in [5]). (a) Let λ, µ ∈ D. Then

kA(p(λ), p(µ)) = k̃A(p(λ), p(µ)) = pD(λ, µ).

(b) If λ ∈ D∗ then

κA(p(λ); p′(λ)) = γD(λ; 1).

If λ = 0 and X = (X1, . . . , Xn) ∈ T0A, X 6= 0 then

κA(0;X) =

{

|X1| if m1 = 1

∞ if m1 > 1
.
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We conclude this note by generalizing the example of the coordinate cross
discussed in [5]. Let ej = (0, . . . , 0

︸ ︷︷ ︸

j−1

, 1, 0, . . . , 0) ∈ C
n, j = 1, . . . , n. Put

V1 :=

n⋃

j=1

Dej.

Proposition 13 (cf. Remark in [5]). (a) Let λ, µ ∈ D. Then

cV1
(λej , µek) = kV1

(λej , µek) =

{

pD(λ, µ) if j = k

pD(λ, 0) + pD(0, µ) if j 6= k
,(7)

k̃V1
(λej , µek) =

{

pD(λ, µ) if j = k

∞ if j 6= k, λµ 6= 0
.(8)

(b) If λ ∈ D∗ then

(9) γV1
(λej ; ej) = κV1

(λej ; ej) = γD(λ; 1).

If λ = 0 and X = (X1, . . . , Xn) ∈ C
n then

γV1
(0;X) =

n∑

j=1

|Xj |,(10)

κV1
(0;X) =

{

|Xj | if X = Xjej , j = 1, . . . , n

∞ otherwise
.(11)

2. Proofs.

P r o o f o f L e mma 1. h ◦ q is holomorphic on A∗ because it may be
extended to a holomorphic function on the set

Ω :=
{

(z1, . . . , zn) ∈ D
n :

∏

j∈M+

|zj |rj <
∏

k/∈M+

|zk|−rk
}

,

where M+ := {j ∈ {1, . . . , n} : rj ∈ Z+}, and Ω is an open neighborhood of A∗.
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To prove that h ◦ q is holomorphic at the origin observe that

(12) h(λ) =
∑

j∈Z+\S

ajλ
j , λ ∈ D.

Moreover, the following identities hold

zmk

j = z
mj

k , j, k ∈ {1, . . . , n}, (z1, . . . , zn) ∈ A.

Hence for any j = m1bj,1 + · · · + mnbj,n ∈ Z+ \ S and z = (z1, . . . , zn) ∈ A we
obtain

qj(z) = z
r1m1bj,1

1 . . . z
r1mnbj,n

1 . . . z
rnm1bj,1
n . . . z

rnmnbj,n
n

= z
r1m1bj,1

1 . . . z
r1m1bj,n
n . . . z

rnmnbj,1

1 . . . z
rnmnbj,n
n

= z
(r1m1+···+rnmn)bj,1

1 . . . z
(r1m1+···+rnmn)bj,n
n = z

bj,1

1 . . . z
bj,n
n .

Using the equality above and (12) we get

(13) (h ◦ q)(z) =
∑

j∈Z+\S

ajz
bj,1

1 . . . z
bj,n
n , z = (z1, . . . , zn) ∈ A,

where bj,k ∈ Z+ for all j ∈ Z+ \ S and k = 1, . . . , n.
The series (13) is convergent for z = (λm1 , . . . , λmn), |λ| 6 R < 1. Thus

it converges for z ∈ Rm1D × · · · × RmnD which gives us holomorphicity of the
extension of h ◦ q in some neigborhood of the origin. �

P r o o f o f L e mma 2. Since p ∈ O(D, A), we have that p◦ψ ∈ O(D, A).
Now assume that f ∈ O(D, A). Since f = p ◦ q ◦ f it suffices to show that
q ◦ f ∈ O(D,D).

