Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use.

Serdica

Mathematical Journal

Сердика

Математическо списание

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.
For further information on
Serdica Mathematical Journal
which is the new series of
Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

INVARIANT FUNCTIONS ON NEIL PARABOLA IN \mathbb{C}^{n}

Paweł Zapałowski
Communicated by P. Pflug

Abstract. We present the Carathéodory and the inner Carathéodory distances and the Carathéodory-Reiffen metric on generalized Neil parabolas in \mathbb{C}^{n}. It is a generalization of the results from [4] and [5].

1. Introduction and results. In the paper [3] the authors had asked for an effective formula for the Carathéodory distance on the Neil parabola in the bidisc. Such a formula was presented by G. Knese in [4], where he also computed the formula for the Carathéodory-Reiffen pseudometric. It should be pointed out that these are the first effective formulas for the Carathéodory distance and the Carathéodory-Reiffen pseudometric of a non-trivial complex space. In [5] N. Nikolov and P. Pflug generalized Knese's result. The authors presented formula for the inner Carathéodory distance in so called generalized
[^0]Neil parabola (but still in bidisc) and, as a corollary, they obtained sufficient and necessary condition for the Carathéodory distance on the Neil parabola to be inner. Moreover, they presented also formula for the Carathéodory-Reiffen pseudometric on the two-dimensional generalized Neil parabola.

In this paper we present next possible generalization of the definition of Neil parabola, namely we embed the unit disc in \mathbb{C}^{n}. It turns out that in such a generalized Neil parabola all the results obtained in [5] are still valid. The aim of this paper is to translate the results from the two-dimensional case onto the n-dimensional one. Below we present all the necessary definitions.

Let \mathbb{D} be the unit disc in \mathbb{C}. For $M=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{N}^{n}$, where m_{j} 's are relatively prime and such that $m_{1} \leqslant \cdots \leqslant m_{n}$ define

$$
\mathbb{D} \ni \lambda \xrightarrow{p}\left(\lambda^{m_{1}}, \ldots, \lambda^{m_{n}}\right) \in A:=p(\mathbb{D}) \subset \mathbb{D}^{n}
$$

A is called the n-dimensional generalized parabola. Note that A is one-dimensional analytic subset of \mathbb{D}^{n} with $\operatorname{reg} A=A_{*}:=A \backslash\{0\}$. Recall that G. Knese worked with $M=(3,2)$ while N . Nikolov and P. Pflug obtained their results for $M=(n, m)$, where n, m are relatively prime.

The mapping p is a global bijective holomorphic parametrization for A. Observe that there exist $r_{1}, \ldots, r_{n} \in \mathbb{Z}$ such that $r_{1} m_{1}+\cdots+r_{n} m_{n}=1$.

Define $q: A \rightarrow \mathbb{C}$ with the formula

$$
q\left(z_{1}, \ldots, z_{n}\right)= \begin{cases}z_{1}^{r_{1}} \ldots z_{n}^{r_{n}}, & z_{1} \ldots z_{n} \neq 0 \\ 0, & z_{1} \ldots z_{n}=0\end{cases}
$$

Observe that $q=p^{-1}$. Note that q is continuous on A and holomorphic on A_{*}. Thus the mapping $\left.q\right|_{A_{*}}: A_{*} \rightarrow \mathbb{D}_{*}:=D \backslash\{0\}$ is biholomorphic.

Let

$$
\mathcal{O}_{M}(\mathbb{D}):=\left\{h \in \mathcal{O}(\mathbb{D}, \mathbb{D}): h^{(s)}(0)=0, s \in S\right\}
$$

where $S:=\left\{s \in \mathbb{N}: s \notin m_{1} \mathbb{Z}_{+}+\cdots+m_{n} \mathbb{Z}_{+}\right\}$. Note that if $m_{1}=1$ then $S=\varnothing$ and if $m_{1}>1$ then $\max _{s \in S}=: s^{*}<n r m_{1} \ldots m_{n}$, where $r:=\max _{j=1, \ldots, n}\left|r_{j}\right|$.

Observe that if $f \in \mathcal{O}(A, \mathbb{D})$, i.e. f is locally the restriction of a holomorphic function on an open neighborhood of A in \mathbb{C}^{n}, then $f \circ p \in \mathcal{O}_{M}(\mathbb{D})$. Moreover, the converse is true. Indeed, we have the following

Lemma 1 (cf. Section 5 in [4]). If $h \in \mathcal{O}_{M}(\mathbb{D})$, then $h \circ q \in \mathcal{O}(A, \mathbb{D})$.
All the proof will be presented in Section 2. We will also use the following identification.

Lemma 2. $\mathcal{O}(\mathbb{D}, A)=\{p \circ \psi: \psi \in \mathcal{O}(\mathbb{D}, \mathbb{D})\}$.
For $a \in A$ let $T_{a} A$ denote the tangent space of A at a. Recall that if $a=p(\lambda), \lambda \in \mathbb{D}_{*}$, then $T_{p(\lambda)} A$ is spanned by the vector $p^{\prime}(\lambda)$. If $a=0$ then

$$
T_{0} A=\left\{\begin{array}{lll}
\lambda p^{\prime}(0), \lambda \in \mathbb{C}, & \text { if } & m_{1}=1 \\
\mathbb{C}^{n} & \text { if } & m_{1}>1
\end{array}\right.
$$

We will study some invariant functions. So let us recall the objects we will deal with in this paper. For details we refer the Reader to [2] and [3]. For $z, w \in A$ and $X \in T_{z} A$ we define

$$
\begin{aligned}
c_{A}(z, w) & :=\sup \left\{p_{\mathbb{D}}(f(z), f(w)): f \in \mathcal{O}(A, \mathbb{D})\right\} \\
m_{A}(z, w) & :=\sup \left\{m_{\mathbb{D}}(f(z), f(w)): f \in \mathcal{O}(A, \mathbb{D})\right\}, \\
\gamma_{A}(z ; X) & :=\max \left\{\left|f^{\prime}(z) X\right|: f \in \mathcal{O}(A, \mathbb{D})\right\} \\
\tilde{k}_{A}(z, w) & :=\inf \left\{p_{\mathbb{D}}(\zeta, \xi): \exists_{\varphi \in \mathcal{O}(\mathbb{D}, A)}: \varphi(\zeta)=z, \varphi(\xi)=w\right\} \\
k_{A} & :=\text { the largest distance on } A \text { below of } \tilde{k}_{A} \\
\kappa_{A}(z ; X) & :=\inf \left\{\alpha>0: \exists_{\varphi \in \mathcal{O}(\mathbb{D}, A)}: \varphi(0)=z, \alpha \varphi^{\prime}(0)=X\right\}
\end{aligned}
$$

where $p_{\mathbb{D}}:=\tanh ^{-1} m_{\mathbb{D}}$ denotes the Poincaré distance and $m_{\mathbb{D}}(a, b):=\left|\frac{a-b}{1-a \bar{b}}\right|$, $a, b \in \mathbb{D}$, is the Möbius distance on \mathbb{D}. We set $\tilde{k}_{A}(z, w):=\infty$ or $\kappa_{A}(z ; X):=\infty$ if there are no respective discs φ. We call c_{A} the Carathéodory distance, m_{A} is the Möbious distance, γ_{A} is the Carathéodory-Reiffen metric, \tilde{k}_{A} is the Lempert function, k_{A} is the Kobayashi distance and κ_{A} is the Kobayashi-Royden metric for A.

Recall that the associated inner Carathéodory distance c_{A}^{i} is given by

$$
\begin{aligned}
& c_{A}^{i}(z, w):=\inf \left\{L_{c_{A}}(\alpha): \alpha \text { is a }\|\cdot\|\right. \text {-rectifiable } \\
& \quad \text { curve in } A \text { connecting } z, w\}, \quad z, w \in A,
\end{aligned}
$$

where $L_{c_{A}}$ denotes the c_{A}-length. We say that the curve α is $\|\cdot\|$-rectifiable if its Euclidean length is finite. Obviously, $c_{A} \leqslant c_{A}^{i}$.