Fix λ ∈ D. If f(λ) 6= 0 then q ◦ f is holomorphic in some neighborhood of
λ. If f(λ) = 0, i.e. f1(λ) = · · · = fn(λ) = 0, where f = (f1, . . . , fn), then fj(ζ) =
(ζ − λ)sj f̃j(ζ) for some sj ∈ N and f̃j ∈ O(Uλ), f̃j(ζ) 6= 0, ζ ∈ Uλ, j = 1, . . . , n,
where Uλ ⊂ D is some neighborhood of λ. Since

(14) (ζ − λ)sjmk f̃mk

j (ζ) = (ζ − λ)skmj f̃
mj

k (ζ), ζ ∈ Uλ, j, k ∈ {1, . . . , n},

there exists l ∈ N such that sj = lmj , j = 1, . . . , n. Indeed, from (14) it follows
that

(15) sjmk = skmj, j, k ∈ {1, . . . , n}.
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Fix j ∈ {1, . . . , n}. Observe that mj = pj,1 . . . pj,s(j), where pj,s’s are prime
numbers. Since m1, . . . ,mn are relatively prime, for any 1 6 s 6 s(j) there exists
1 6 k 6 n such that pj,s6 | mk. Then (15) implies that sj = pj,1 . . . pj,s(j)lj for some
lj ∈ N. Using (15) again, we conclude that lj = lk =: l for all j, k ∈ {1, . . . , n}.

Hence

(q ◦ f)(ζ) = f r11 (ζ) . . . f rnn (ζ) = (ζ − λ)lf̃ r11 (ζ) . . . f̃ rnn (ζ), ζ ∈ Uλ.

Thus q ◦ f ∈ O(Uλ) and the proof is complete. �

P r o o f o f Th e o r em 3. Recall that

γA(p(λ); p′(λ)) = max

{ |h′(λ)|
1 − |h(λ)|2 : h ∈ OM (D)

}

.

Observe that if φ ∈ Aut(D) and h ∈ OM (D) then φ ◦ h ∈ OM (D) and

|h′(λ)|
1 − |h(λ)|2 =

|(φ ◦ h)′(λ)|
1 − |(φ ◦ h)(λ)|2 .

Thus

γA(p(λ); p′(λ))

= max

{ |h′(λ)|
1 − |h(λ)|2 : h ∈ OM (D), h(0) = 0

}

= max

{

|(λm1 h̃(λ))′|
1 − |λm1 h̃(λ)|2

: h̃ ∈ O(D, D̄), h̃(j)(0) = 0, j +m1 ∈ S

}

= |λ|m1−1 max

{ |m1h(λ) + λh′(λ)|
1 − |λm1h(λ)|2 :

h ∈ O(D, D̄), h(j)(0) = 0, j +m1 ∈ S

}

=
m1|λ|m1−1

1 − |λ|2m1
.

The last equality may be proved exactly as in the proof of Theorem 3 in [5] with
m1 instead of m. �

P r o o f o f Th e o r e m 4. The proof follows the proof of Theorem 1 in
[5] with m1 instead of m. �

P r o o f o f Th e o r em 5. Ad (a). It is a consequence of Theorem 4,
since m1 = 1.
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Ad (b). Since S = {1}, the proof of Theorem 4.1 from [4] may be repea-
ted. �

P r o o f o f Co r o l l a r y 6. The proof follows the proof of Corollary 2 in
[5] with m1 instead of m. �

Remark 14 (cf. Remark (a) in [5]). In [5] for m ∈ N the following
distance was introduced

p
(m)
D

(λ, µ) := max{pD(λmh(λ), µmh(µ)) : h ∈ O(D, D̄)}.

Note that

lim
ε→0
ε6=0

p
(m1)
D

(λ, λ+ ε)

|ε| = |λ|m1−1 max

{ |m1h(λ) + λh′(λ)|
1 − |λm1h(λ)|2 : h ∈ O(D, D̄)

}

= γA(p(λ); p′(λ))

by the proof of Theorem 3. So it follows that the associated inner distance ∫p(m1)
D

of p
(m1)
D

equals to ciA(p(·), p(·)). Then

ciA(p(λ), p(µ)) > p
(m1)
D

(λ, µ)

> cA(p(λ), p(µ)) > pD(λm1 , µm1).

Moreover, the proof of Corollary 6 shows that the following conditions
are equivalent

• ciA(p(λ), p(µ)) = p
(m1)
D

(λ, µ);

• ciA(p(λ), p(µ)) = cA(p(λ), p(µ));

• ciA(p(λ), p(µ)) = pD(λm1 , µm1);

• Re(λµ̄) > cos(π/m1)|λµ| or (λµ̄)m1 < 0.