Theorem 3 (cf. Theorem 3 in [5]). Let $\lambda \in \mathbb{D}$. Then

$$
\gamma_{A}\left(p(\lambda) ; p^{\prime}(\lambda)\right)=\frac{m_{1}|\lambda|^{m_{1}-1}}{1-|\lambda|^{2 m_{1}}}
$$

Theorem 4 (cf. Theorem 1 in [5]). Let $\lambda, \mu \in \mathbb{D}$. Then

$$
c_{A}^{i}(p(\lambda), p(\mu))= \begin{cases}p_{\mathbb{D}}\left(\lambda^{m_{1}}, \mu^{m_{1}}\right) & \text { if } \operatorname{Re}(\lambda \bar{\mu}) \geqslant \cos \left(\pi / m_{1}\right)|\lambda \mu| \\ p_{\mathbb{D}}\left(\lambda^{m_{1}}, 0\right)+p_{\mathbb{D}}\left(0, \mu^{m_{1}}\right) & \text { otherwise }\end{cases}
$$

Theorem 5 (cf. Theorem 4.1 in [4]). Let $\lambda, \mu \in \mathbb{D}$.
(a) If $S=\varnothing$, i.e. $m_{1}=1$, then

$$
c_{A}(p(\lambda), p(\mu))=p_{\mathbb{D}}(\lambda, \mu)
$$

(b) If $S=\{1\}$, i.e. $m_{1}=2, m_{j}=3$ for some $1<j \leqslant n$, then

$$
c_{A}(p(\lambda), p(\mu))=\left\{\begin{array}{ll}
p_{\mathbb{D}}\left(\lambda^{2}, \mu^{2}\right) & \text { if } \\
p_{\mathbb{D}}\left(\lambda^{2} \frac{a-\lambda}{1-\bar{a} \lambda}, \mu^{2} \frac{a-\mu}{1-\bar{a} \mu}\right) & \text { if }
\end{array}|a|<1, ~ \$\right.
$$

where $a=a_{\lambda, \mu}:=\frac{1}{2}\left(\lambda+\frac{1}{\bar{\lambda}}+\mu+\frac{1}{\bar{\mu}}\right)$. In the case when $\lambda \mu=0$ the formula should be read as in the case $|a| \geqslant 1$.

Due to the results above we have the following correspondence between the Carathéodory distance and its associated inner one.

Corollary 6 (cf. Corollary 2 in [5]). Let $\lambda, \mu \in \mathbb{D}$.
(a) If $\operatorname{Re}(\lambda \bar{\mu}) \geqslant \cos \left(\pi / m_{1}\right)|\lambda \mu|$ then

$$
c_{A}^{i}(p(\lambda), p(\mu))=c_{A}(p(\lambda), p(\mu))
$$

(b) If $\operatorname{Re}(\lambda \bar{\mu})<\cos \left(\pi / m_{1}\right)|\lambda \mu|$ then

$$
c_{A}^{i}(p(\lambda), p(\mu))=c_{A}(p(\lambda), p(\mu)) \text { iff }(\lambda \bar{\mu})^{m_{1}}<0
$$

Thus, the following conditions are equivalent

- $c_{A}^{i}(p(\lambda), p(\mu))=c_{A}(p(\lambda), p(\mu))$;
- $c_{A}^{i}(p(\lambda), p(\mu))=p_{\mathbb{D}}\left(\lambda^{m_{1}}, \mu^{m_{1}}\right)$;
- $\operatorname{Re}(\lambda \bar{\mu}) \geqslant \cos \left(\pi / m_{1}\right)|\lambda \mu|$ or $(\lambda \bar{\mu})^{m_{1}}<0$.

In particular, c_{A} is inner iff $m_{1}=1$.

It turns out that (as in the case of domains in \mathbb{C}^{n}) γ_{A} is the infinitesimal form of c_{A} outside the origin.

Corollary 7 (cf. [5]). Let $\lambda \in \mathbb{D}_{*}$ (if $m_{1}=1$ we may take $\lambda \in \mathbb{D}$). Then

$$
\lim _{\mu \rightarrow \lambda} \frac{c_{A}(p(\lambda), p(\mu))}{|\lambda-\mu|}=\gamma_{A}\left(p(\lambda) ; p^{\prime}(\lambda)\right)
$$

Now assume that $m_{1}>1$. Let $X \in T_{0} A=\mathbb{C}^{n}$. Observe that

$$
\gamma_{A}(0 ; X)=\max \left\{\left|f^{\prime}(0) X\right|: f \in \mathcal{O}(A, \mathbb{D}), f(0)=0\right\}
$$

Then for such an f we have $(f \circ p)(\lambda)=\lambda^{m_{1}} h(\lambda), \lambda \in \mathbb{D}$, where $h \in \mathcal{O}(\mathbb{D}, \overline{\mathbb{D}})$. Observe that

$$
\frac{\partial f}{\partial z_{j}}(0)=\frac{h^{\left(m_{j}-m_{1}\right)}(0)}{\left(m_{j}-m_{1}\right)!}, \quad j=1, \ldots, n
$$

Thus, for $X=\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{C}^{n}$ we have

$$
\gamma_{A}(0 ; X)=\max \left\{\left|\sum_{j=1}^{n} \frac{h^{\left(m_{j}\right)}(0)}{m_{j}!} X_{j}\right|: h \in \mathcal{O}_{M}(\mathbb{D}), h(0)=0\right\}
$$

$$
\begin{align*}
=\max \{\mid & \left.\sum_{j=1}^{n} \frac{h^{\left(m_{j}-m_{1}\right)}(0)}{\left(m_{j}-m_{1}\right)!} X_{j} \right\rvert\,: \tag{1}\\
& \left.h \in \mathcal{O}(\mathbb{D}, \overline{\mathbb{D}}), h^{(j)}(0)=0, j+m_{1} \in S\right\}
\end{align*}
$$

In particular, $\gamma_{A}(0 ; X)=\|X\|$ if $n-1$ coordinates of X is equal 0 . Using the first equality above, we will prove the following infinitesimal result at the origin.

Proposition 8 (cf. Prop. 4 in [5]). Let $X_{\lambda, \mu}:=\left(\lambda^{m_{1}}-\mu^{m_{1}}, \ldots, \lambda^{m_{n}}-\right.$ $\left.\mu^{m_{n}}\right)$. Then

$$
\lim _{\substack{\lambda, \mu \rightarrow 0 \\ \lambda \neq \mu}} \frac{c_{A}(p(\lambda), p(\mu))}{\gamma_{A}\left(0 ; X_{\lambda, \mu}\right)}=1
$$

Corollary 9 (cf. Corollary 5 in [5]). Let $m_{1}>1$. For any $j \in\{2, \ldots, n\}$ there are points $\lambda, \mu \in \mathbb{D}$ such that

$$
\begin{equation*}
c_{A}(p(\lambda), p(\mu))>\max \left\{p_{\mathbb{D}}\left(\lambda^{m_{1}}, \mu^{m_{1}}\right), p_{\mathbb{D}}\left(\lambda^{m_{j}}, \mu^{m_{j}}\right)\right\} \tag{2}
\end{equation*}
$$

In the proof of Proposition 8 we use the following
Lemma 10 (cf. [5]). There exists a constant $c>0$ such that for any $\lambda, \mu \in \mathbb{D}$

$$
\begin{gather*}
c_{A}(p(\lambda), p(\mu)) \geqslant \max \left\{p_{\mathbb{D}}\left(\lambda^{m_{j}}, \mu^{m_{j}}\right): j=1, \ldots, n\right\} \geqslant c\left\|X_{\lambda, \mu}\right\| \tag{3}\\
\max \left\{|\lambda|^{k-m_{n}},|\mu|^{k-m_{n}}\right\}\left\|X_{\lambda, \mu}\right\| \geqslant \frac{c}{k}\left|\lambda^{k}-\mu^{k}\right|, \quad m_{n}<k \tag{4}\\
\gamma_{A}\left(0 ; X_{\lambda, \mu}\right) \geqslant c\left\|X_{\lambda, \mu}\right\| \tag{5}
\end{gather*}
$$