P r o o f o f C o r o l l a r y 7. Since

ciA(p(λ), p(µ)) > cA(p(λ), p(µ)) > pD(λm1 , µm1), λ ∈ D,

for λ ∈ D∗ (if m1 = 1 we may take λ ∈ D) we have

lim
µ→λ

cA(p(λ), p(µ))

|λ− µ| = lim
µ→λ

pD(λm1 , µm1)

|λ− µ| = lim
µ→λ

mD(λm1 , µm1)

|λ− µ|

=
m1|λ|m1−1

1 − |λ|2m1
= γA(p(λ); p′(λ)).

�



Invariant functions on Neil parabola in C
n 331

P r o o f o f L emma 10. Fix λ, µ ∈ D. Without loss of generality we may
assume that λ 6= µ and |µ| 6 |λ|. Moreover, it suffices to obtain each inequality
with different constant, since minimum of these constants will do the job.

Ad (3). The first inequality in (3) we obtain with help of the projection
from A onto its mj-th coordinate, while the second one is a consequence of the
equivalence of norms in C

n.
A d (4). Let mj

√
1 = {εmj ,0, . . . , εmj ,mj−1} and let Rmj ,s := εmj ,s[0, 1],

s = 0, . . . ,mj − 1. Observe that there is a constant δ = δ(M) > 0 such that

Λmj ,s,δ ∩ Λml,t,δ = ∅ if Rmj ,s 6= Rml,t,

where Λmj ,s,δ := {reiϕ : r ∈ Rmj ,s, ϕ ∈ (−δ, δ)}, s = 0, . . . ,mj − 1, j = 1, . . . , n.

Observe that µ/λ ∈ D. Since mj ’s are relatively prime, one of the
following two cases holds:

1◦ There exists j ∈ {1, . . . , n} such that µ/λ 6∈ ⋃mj−1
s=0 Λmj ,s,δ;

2◦ µ/λ ∈ Λmn,0,δ.

A d 1◦. Then there is a constant c = c(δ) > 0 such that |1−(µ/λ)mj | > 2c.
Therefore

|λ|k−mn‖Xλ,µ‖ > |λ|k−mj |λmj − µmj |

= |λ|k|1 − (µ/λ)mj | > 2c|λ|k >
c

k
|λk − µk|.

Ad 2◦. To obtain (4) in this case it suffices to prove that there exists
c > 0 such that

c

k

∣
∣
∣
∣

1 − (µ/λ)k

1 − (µ/λ)mn

∣
∣
∣
∣
6 1, k > mn.

Since lim
µ/λ→1

∣
∣
∣
∣

1 − (µ/λ)k

1 − (µ/λ)mn

∣
∣
∣
∣
=

k

mn
, there is a constant r > 0 such that

∣
∣
∣
∣

1 − (µ/λ)k

1 − (µ/λ)mn

∣
∣
∣
∣
6

2k

mn
, |1 − µ/λ| < r, k > mn.

Hence in case |1 − µ/λ| < r, a constant c1 :=
mn

2
will do the job.

On the other hand, if |1−µ/λ| > r then there is a constant c2 = c2(r) > 0
such that |1 − (µ/λ)mn | > 2c2. Therefore

c2
k

∣
∣
∣

1 − (µ/λ)k

1 − (µ/λ)mn

∣
∣
∣ 6

2c2
2c2k

6 1.
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Finally we take c := min{c1, c2}.
A d (5). Let l ∈ {1, . . . , n} be such that |λml − µml | = max{|λmj − µmj | :

j = 1, . . . , n}. Let h(ζ) = ζml , ζ ∈ D. Observe that h ∈ OM (D) and h(0) = 0.
Thus

γA(0;Xλ,µ) >

∣
∣
∣

n∑

j=1

h(mj)(0)

mj!
(λmj − µmj )

∣
∣
∣ = |λml − µml | > c‖Xλ,µ‖,

where c > 0 is a constant from the inequality (3).
Ad (6). First assume that m1 + 1 6 j 6 mn. Then

|λj − µj |
‖Xλ,µ‖

6

∣
∣
∣
λj − µj

λm1 − µm1

∣
∣
∣ =

∣
∣
∣
λαj − µαj

λ− µ

∣
∣
∣ 6 αj(|λ| + |µ|),

where αj > 1. Therefore

(16) lim
λ,µ→0
λ6=µ

mn∑

j=m1+1

|λj − µj|
‖Xλ,µ‖

= 0.