Moreover,

$$
\begin{equation*}
\lim _{\substack{\lambda, \mu \rightarrow 0 \\ \lambda \neq \mu}} \sum_{j=m_{1}+1}^{\infty} \frac{\left|\lambda^{j}-\mu^{j}\right|}{\left\|X_{\lambda, \mu}\right\|}=0 \tag{6}
\end{equation*}
$$

Proposition 11 (cf. Proposition 7 in [5]). Let $M=\left(m_{1}, \ldots, m_{n}\right)$ be such that $m_{1}=\cdots=m_{j}=2, m_{j+1}=2 k+1$ for some $1 \leqslant j \leqslant n-1$ and $k \in \mathbb{N}$. Then

$$
m_{A}(p(\lambda), p(-\lambda))=\frac{2|\lambda|^{2 k+1}}{1+|\lambda|^{4 k+2}}, \quad \lambda \in \mathbb{D}
$$

Finally, we discuss the Kobayashi distance and Kobayashi-Royden metric on A. Due to Lemma 2, we have the following result.

Proposition 12 (cf. Proposition 8 in [5]). (a) Let $\lambda, \mu \in \mathbb{D}$. Then

$$
k_{A}(p(\lambda), p(\mu))=\tilde{k}_{A}(p(\lambda), p(\mu))=p_{\mathbb{D}}(\lambda, \mu)
$$

(b) If $\lambda \in \mathbb{D}_{*}$ then

$$
\kappa_{A}\left(p(\lambda) ; p^{\prime}(\lambda)\right)=\gamma_{\mathbb{D}}(\lambda ; 1)
$$

If $\lambda=0$ and $X=\left(X_{1}, \ldots, X_{n}\right) \in T_{0} A, X \neq 0$ then

$$
\kappa_{A}(0 ; X)=\left\{\begin{array}{lll}
\left|X_{1}\right| & \text { if } & m_{1}=1 \\
\infty & \text { if } & m_{1}>1
\end{array}\right.
$$

We conclude this note by generalizing the example of the coordinate cross discussed in [5]. Let $e_{j}=(\underbrace{0, \ldots, 0}_{j-1}, 1,0, \ldots, 0) \in \mathbb{C}^{n}, j=1, \ldots, n$. Put

$$
V_{1}:=\bigcup_{j=1}^{n} \mathbb{D} e_{j}
$$

Proposition 13 (cf. Remark in [5]). (a) Let $\lambda, \mu \in \mathbb{D}$. Then
(7) $\quad c_{V_{1}}\left(\lambda e_{j}, \mu e_{k}\right)=k_{V_{1}}\left(\lambda e_{j}, \mu e_{k}\right)=\left\{\begin{array}{lll}p_{\mathbb{D}}(\lambda, \mu) & \text { if } \quad j=k \\ p_{\mathbb{D}}(\lambda, 0)+p_{\mathbb{D}}(0, \mu) & \text { if } \quad j \neq k\end{array}\right.$,
(8)

$$
\tilde{k}_{V_{1}}\left(\lambda e_{j}, \mu e_{k}\right)= \begin{cases}p_{\mathbb{D}}(\lambda, \mu) & \text { if } j=k \\ \infty & \text { if } j \neq k, \lambda \mu \neq 0\end{cases}
$$

(b) If $\lambda \in \mathbb{D}_{*}$ then

$$
\begin{equation*}
\gamma_{V_{1}}\left(\lambda e_{j} ; e_{j}\right)=\kappa_{V_{1}}\left(\lambda e_{j} ; e_{j}\right)=\gamma_{\mathbb{D}}(\lambda ; 1) \tag{9}
\end{equation*}
$$

If $\lambda=0$ and $X=\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{C}^{n}$ then

$$
\begin{equation*}
\gamma_{V_{1}}(0 ; X)=\sum_{j=1}^{n}\left|X_{j}\right| \tag{10}
\end{equation*}
$$

$$
\kappa_{V_{1}}(0 ; X)= \begin{cases}\left|X_{j}\right| & \text { if } X=X_{j} e_{j}, j=1, \ldots, n \tag{11}\\ \infty & \text { otherwise }\end{cases}
$$

2. Proofs.

Proof of Lemma $1 . h \circ q$ is holomorphic on A_{*} because it may be extended to a holomorphic function on the set

$$
\Omega:=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{D}^{n}: \prod_{j \in M^{+}}\left|z_{j}\right|^{r_{j}}<\prod_{k \notin M^{+}}\left|z_{k}\right|^{-r_{k}}\right\}
$$

where $M^{+}:=\left\{j \in\{1, \ldots, n\}: r_{j} \in \mathbb{Z}_{+}\right\}$, and Ω is an open neighborhood of A_{*}.

To prove that $h \circ q$ is holomorphic at the origin observe that

$$
\begin{equation*}
h(\lambda)=\sum_{j \in \mathbb{Z}_{+} \backslash S} a_{j} \lambda^{j}, \quad \lambda \in \mathbb{D} . \tag{12}
\end{equation*}
$$

Moreover, the following identities hold

$$
z_{j}^{m_{k}}=z_{k}^{m_{j}}, \quad j, k \in\{1, \ldots, n\}, \quad\left(z_{1}, \ldots, z_{n}\right) \in A .
$$

Hence for any $j=m_{1} b_{j, 1}+\cdots+m_{n} b_{j, n} \in \mathbb{Z}_{+} \backslash S$ and $z=\left(z_{1}, \ldots, z_{n}\right) \in A$ we obtain

$$
\begin{aligned}
q^{j}(z) & =z_{1}^{r_{1} m_{1} b_{j, 1}} \ldots z_{1}^{r_{1} m_{n} b_{j, n}} \ldots z_{n}^{r_{n} m_{1} b_{j, 1}} \ldots z_{n}^{r_{n} m_{n} b_{j, n}} \\
& =z_{1}^{r_{1} m_{1} b_{j, 1}} \ldots z_{n}^{r_{1} m_{1} b_{j, n}} \ldots z_{1}^{r_{n} m_{n} b_{j, 1}} \ldots z_{n}^{r_{n} m_{n} b_{j, n}} \\
& =z_{1}^{\left(r_{1} m_{1}+\cdots+r_{n} m_{n}\right) b_{j, 1}} \ldots z_{n}^{\left(r_{1} m_{1}+\cdots+r_{n} m_{n}\right) b_{j, n}}=z_{1}^{b_{j, 1}} \ldots z_{n}^{b_{j, n}} .
\end{aligned}
$$

Using the equality above and (12) we get

$$
\begin{equation*}
(h \circ q)(z)=\sum_{j \in \mathbb{Z}_{+} \backslash S} a_{j} z_{1}^{b_{j, 1}} \ldots z_{n}^{b_{j, n}}, \quad z=\left(z_{1}, \ldots, z_{n}\right) \in A \tag{13}
\end{equation*}
$$

where $b_{j, k} \in \mathbb{Z}_{+}$for all $j \in \mathbb{Z}_{+} \backslash S$ and $k=1, \ldots, n$.
The series (13) is convergent for $z=\left(\lambda^{m_{1}}, \ldots, \lambda^{m_{n}}\right),|\lambda| \leqslant R<1$. Thus it converges for $z \in R^{m_{1}} \mathbb{D} \times \cdots \times R^{m_{n}} \mathbb{D}$ which gives us holomorphicity of the extension of $h \circ q$ in some neigborhood of the origin.

Proof of Lemma 2. Since $p \in \mathcal{O}(\mathbb{D}, A)$, we have that $p \circ \psi \in \mathcal{O}(\mathbb{D}, A)$. Now assume that $f \in \mathcal{O}(\mathbb{D}, A)$. Since $f=p \circ q \circ f$ it suffices to show that $q \circ f \in \mathcal{O}(\mathbb{D}, \mathbb{D})$.

Fix $\lambda \in \mathbb{D}$. If $f(\lambda) \neq 0$ then $q \circ f$ is holomorphic in some neighborhood of λ. If $f(\lambda)_{\tilde{\sim}}=0$, i.e. $f_{1}(\lambda)=\cdots=f_{n}(\lambda)=0$, where $f=\left(f_{1}, \ldots, f_{n}\right)$, then $f_{j}(\zeta)=$ $(\zeta-\lambda)^{s_{j}} \tilde{f}_{j}(\zeta)$ for some $s_{j} \in \mathbb{N}$ and $\tilde{f}_{j} \in \mathcal{O}\left(U_{\lambda}\right), \tilde{f}_{j}(\zeta) \neq 0, \zeta \in U_{\lambda}, j=1, \ldots, n$, where $U_{\lambda} \subset \mathbb{D}$ is some neighborhood of λ. Since

$$
\begin{equation*}
(\zeta-\lambda)^{s_{j} m_{k}} \tilde{f}_{j}^{m_{k}}(\zeta)=(\zeta-\lambda)^{s_{k} m_{j}} \tilde{f}_{k}^{m_{j}}(\zeta), \quad \zeta \in U_{\lambda}, j, k \in\{1, \ldots, n\} \tag{14}
\end{equation*}
$$

there exists $l \in \mathbb{N}$ such that $s_{j}=l m_{j}, j=1, \ldots, n$. Indeed, from (14) it follows that

$$
\begin{equation*}
s_{j} m_{k}=s_{k} m_{j}, \quad j, k \in\{1, \ldots, n\} \tag{15}
\end{equation*}
$$

Fix $j \in\{1, \ldots, n\}$. Observe that $m_{j}=p_{j, 1} \ldots p_{j, s(j)}$, where $p_{j, s}$'s are prime numbers. Since m_{1}, \ldots, m_{n} are relatively prime, for any $1 \leqslant s \leqslant s(j)$ there exists $1 \leqslant k \leqslant n$ such that $p_{j, s} \nmid m_{k}$. Then (15) implies that $s_{j}=p_{j, 1} \ldots p_{j, s(j)} l_{j}$ for some $l_{j} \in \mathbb{N}$. Using (15) again, we conclude that $l_{j}=l_{k}=: l$ for all $j, k \in\{1, \ldots, n\}$.

Hence

$$
(q \circ f)(\zeta)=f_{1}^{r_{1}}(\zeta) \ldots f_{n}^{r_{n}}(\zeta)=(\zeta-\lambda)^{l} \tilde{f}_{1}^{r_{1}}(\zeta) \ldots \tilde{f}_{n}^{r_{n}}(\zeta), \quad \zeta \in U_{\lambda}
$$

Thus $q \circ f \in \mathcal{O}\left(U_{\lambda}\right)$ and the proof is complete.
Proof of Theorem 3. Recall that

$$
\gamma_{A}\left(p(\lambda) ; p^{\prime}(\lambda)\right)=\max \left\{\frac{\left|h^{\prime}(\lambda)\right|}{1-|h(\lambda)|^{2}}: h \in \mathcal{O}_{M}(\mathbb{D})\right\}
$$

Observe that if $\phi \in \operatorname{Aut}(\mathbb{D})$ and $h \in \mathcal{O}_{M}(\mathbb{D})$ then $\phi \circ h \in \mathcal{O}_{M}(\mathbb{D})$ and

$$
\frac{\left|h^{\prime}(\lambda)\right|}{1-|h(\lambda)|^{2}}=\frac{\left|(\phi \circ h)^{\prime}(\lambda)\right|}{1-|(\phi \circ h)(\lambda)|^{2}} .
$$

Thus

$$
\begin{aligned}
& \gamma_{A}\left(p(\lambda) ; p^{\prime}(\lambda)\right) \\
& =\max \left\{\frac{\left|h^{\prime}(\lambda)\right|}{1-|h(\lambda)|^{2}}: h \in \mathcal{O}_{M}(\mathbb{D}), h(0)=0\right\} \\
& =\max \left\{\frac{\left|\left(\lambda^{m_{1}} \tilde{h}(\lambda)\right)^{\prime}\right|}{1-\left|\lambda^{m_{1}} \tilde{h}(\lambda)\right|^{2}}: \tilde{h} \in \mathcal{O}(\mathbb{D}, \overline{\mathbb{D}}), \tilde{h}^{(j)}(0)=0, j+m_{1} \in S\right\} \\
& =|\lambda|^{m_{1}-1} \max \left\{\frac{\left|m_{1} h(\lambda)+\lambda h^{\prime}(\lambda)\right|}{1-\left|\lambda^{m_{1}} h(\lambda)\right|^{2}}:\right. \\
& \left.\quad h \in \mathcal{O}(\mathbb{D}, \overline{\mathbb{D}}), h^{(j)}(0)=0, j+m_{1} \in S\right\}=\frac{m_{1}|\lambda|^{m_{1}-1}}{1-|\lambda|^{2 m_{1}}}
\end{aligned}
$$

The last equality may be proved exactly as in the proof of Theorem 3 in [5] with m_{1} instead of m.

Proof of Theorem 4. The proof follows the proof of Theorem 1 in [5] with m_{1} instead of m.

Proof of Theorem 5. Ad (a). It is a consequence of Theorem 4, since $m_{1}=1$.

A d (b). Since $S=\{1\}$, the proof of Theorem 4.1 from [4] may be repeated.

Proof of Corollary 6. The proof follows the proof of Corollary 2 in [5] with m_{1} instead of m.

Remark 14 (cf. Remark (a) in [5]). In [5] for $m \in \mathbb{N}$ the following distance was introduced

$$
p_{\mathbb{D}}^{(m)}(\lambda, \mu):=\max \left\{p_{\mathbb{D}}\left(\lambda^{m} h(\lambda), \mu^{m} h(\mu)\right): h \in \mathcal{O}(\mathbb{D}, \overline{\mathbb{D}})\right\}
$$

Note that

$$
\begin{aligned}
\lim _{\substack{\varepsilon \rightarrow 0 \\
\varepsilon \neq 0}} \frac{p_{\mathbb{D}}^{\left(m_{1}\right)}(\lambda, \lambda+\varepsilon)}{|\varepsilon|} & =|\lambda|^{m_{1}-1} \max \left\{\frac{\left|m_{1} h(\lambda)+\lambda h^{\prime}(\lambda)\right|}{1-\left|\lambda^{m_{1}} h(\lambda)\right|^{2}}: h \in \mathcal{O}(\mathbb{D}, \overline{\mathbb{D}})\right\} \\
& =\gamma_{A}\left(p(\lambda) ; p^{\prime}(\lambda)\right)
\end{aligned}
$$

by the proof of Theorem 3. So it follows that the associated inner distance $\int p_{\mathbb{D}}^{\left(m_{1}\right)}$ of $p_{\mathbb{D}}^{\left(m_{1}\right)}$ equals to $c_{A}^{i}(p(\cdot), p(\cdot))$. Then

$$
\begin{aligned}
c_{A}^{i}(p(\lambda), p(\mu)) & \geqslant p_{\mathbb{D}}^{\left(m_{1}\right)}(\lambda, \mu) \\
& \geqslant c_{A}(p(\lambda), p(\mu)) \geqslant p_{\mathbb{D}}\left(\lambda^{m_{1}}, \mu^{m_{1}}\right)
\end{aligned}
$$

Moreover, the proof of Corollary 6 shows that the following conditions are equivalent

- $c_{A}^{i}(p(\lambda), p(\mu))=p_{\mathbb{D}}^{\left(m_{1}\right)}(\lambda, \mu) ;$
- $c_{A}^{i}(p(\lambda), p(\mu))=c_{A}(p(\lambda), p(\mu))$;
- $c_{A}^{i}(p(\lambda), p(\mu))=p_{\mathbb{D}}\left(\lambda^{m_{1}}, \mu^{m_{1}}\right) ;$
- $\operatorname{Re}(\lambda \bar{\mu}) \geqslant \cos \left(\pi / m_{1}\right)|\lambda \mu|$ or $(\lambda \bar{\mu})^{m_{1}}<0$.