Observe that, using (4), we have

∞∑

j=mn+1

|λj − µj|
‖Xλ,µ‖

6
1

c

∞∑

j=mn+1

j|λ|j−mn =
1

c

∞∑

j=1

(mn + j)|λ|j

6
mn + 1

c

∞∑

j=1

j|λ|j =
(mn + 1)|λ|
c(1 − |λ|)2 .

Hence, letting λ, µ→ 0, λ 6= µ, and using (16) we obtain (6). �

P r o o f o f P r o p o s i t i o n 8. Let h+
λ,µ ∈ OM (D) be an extremal function

for cA(p(λ), p(µ)). Then

h+
λ,µ(ζ) =

∑

j∈Z+\S

aλ,µ,jζ
j.

Since |aλ,µ,j | 6 1, it follows that

|h+
λ,µ(λ) − h+

λ,µ(µ)|

6 H+(λ, µ) :=
∣
∣
∣

n∑

j=1

aλ,µ,mj
(λmj − µmj )

∣
∣
∣ +

∞∑

j=m1+1

|λj − µj|.
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Thus, using (3), (6), and (1)

1 6 lim inf
λ,µ→0
λ6=µ

H+(λ, µ)

|h+
λ,µ(λ) − h+

λ,µ(µ)| = lim inf
λ,µ→0
λ6=µ

H+(λ, µ)

cA(p(λ), p(µ))

6 lim inf
λ,µ→0
λ6=µ

(

∣
∣
∣

n∑

j=1
aλ,µ,mj

(λmj − µmj )
∣
∣
∣

cA(p(λ), p(µ))
+

∞∑

j=m1+1
|λj − µj|

c‖Xλ,µ‖

)

= lim inf
λ,µ→0
λ6=µ

∣
∣
∣

n∑

j=1
aλ,µ,mj

(λmj − µmj )
∣
∣
∣

cA(p(λ), p(µ))
6 lim inf

λ,µ→0
λ6=µ

γA(0;Xλ,µ)

cA(p(λ), p(µ))
.

Let now h−λ,µ ∈ OM (D) be an extremal function for γA(0;Xλ,µ). Then

h−λ,µ(ζ) =
∑

j∈Z+\S

aλ,µ,jζ
j.

Since |aλ,µ,j | 6 1, it follows that

|h−λ,µ(λ) − h−λ,µ(µ)| >

∣
∣
∣

n∑

j=1

aλ,µ,mj
(λmj − µmj )

∣
∣
∣ −

∞∑

j=m1+1

|λj − µj|.

Then, using (5) and (6), we have

lim
λ,µ→0
λ6=µ

∞∑

j=m1+1
|λj − µj |

γA(0;Xλ,µ)
6 lim

λ,µ→0
λ6=µ

∞∑

j=m1+1

|λj − µj|
c‖Xλ,µ‖

= 0,

and, consequently,

lim
λ,µ→0
λ6=µ

∞∑

j=m1+1
|λj − µj|

|h−λ,µ(λ) − h−λ,µ(µ)| 6 lim
λ,µ→0
λ6=µ

∞∑

j=m1+1
|λj − µj|

γA(0;Xλ,µ) −
∞∑

j=m1+1
|λj − µj|

= 0.
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Thus, using (3), (6), and the last equality,

1 > lim sup
λ,µ→0
λ6=µ

γA(0;Xλ,µ) −
∞∑

j=m1+1
|λj − µj|

|h−λ,µ(λ) − h−λ,µ(µ)|

> lim sup
λ,µ→0
λ6=µ

(
γA(0;Xλ,µ)

cA(p(λ), p(µ))
−

∞∑

j=m1+1
|λj − µj|

|h−λ,µ(λ) − h−λ,µ(µ)|

)

= lim sup
λ,µ→0
λ6=µ

γA(0;Xλ,µ)

cA(p(λ), p(µ))
.