Proof of Corollary 7. Since

$$
c_{A}^{i}(p(\lambda), p(\mu)) \geqslant c_{A}(p(\lambda), p(\mu)) \geqslant p_{\mathbb{D}}\left(\lambda^{m_{1}}, \mu^{m_{1}}\right), \quad \lambda \in \mathbb{D}
$$

for $\lambda \in \mathbb{D}_{*}\left(\right.$ if $m_{1}=1$ we may take $\left.\lambda \in \mathbb{D}\right)$ we have

$$
\begin{aligned}
\lim _{\mu \rightarrow \lambda} \frac{c_{A}(p(\lambda), p(\mu))}{|\lambda-\mu|} & =\lim _{\mu \rightarrow \lambda} \frac{p_{\mathbb{D}}\left(\lambda^{m_{1}}, \mu^{m_{1}}\right)}{|\lambda-\mu|}=\lim _{\mu \rightarrow \lambda} \frac{m_{\mathbb{D}}\left(\lambda^{m_{1}}, \mu^{m_{1}}\right)}{|\lambda-\mu|} \\
& =\frac{m_{1}|\lambda|^{m_{1}-1}}{1-|\lambda|^{2 m_{1}}}=\gamma_{A}\left(p(\lambda) ; p^{\prime}(\lambda)\right)
\end{aligned}
$$

Proof of Lemma 10. Fix $\lambda, \mu \in \mathbb{D}$. Without loss of generality we may assume that $\lambda \neq \mu$ and $|\mu| \leqslant|\lambda|$. Moreover, it suffices to obtain each inequality with different constant, since minimum of these constants will do the job.

Ad (3). The first inequality in (3) we obtain with help of the projection from A onto its m_{j}-th coordinate, while the second one is a consequence of the equivalence of norms in \mathbb{C}^{n}.

Ad (4). Let $\sqrt[m_{j}]{1}=\left\{\varepsilon_{m_{j}, 0}, \ldots, \varepsilon_{m_{j}, m_{j}-1}\right\}$ and let $R_{m_{j}, s}:=\varepsilon_{m_{j}, s}[0,1]$, $s=0, \ldots, m_{j}-1$. Observe that there is a constant $\delta=\delta(M)>0$ such that

$$
\Lambda_{m_{j}, s, \delta} \cap \Lambda_{m_{l}, t, \delta}=\varnothing \quad \text { if } \quad R_{m_{j}, s} \neq R_{m_{l}, t}
$$

where $\Lambda_{m_{j}, s, \delta}:=\left\{r e^{i \varphi}: r \in R_{m_{j}, s}, \varphi \in(-\delta, \delta)\right\}, s=0, \ldots, m_{j}-1, j=1, \ldots, n$.
Observe that $\mu / \lambda \in \overline{\bar{D}}$. Since m_{j} 's are relatively prime, one of the following two cases holds:
1° There exists $j \in\{1, \ldots, n\}$ such that $\mu / \lambda \notin \bigcup_{s=0}^{m_{j}-1} \Lambda_{m_{j}, s, \delta} ;$
$2^{\circ} \mu / \lambda \in \Lambda_{m_{n}, 0, \delta}$.
Ad 1°. Then there is a constant $c=c(\delta)>0$ such that $\left|1-(\mu / \lambda)^{m_{j}}\right| \geqslant 2 c$.
Therefore

$$
\begin{aligned}
|\lambda|^{k-m_{n}}\left\|X_{\lambda, \mu}\right\| & \geqslant|\lambda|^{k-m_{j}}\left|\lambda^{m_{j}}-\mu^{m_{j}}\right| \\
& =|\lambda|^{k}\left|1-(\mu / \lambda)^{m_{j}}\right| \geqslant 2 c|\lambda|^{k} \geqslant \frac{c}{k}\left|\lambda^{k}-\mu^{k}\right| .
\end{aligned}
$$

Ad 2°. To obtain (4) in this case it suffices to prove that there exists $c>0$ such that

$$
\frac{c}{k}\left|\frac{1-(\mu / \lambda)^{k}}{1-(\mu / \lambda)^{m_{n}}}\right| \leqslant 1, \quad k>m_{n}
$$

Since $\lim _{\mu / \lambda \rightarrow 1}\left|\frac{1-(\mu / \lambda)^{k}}{1-(\mu / \lambda)^{m_{n}}}\right|=\frac{k}{m_{n}}$, there is a constant $r>0$ such that

$$
\left|\frac{1-(\mu / \lambda)^{k}}{1-(\mu / \lambda)^{m_{n}}}\right| \leqslant \frac{2 k}{m_{n}}, \quad|1-\mu / \lambda|<r, k>m_{n}
$$

Hence in case $|1-\mu / \lambda|<r$, a constant $c_{1}:=\frac{m_{n}}{2}$ will do the job.
On the other hand, if $|1-\mu / \lambda| \geqslant r$ then there is a constant $c_{2}=c_{2}(r)>0$ such that $\left|1-(\mu / \lambda)^{m_{n}}\right| \geqslant 2 c_{2}$. Therefore

$$
\frac{c_{2}}{k}\left|\frac{1-(\mu / \lambda)^{k}}{1-(\mu / \lambda)^{m_{n}}}\right| \leqslant \frac{2 c_{2}}{2 c_{2} k} \leqslant 1
$$

Finally we take $c:=\min \left\{c_{1}, c_{2}\right\}$.
Ad (5). Let $l \in\{1, \ldots, n\}$ be such that $\left|\lambda^{m_{l}}-\mu^{m_{l}}\right|=\max \left\{\left|\lambda^{m_{j}}-\mu^{m_{j}}\right|:\right.$ $j=1, \ldots, n\}$. Let $h(\zeta)=\zeta^{m_{l}}, \zeta \in \mathbb{D}$. Observe that $h \in \mathcal{O}_{M}(\mathbb{D})$ and $h(0)=0$. Thus

$$
\gamma_{A}\left(0 ; X_{\lambda, \mu}\right) \geqslant\left|\sum_{j=1}^{n} \frac{h^{\left(m_{j}\right)}(0)}{m_{j}!}\left(\lambda^{m_{j}}-\mu^{m_{j}}\right)\right|=\left|\lambda^{m_{l}}-\mu^{m_{l}}\right| \geqslant c\left\|X_{\lambda, \mu}\right\|
$$

where $c>0$ is a constant from the inequality (3).
Ad (6). First assume that $m_{1}+1 \leqslant j \leqslant m_{n}$. Then

$$
\frac{\left|\lambda^{j}-\mu^{j}\right|}{\left\|X_{\lambda, \mu}\right\|} \leqslant\left|\frac{\lambda^{j}-\mu^{j}}{\lambda^{m_{1}}-\mu^{m_{1}}}\right|=\left|\frac{\lambda^{\alpha_{j}}-\mu^{\alpha_{j}}}{\lambda-\mu}\right| \leqslant \alpha_{j}(|\lambda|+|\mu|)
$$

where $\alpha_{j}>1$. Therefore

$$
\begin{equation*}
\lim _{\substack{\lambda, \mu \rightarrow 0 \\ \lambda \neq \mu}} \sum_{j=m_{1}+1}^{m_{n}} \frac{\left|\lambda^{j}-\mu^{j}\right|}{\left\|X_{\lambda, \mu}\right\|}=0 \tag{16}
\end{equation*}
$$

Observe that, using (4), we have

$$
\begin{aligned}
\sum_{j=m_{n}+1}^{\infty} \frac{\left|\lambda^{j}-\mu^{j}\right|}{\left\|X_{\lambda, \mu}\right\|} & \leqslant \frac{1}{c} \sum_{j=m_{n}+1}^{\infty} j|\lambda|^{j-m_{n}}=\frac{1}{c} \sum_{j=1}^{\infty}\left(m_{n}+j\right)|\lambda|^{j} \\
& \leqslant \frac{m_{n}+1}{c} \sum_{j=1}^{\infty} j|\lambda|^{j}=\frac{\left(m_{n}+1\right)|\lambda|}{c(1-|\lambda|)^{2}}
\end{aligned}
$$

Hence, letting $\lambda, \mu \rightarrow 0, \lambda \neq \mu$, and using (16) we obtain (6).
Proof of Proposition 8. Let $h_{\lambda, \mu}^{+} \in \mathcal{O}_{M}(\mathbb{D})$ be an extremal function for $c_{A}(p(\lambda), p(\mu))$. Then

$$
h_{\lambda, \mu}^{+}(\zeta)=\sum_{j \in \mathbb{Z}_{+} \backslash S} a_{\lambda, \mu, j} \zeta^{j}
$$

Since $\left|a_{\lambda, \mu, j}\right| \leqslant 1$, it follows that

$$
\begin{aligned}
& \left|h_{\lambda, \mu}^{+}(\lambda)-h_{\lambda, \mu}^{+}(\mu)\right| \\
& \qquad \leqslant H^{+}(\lambda, \mu):=\left|\sum_{j=1}^{n} a_{\lambda, \mu, m_{j}}\left(\lambda^{m_{j}}-\mu^{m_{j}}\right)\right|+\sum_{j=m_{1}+1}^{\infty}\left|\lambda^{j}-\mu^{j}\right| .
\end{aligned}
$$

Thus, using (3), (6), and (1)

$$
\begin{aligned}
1 & \leqslant \liminf _{\substack{\lambda, \mu \rightarrow 0 \\
\lambda \neq \mu}} \frac{H^{+}(\lambda, \mu)}{\left|h_{\lambda, \mu}^{+}(\lambda)-h_{\lambda, \mu}^{+}(\mu)\right|}=\liminf _{\substack{\lambda, \mu \rightarrow 0 \\
\lambda \neq \mu}} \frac{H^{+}(\lambda, \mu)}{c_{A}(p(\lambda), p(\mu))} \\
& \leqslant \liminf _{\substack{\lambda, \mu \rightarrow 0 \\
\lambda \neq \mu}}\left(\frac{\left|\sum_{j=1}^{n} a_{\lambda, \mu, m_{j}}\left(\lambda^{m_{j}}-\mu^{m_{j}}\right)\right|}{c_{A}(p(\lambda), p(\mu))}+\frac{\sum_{j=m_{1}+1}^{\infty}\left|\lambda^{j}-\mu^{j}\right|}{c\left\|X_{\lambda, \mu}\right\|}\right) \\
& =\liminf _{\substack{\lambda, \mu \rightarrow 0 \\
\lambda \neq \mu}} \frac{\left|\sum_{j=1}^{n} a_{\lambda, \mu, m_{j}}\left(\lambda^{m_{j}}-\mu^{m_{j}}\right)\right|}{c_{A}(p(\lambda), p(\mu))} \leqslant \liminf _{\substack{\lambda, \mu \rightarrow 0 \\
\lambda \neq \mu}} \frac{\gamma_{A}\left(0 ; X_{\lambda, \mu}\right)}{c_{A}(p(\lambda), p(\mu))}
\end{aligned}
$$

Let now $h_{\lambda, \mu}^{-} \in \mathcal{O}_{M}(\mathbb{D})$ be an extremal function for $\gamma_{A}\left(0 ; X_{\lambda, \mu}\right)$. Then

$$
h_{\lambda, \mu}^{-}(\zeta)=\sum_{j \in \mathbb{Z}_{+} \backslash S} a_{\lambda, \mu, j} \zeta^{j}
$$

Since $\left|a_{\lambda, \mu, j}\right| \leqslant 1$, it follows that

$$
\left|h_{\lambda, \mu}^{-}(\lambda)-h_{\lambda, \mu}^{-}(\mu)\right| \geqslant\left|\sum_{j=1}^{n} a_{\lambda, \mu, m_{j}}\left(\lambda^{m_{j}}-\mu^{m_{j}}\right)\right|-\sum_{j=m_{1}+1}^{\infty}\left|\lambda^{j}-\mu^{j}\right| .
$$

Then, using (5) and (6), we have

$$
\lim _{\substack{\lambda, \mu \rightarrow 0 \\ \lambda \neq \mu}} \frac{\sum_{j=m_{1}+1}^{\infty}\left|\lambda^{j}-\mu^{j}\right|}{\gamma_{A}\left(0 ; X_{\lambda, \mu}\right)} \leqslant \lim _{\substack{\lambda, \mu \rightarrow 0 \\ \lambda \neq \mu}} \sum_{\substack{ \\j=m_{1}+1}}^{\infty} \frac{\left|\lambda^{j}-\mu^{j}\right|}{c\left\|X_{\lambda, \mu}\right\|}=0
$$

and, consequently,

$$
\lim _{\substack{\lambda, \mu \rightarrow 0 \\ \lambda \neq \mu}} \frac{\sum_{j=m_{1}+1}^{\infty}\left|\lambda^{j}-\mu^{j}\right|}{h_{\lambda, \mu}^{-}(\lambda)-h_{\lambda, \mu}^{-}(\mu) \mid} \leqslant \lim _{\substack{\lambda, \mu \rightarrow 0 \\ \lambda \neq \mu}} \frac{\sum_{\substack{ \\\gamma_{1}+1}}^{\infty}\left|\lambda^{j}-\mu^{j}\right|}{\left.\gamma_{\lambda, \mu}\right)-\sum_{j=m_{1}+1}^{\infty}\left|\lambda^{j}-\mu^{j}\right|}=0 .
$$

Thus, using (3), (6), and the last equality,

$$
\begin{aligned}
1 & \geqslant \limsup _{\substack{\lambda, \mu \rightarrow 0 \\
\lambda \neq \mu}} \frac{\gamma_{A}\left(0 ; X_{\lambda, \mu}\right)-\sum_{j=m_{1}+1}^{\infty}\left|\lambda^{j}-\mu^{j}\right|}{\left|h_{\lambda, \mu}^{-}(\lambda)-h_{\lambda, \mu}^{-}(\mu)\right|} \\
& \geqslant \limsup _{\substack{\lambda, \mu \rightarrow 0 \\
\lambda \neq \mu}}\left(\frac{\gamma_{A}\left(0 ; X_{\lambda, \mu}\right)}{c_{A}(p(\lambda), p(\mu))}-\frac{\sum_{j=m_{1}+1}^{\infty}\left|\lambda^{j}-\mu^{j}\right|}{\left|h_{\lambda, \mu}^{-}(\lambda)-h_{\lambda, \mu}^{-}(\mu)\right|}\right) \\
& =\limsup _{\substack{\lambda, \mu \rightarrow 0 \\
\lambda \neq \mu}} \frac{\gamma_{A}\left(0 ; X_{\lambda, \mu}\right)}{c_{A}(p(\lambda), p(\mu))} .
\end{aligned}
$$

Proof of Corollary 9. Observe that for any neighborhood U of 0 one may find points $\lambda, \mu \in U$ such that $\lambda^{m_{1}}-\mu^{m_{1}}=\lambda^{m_{j}}-\mu^{m_{j}} \neq 0$. Then, by Proposition 8, it suffices to show that

$$
\begin{equation*}
\gamma_{A}\left(0 ; X_{0}\right)>1, \quad X_{0}:=\left(X_{1}, \ldots, X_{n}\right), X_{1}=X_{j}=1 \tag{17}
\end{equation*}
$$