�

P r o o f o f C o r o l l a r y 9. Observe that for any neighborhood U of 0
one may find points λ, µ ∈ U such that λm1 − µm1 = λmj − µmj 6= 0. Then, by
Proposition 8, it suffices to show that

(17) γA(0;X0) > 1, X0 := (X1, . . . , Xn), X1 = Xj = 1.

Indeed, having (17) and using the equality (cf. Corollary 1.13 (d) in [2])

lim
λ′,λ′′→0
λ′ 6=λ′′

pD(λ′, λ′′)

|λ′ − λ′′| = 1

we obtain the required result.
By the second equality in (1) and the fact that max

s∈S
s = s∗ <∞,

γA(0;X0) > max{|a+ b| : (a, b) ∈ Tmj−m1
},

where Tmj−m1
:= {(a, b) ∈ C

2 : ∃h∈O(D,D̄) : h(ζ) = a+ bζmj−m1 + o(ζs
∗−m1)}.

Let k ∈ N be such that k(mj −m1) > s∗ −m1. We shall show that there
is a function f ∈ O(D, D̄) of the form f(ζ) = a + bζ + o(ζk), where a, b > 0 and
a+ b > 1, which will imply (17).

From now on the rest of the proof of Corollary 5 in [5] may be repeated.
For convenience of the Reader we recall that proof.

Note that by Shur’s theorem (cf. [1]) such a function f exists if and only
if

(18) (1 − a2 − b2)
k∑

j=1

X2
j > 2ab

k∑

j=2

Xj−1Xj , (X1, . . . , Xk) ∈ R
k.
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Since cos
π

k + 1
is the maximal eigenvalue of the quadratic form defined by

k∑

j=2
Xj−1Xj , it follows that

cos
π

k + 1

k∑

j=1

X2
j >

k∑

j=2

Xj−1Xj , (X1, . . . , Xk) ∈ R
k.

Then all pairs (a, b) ∈ R
2 for which 2ab cos

π

k + 1
6 1 − a2 − b2 satisfy (18); in

particular, we may choose a, b > 0 such that 2ab cos
π

k + 1
6 1 − a2 − b2 < 2ab,

i.e. a+ b > 1. �

P r o o f o f P r o p o s i t i o n 11. Observe that in this case S = {2j − 1 :
j = 1, 2, . . . , k} and the proof of Proposition 7 from [5] may be repeated. �

P r o o f o f P r o p o s i t i o n 12. A d (a). k̃A(p(λ), p(µ)) 6 pD(λ, µ), since
p ∈ O(D, A). From Lemma 2 we already know that for any ϕ ∈ O(D, A)
with ϕ(λ̃) = p(λ) and ϕ(µ̃) = p(µ) there exists some ψ ∈ O(D,D) such that
ψ(λ̃) = λ and ψ(µ̃) = µ. Hence pD(λ, µ) 6 pD(λ̃, µ̃). Taking infimum over all
appropriate ϕ ∈ O(D, A) we obtain pD(λ, µ) 6 k̃A(p(λ), p(µ)). Hence, pD(λ, µ) =
k̃A(p(λ), p(µ)). In particular, k̃A is a distance and, consequently, k̃A = kA.

A d (b). Again, using Lemma 2, we obtain

κA(p(λ); p′(λ))

= inf{α > 0 : ∃ϕ∈O(D,A) : ϕ(0) = p(λ), αϕ′(0) = p′(λ)}

> inf{α > 0 : ∃ψ∈O(D,D) : ψ(0) = λ, αψ′(0) = 1}

= κD(λ; 1) = γD(λ; 1).

On the other hand, for ϕ := p ◦ ψ, where ψ ∈ Aut(D) is such that ψ(0) = λ,
we have that ϕ ∈ O(D, A), ϕ(0) = p(λ), and γD(λ; 1)ϕ′(0) = p′(λ). Therefore
κA(p(λ); p′(λ)) 6 γD(λ; 1).
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It remains to prove formula for λ = 0. Observe that

κA(0;X) = inf{α > 0 : ∃ϕ∈O(D,A) : ϕ(0) = 0, αϕ′(0) = X}

> inf{α > 0 : ∃ψ∈O(D,D) : ψ(0) = 0, αp′(0)ψ′(0) = X}

=

{

|X1| if m1 = 1

∞ if m1 > 1
.