Indeed, having (17) and using the equality (cf. Corollary 1.13 (d) in [2])

$$
\lim _{\substack{\lambda^{\prime}, \lambda^{\prime \prime} \rightarrow 0 \\ \lambda^{\prime} \neq \lambda^{\prime \prime}}} \frac{p_{\mathbb{D}}\left(\lambda^{\prime}, \lambda^{\prime \prime}\right)}{\left|\lambda^{\prime}-\lambda^{\prime \prime}\right|}=1
$$

we obtain the required result.
By the second equality in (1) and the fact that $\max _{s \in S} s=s^{*}<\infty$,

$$
\gamma_{A}\left(0 ; X_{0}\right) \geqslant \max \left\{|a+b|:(a, b) \in T_{m_{j}-m_{1}}\right\}
$$

where $T_{m_{j}-m_{1}}:=\left\{(a, b) \in \mathbb{C}^{2}: \exists_{h \in \mathcal{O}(\mathbb{D}, \overline{\mathbb{D}})}: h(\zeta)=a+b \zeta^{m_{j}-m_{1}}+o\left(\zeta^{s^{*}-m_{1}}\right)\right\}$.
Let $k \in \mathbb{N}$ be such that $k\left(m_{j}-m_{1}\right) \geqslant s^{*}-m_{1}$. We shall show that there is a function $f \in \mathcal{O}(\mathbb{D}, \overline{\mathbb{D}})$ of the form $f(\zeta)=a+b \zeta+o\left(\zeta^{k}\right)$, where $a, b>0$ and $a+b>1$, which will imply (17).

From now on the rest of the proof of Corollary 5 in [5] may be repeated. For convenience of the Reader we recall that proof.

Note that by Shur's theorem (cf. [1]) such a function f exists if and only if

$$
\begin{equation*}
\left(1-a^{2}-b^{2}\right) \sum_{j=1}^{k} X_{j}^{2} \geqslant 2 a b \sum_{j=2}^{k} X_{j-1} X_{j}, \quad\left(X_{1}, \ldots, X_{k}\right) \in \mathbb{R}^{k} \tag{18}
\end{equation*}
$$

Since $\cos \frac{\pi}{k+1}$ is the maximal eigenvalue of the quadratic form defined by $\sum_{j=2}^{k} X_{j-1} X_{j}$, it follows that

$$
\cos \frac{\pi}{k+1} \sum_{j=1}^{k} X_{j}^{2} \geqslant \sum_{j=2}^{k} X_{j-1} X_{j}, \quad\left(X_{1}, \ldots, X_{k}\right) \in \mathbb{R}^{k}
$$

Then all pairs $(a, b) \in \mathbb{R}^{2}$ for which $2 a b \cos \frac{\pi}{k+1} \leqslant 1-a^{2}-b^{2}$ satisfy (18); in particular, we may choose $a, b>0$ such that $2 a b \cos \frac{\pi}{k+1} \leqslant 1-a^{2}-b^{2}<2 a b$, i.e. $a+b>1$.

Proof of Proposition 11. Observe that in this case $S=\{2 j-1$: $j=1,2, \ldots, k\}$ and the proof of Proposition 7 from [5] may be repeated.

Proof of Proposition 12. Ad (a). $\tilde{k}_{A}(p(\lambda), p(\mu)) \leqslant p_{\mathbb{D}}(\lambda, \mu)$, since $p \in \mathcal{O}(\mathbb{D}, A)$. From Lemma 2 we already know that for any $\varphi \in \mathcal{O}(\mathbb{D}, A)$ with $\varphi(\tilde{\lambda})=p(\lambda)$ and $\varphi(\tilde{\mu})=p(\mu)$ there exists some $\psi \in \mathcal{O}(\mathbb{D}, \mathbb{D})$ such that $\psi(\tilde{\lambda})=\lambda$ and $\psi(\tilde{\mu})=\mu$. Hence $p_{\mathbb{D}}(\lambda, \mu) \leqslant p_{\mathbb{D}}(\tilde{\lambda}, \tilde{\mu})$. Taking infimum over all appropriate $\varphi \in \mathcal{O}(\mathbb{D}, A)$ we obtain $p_{\mathbb{D}}(\lambda, \mu) \leqslant \tilde{k}_{A}(p(\lambda), p(\mu))$. Hence, $p_{\mathbb{D}}(\lambda, \mu)=$ $\tilde{k}_{A}(p(\lambda), p(\mu))$. In particular, \tilde{k}_{A} is a distance and, consequently, $\tilde{k}_{A}=k_{A}$.

Ad (b). Again, using Lemma 2, we obtain

$$
\begin{aligned}
& \kappa_{A}\left(p(\lambda) ; p^{\prime}(\lambda)\right) \\
& \quad=\inf \left\{\alpha>0: \exists_{\varphi \in \mathcal{O}(\mathbb{D}, A)}: \varphi(0)=p(\lambda), \alpha \varphi^{\prime}(0)=p^{\prime}(\lambda)\right\} \\
& \quad \geqslant \inf \left\{\alpha>0: \exists_{\psi \in \mathcal{O}(\mathbb{D}, \mathbb{D})}: \psi(0)=\lambda, \alpha \psi^{\prime}(0)=1\right\} \\
& \quad=\kappa_{\mathbb{D}}(\lambda ; 1)=\gamma_{\mathbb{D}}(\lambda ; 1) .
\end{aligned}
$$

On the other hand, for $\varphi:=p \circ \psi$, where $\psi \in \operatorname{Aut}(\mathbb{D})$ is such that $\psi(0)=\lambda$, we have that $\varphi \in \mathcal{O}(\mathbb{D}, A), \varphi(0)=p(\lambda)$, and $\gamma_{\mathbb{D}}(\lambda ; 1) \varphi^{\prime}(0)=p^{\prime}(\lambda)$. Therefore $\kappa_{A}\left(p(\lambda) ; p^{\prime}(\lambda)\right) \leqslant \gamma_{\mathbb{D}}(\lambda ; 1)$.

It remains to prove formula for $\lambda=0$. Observe that

$$
\begin{aligned}
\kappa_{A}(0 ; X) & =\inf \left\{\alpha>0: \exists_{\varphi \in \mathcal{O}(\mathbb{D}, A)}: \varphi(0)=0, \alpha \varphi^{\prime}(0)=X\right\} \\
& \geqslant \inf \left\{\alpha>0: \exists_{\psi \in \mathcal{O}(\mathbb{D}, \mathbb{D})}: \psi(0)=0, \alpha p^{\prime}(0) \psi^{\prime}(0)=X\right\} \\
& = \begin{cases}\left|X_{1}\right| & \text { if } m_{1}=1 \\
\infty & \text { if } m_{1}>1\end{cases}
\end{aligned}
$$

It suffices to prove the opposite inequality in case $m_{1}=1$. Fix $X \in$ $\left(T_{0} A\right)_{*}$. Then there exists $k \in \mathbb{N}$ such that $X_{1}=\cdots=X_{k} \neq 0$ and $X_{k+1}=$ $\cdots=X_{n}=0$. We define $\varphi(\lambda):=p\left(X_{1}\left|X_{1}\right|^{-1} \lambda\right), \lambda \in \mathbb{D}$. Observe that $\varphi \in$ $\mathcal{O}(\mathbb{D}, A), \varphi(0)=0$, and $\left|X_{1}\right| \varphi^{\prime}(0)=X$. Hence $\kappa_{A}(0 ; X) \leqslant\left|X_{1}\right|$ which ends the proof.

Proof of Proposition 13. Ad (7). Let $\varphi_{j}(z):=z_{j}, z=\left(z_{1}, \ldots, z_{n}\right) \in$ V_{1}, and $\psi_{j}(\zeta):=\zeta e_{j}, \zeta \in \mathbb{D}$, for $j=1, \ldots, n$. Since $\varphi_{j} \in \mathcal{O}\left(V_{1}, \mathbb{D}\right)$ and $\psi_{j} \in \mathcal{O}\left(\mathbb{D}, V_{1}\right)$, then

$$
\begin{equation*}
p_{\mathbb{D}}(\lambda, \mu) \leqslant c_{V_{1}}\left(\lambda e_{j}, \mu e_{j}\right) \leqslant \tilde{k}_{V_{1}}\left(\lambda e_{j}, \mu e_{j}\right) \leqslant p_{\mathbb{D}}(\lambda, \mu) \tag{19}
\end{equation*}
$$

Now assume that $j \neq k$. Since $\varphi:=\sum_{j=1}^{n} \varphi_{j} \in \mathcal{O}\left(V_{1}, \mathbb{D}\right)$, then

$$
p_{\mathbb{D}}(\lambda, 0)+p_{\mathbb{D}}(0, \mu)=p_{\mathbb{D}}(|\lambda|,-|\mu|) \leqslant c_{V_{1}}\left(|\lambda| e_{j},-|\mu| e_{k}\right)=c_{V_{1}}\left(\lambda e_{j}, \mu e_{k}\right)
$$

Moreover, using (19),

$$
k_{V_{1}}\left(\lambda e_{j}, \mu e_{k}\right) \leqslant \tilde{k}_{V_{1}}\left(\lambda e_{j}, 0\right)+\tilde{k}_{V_{1}}\left(0, \mu e_{k}\right)=p_{\mathbb{D}}(\lambda, 0)+p_{\mathbb{D}}(0, \mu)
$$

Ad (8). It remains to consider the case $j \neq k, \lambda \mu \neq 0$. Suppose there is a disc $\psi \in \mathcal{O}\left(\mathbb{D}, V_{1}\right)$ such that $\psi(\zeta)=\lambda e_{j}$ and $\psi(\xi)=\mu e_{k}$ for some $\zeta, \xi \in \mathbb{D}$. However, these equalities imply, together with the identity principle, that $\psi \equiv 0$; a contradiction, since $\lambda \mu \neq 0$.

Ad (9). Using again the functions φ_{j} and $\psi_{j}, j=1, \ldots, n$, defined in the part of the proof of (7), we obtain

$$
\gamma_{\mathbb{D}}(\lambda ; 1) \leqslant \gamma_{V_{1}}\left(\lambda e_{j} ; e_{j}\right) \leqslant \kappa_{V_{1}}\left(\lambda e_{j} ; e_{j}\right) \leqslant \gamma_{\mathbb{D}}(\lambda ; 1)
$$

Ad (10). For $X=\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{C}^{n}$ let $\varphi_{X}(z):=\sum_{j=1}^{n} z_{j} e^{-i \operatorname{Arg} X_{j}}$, where $z=\left(z_{1}, \ldots, z_{n}\right) \in V_{1}$. Since $\varphi \in \mathcal{O}\left(V_{1}, \mathbb{D}\right)$, then

$$
\sum_{j=1}^{n}\left|X_{j}\right|=\gamma_{\mathbb{D}}\left(\varphi_{X}(0) ; \varphi_{X}^{\prime}(0) X\right) \leqslant \gamma_{V_{1}}(0 ; X)
$$

Recall now that

$$
\begin{aligned}
\mathcal{O}\left(V_{1}, \mathbb{D}\right)=\left\{\sum_{j=1}^{n} f_{j}-(n-1)\right. & f_{1}(0): \\
& \left.f_{j} \in \mathcal{O}\left(\mathbb{D} e_{j}, \mathbb{D}\right), f_{j}(0)=f_{k}(0), j, k=1, \ldots, n\right\}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\gamma_{V_{1}}(0 ; X) & =\sup \left\{\gamma_{\mathbb{D}}\left(F(0) ; F^{\prime}(0) X\right): F \in \mathcal{O}\left(V_{1}, \mathbb{D}\right)\right\} \\
& \leqslant \sum_{j=1}^{n} \sup \left\{\gamma_{\mathbb{D}}\left(f_{j}(0) ; f_{j}^{\prime}(0) X_{j}\right): f_{j} \in \mathcal{O}(\mathbb{D}, \mathbb{D})\right\}=\sum_{j=1}^{n}\left|X_{j}\right|
\end{aligned}
$$

Ad (11). Assume that $X=X_{j} e_{j}$. Define $\psi_{j, X}(\zeta)=\zeta e_{j} e^{i \operatorname{Arg} X_{j}}, \zeta \in$ \mathbb{D}. Observe that $\psi_{j, X} \in \mathcal{O}\left(\mathbb{D}, V_{1}\right), \psi_{j, X}(0)=0$ and $\left|X_{j}\right| \psi_{j, X}^{\prime}(0)=X$. Hence $\kappa_{V_{1}}(0 ; X) \leqslant\left|X_{j}\right|$.

To prove the opposite inequality observe that for any $\psi \in \mathcal{O}\left(\mathbb{D}, V_{1}\right)$ there exist j and $f \in \mathcal{O}(\mathbb{D}, \mathbb{D})$ such that $\psi=f e_{j}$. Hence

$$
\begin{aligned}
\kappa_{V_{1}}(0 ; X) & =\inf \left\{\alpha>0: \exists_{\psi \in \mathcal{O}\left(\mathbb{D}, V_{1}\right)}: \psi(0)=0, \alpha \psi^{\prime}(0)=X\right\} \\
& \geqslant \inf \left\{\alpha>0: \exists_{f \in \mathcal{O}(\mathbb{D}, \mathbb{D})}: f(0)=0, \alpha f^{\prime}(0)=X_{j}\right\}=\left|X_{j}\right|
\end{aligned}
$$

Now assume that X is not of the form $X_{j} e_{j}$ for some $j=1, \ldots, n$. Then there are $X_{j} \neq 0 \neq X_{k}$ for some $j \neq k$. Suppose there is a disc $\psi \in \mathcal{O}\left(\mathbb{D}, V_{1}\right)$ such that $\alpha \psi^{\prime}(0)=X$ for some $\alpha>0$. This, however, implies that $\psi_{j} \neq$ const and $\psi_{k} \neq$ const ; a contradiction, since $j \neq k$.

Acknowledgments. Author would like to thank N. Nikolov for helpful discussion, especially on the proof of Lemma 10.

REFERENCES

[1] J. B . Garnett. Bounded Analytic Functions. Pure and Appl. Math. 96, Academic Press, New York, 1981.
[2] M. Jarnicki, P. Pflug. Invariant Distances and Metrics in Complex Analysis. de Gruyter Exp. Math. 9, de Gruyter, Berlin, 1993.
[3] M. Jarnicki, P. Pflug. Invariant distances and metrics in complex analysis—revisited. Dissertationes Math. 430 (2005), 1-192.
[4] G. Knese. Function theory on the Neile parabola. Michigan Math. J. 55 (2007), 139-154.
[5] N. Nikolov, P. Pflug. Invariant metrics and distances on generalized Neil parabolas. Preprint, 2006, arXiv:math.CV/0603574.

Instytut Matematyki
Uniwersytet Jagielloński
Reymonta 4
30-059 Kraków, Poland
Received November 3, 2006
e-mail: Pawel.Zapalowski@im.uj.edu.pl

[^0]: 2000 Mathematics Subject Classification: Primary 32F45.
 Key words: generalized Neil parabola, Carathéodory pseudodistance, Kobayashi pseudodistance, Carathéodory-Reiffen pseudometric, Kobayashi-Royden pseudometric.

 This work is a part of the Research Grant No. 1 PO3A 005 28, which is supported by public means in the programme promoting science in Poland in the years 2005-2008.