It suffices to prove the opposite inequality in case m1 = 1. Fix X ∈
(T0A)∗. Then there exists k ∈ N such that X1 = · · · = Xk 6= 0 and Xk+1 =
· · · = Xn = 0. We define ϕ(λ) := p(X1|X1|−1λ), λ ∈ D. Observe that ϕ ∈
O(D, A), ϕ(0) = 0, and |X1|ϕ′(0) = X. Hence κA(0;X) 6 |X1| which ends the
proof. �

P r o o f o f P r o p o s i t i o n 13. Ad (7). Let ϕj(z) := zj, z = (z1, . . . , zn) ∈
V1, and ψj(ζ) := ζej , ζ ∈ D, for j = 1, . . . , n. Since ϕj ∈ O(V1,D) and
ψj ∈ O(D, V1), then

(19) pD(λ, µ) 6 cV1
(λej , µej) 6 k̃V1

(λej , µej) 6 pD(λ, µ).

Now assume that j 6= k. Since ϕ :=
∑n

j=1 ϕj ∈ O(V1,D), then

pD(λ, 0) + pD(0, µ) = pD(|λ|,−|µ|) 6 cV1
(|λ|ej ,−|µ|ek) = cV1

(λej , µek).

Moreover, using (19),

kV1
(λej , µek) 6 k̃V1

(λej , 0) + k̃V1
(0, µek) = pD(λ, 0) + pD(0, µ).

Ad (8). It remains to consider the case j 6= k, λµ 6= 0. Suppose there
is a disc ψ ∈ O(D, V1) such that ψ(ζ) = λej and ψ(ξ) = µek for some ζ, ξ ∈ D.
However, these equalities imply, together with the identity principle, that ψ ≡ 0;
a contradiction, since λµ 6= 0.

Ad (9). Using again the functions ϕj and ψj , j = 1, . . . , n, defined in the
part of the proof of (7), we obtain

γD(λ; 1) 6 γV1
(λej ; ej) 6 κV1

(λej ; ej) 6 γD(λ; 1).

Ad (10). For X = (X1, . . . , Xn) ∈ C
n let ϕX(z) :=

∑n
j=1 zje

−iArgXj ,
where z = (z1, . . . , zn) ∈ V1. Since ϕ ∈ O(V1,D), then

n∑

j=1

|Xj | = γD(ϕX(0);ϕ′
X (0)X) 6 γV1

(0;X).
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Recall now that

O(V1,D) =
{ n∑

j=1

fj − (n− 1)f1(0) :

fj ∈ O(Dej ,D) , fj(0) = fk(0), j, k = 1, . . . , n
}

.

Therefore

γV1
(0;X) = sup{γD(F (0);F ′(0)X) : F ∈ O(V1,D)}

6

n∑

j=1

sup{γD(fj(0); f
′
j(0)Xj) : fj ∈ O(D,D)} =

n∑

j=1

|Xj |.

Ad (11). Assume that X = Xjej. Define ψj,X(ζ) = ζeje
iArgXj , ζ ∈

D. Observe that ψj,X ∈ O(D, V1), ψj,X(0) = 0 and |Xj |ψ′
j,X(0) = X. Hence

κV1
(0;X) 6 |Xj |.

To prove the opposite inequality observe that for any ψ ∈ O(D, V1) there
exist j and f ∈ O(D,D) such that ψ = fej. Hence

κV1
(0;X) = inf{α > 0 : ∃ψ∈O(D,V1) : ψ(0) = 0, αψ′(0) = X}

> inf{α > 0 : ∃f∈O(D,D) : f(0) = 0, αf ′(0) = Xj} = |Xj |.

Now assume that X is not of the form Xjej for some j = 1, . . . , n. Then
there are Xj 6= 0 6= Xk for some j 6= k. Suppose there is a disc ψ ∈ O(D, V1)
such that αψ′(0) = X for some α > 0. This, however, implies that ψj 6= const
and ψk 6= const ; a contradiction, since j 6= k. �
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