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ABSTRACT. We present the Carathéodory and the inner Carathéodory
distances and the Carathéodory-Reiffen metric on generalized Neil parabolas
in C™. Tt is a generalization of the results from [4] and [5].

1. Introduction and results. In the paper [3] the authors had asked
for an effective formula for the Carathéodory distance on the Neil parabola in
the bidisc. Such a formula was presented by G. Knese in [4], where he also
computed the formula for the Carathéodory-Reiffen pseudometric. It should
be pointed out that these are the first effective formulas for the Carathéodory
distance and the Carathéodory-Reiffen pseudometric of a non-trivial complex
space. In [5] N. Nikolov and P. Pflug generalized Knese’s result. The authors
presented formula for the inner Carathéodory distance in so called generalized
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Neil parabola (but still in bidisc) and, as a corollary, they obtained sufficient
and necessary condition for the Carathéodory distance on the Neil parabola to
be inner. Moreover, they presented also formula for the Carathéodory-Reiffen
pseudometric on the two-dimensional generalized Neil parabola.

In this paper we present next possible generalization of the definition of
Neil parabola, namely we embed the unit disc in C”. It turns out that in such a
generalized Neil parabola all the results obtained in [5] are still valid. The aim
of this paper is to translate the results from the two-dimensional case onto the
n-dimensional one. Below we present all the necessary definitions.

Let D be the unit disc in C. For M = (my,...,m,) € N, where m;’s are
relatively prime and such that m; < --- < m,, define

D3 AL (A A € A= p(D) C D™

A is called the n-dimensional generalized parabola. Note that A is one-dimen-
sional analytic subset of D" with reg A = A, := A\ {0}. Recall that G. Knese
worked with M = (3,2) while N. Nikolov and P. Pflug obtained their results for
M = (n,m), where n,m are relatively prime.

The mapping p is a global bijective holomorphic parametrization for A.
Observe that there exist r1,...,r, € Z such that rym;+--- +r,m, = 1.

Define ¢ : A — C with the formula

21y .
al 0, Z1...2n=20

’Zn):{z’lnl...zfln, 21...2p #0
Observe that ¢ = p~!. Note that ¢ is continuous on A and holomorphic on A,.
Thus the mapping ¢|4, : Ax — D, := D\ {0} is biholomorphic.
Let
Ou(D) := {h € O(D,D) : K (0) = 0,s € S},

where S :={seN:s¢ mZ; +---+myZy}. Note that if m; =1 then S =@
and if my > 1 then maxseg =: s* < nrmy ... my, where r := max;—;__, |rj|.

Observe that if f € O(A,D), i.e. f is locally the restriction of a holo-
morphic function on an open neighborhood of A in C", then fop € Op(D).
Moreover, the converse is true. Indeed, we have the following

Lemma 1 (cf. Section 5 in [4]). If h € Op (D), then hog € O(A,D).

All the proof will be presented in Section 2. We will also use the following
identification.
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Lemma 2. O(D,A) ={povy:¢y € OD,D)}.
For a € A let T, A denote the tangent space of A at a. Recall that if
a=p()), A €D, then T,»)A is spanned by the vector p’()). If @ = 0 then

Ap' A if =1
TyA = p'(0), A€ C, if my ‘
cn if mp>1

We will study some invariant functions. So let us recall the objects we
will deal with in this paper. For details we refer the Reader to [2] and [3]. For
z,w € Aand X € T, A we define

ca(z,w) :=sup{pp(f(2), f(w)) : f € O(A, D)},
TTLA(Z,U)) = Sup{mﬂ)(f(z)v f(w)) : f € O(Aa]D))}a

va(z; X) i=max{|f'(2)X| : f € O(4,D)},

ka(z,w) ==inf{pp(¢,€) : Fpeom,a) : ©(¢) = 2, 9(§) = w},

k4 := the largest distance on A below of EA,

ka(z; X) :==inf{a > 0: Jpcom,a) : ©0(0) = 2z, ay'(0) = X},

a—2b
B 1—ab
a,b € D, is the Mdébius distance on D. We set ka(z,w) := 00 or ka(z; X) := o0
if there are no respective discs . We call c4 the Carathéodory distance, my is
the Mobious distance, v 4 is the Carathéodory-Reiffen metric, k, is the Lempert

function, k4 is the Kobayashi distance and k4 is the Kobayashi-Royden metric
for A.

where pp := tanh ™! mp denotes the Poincaré distance and mp(a,b) :=

)

Recall that the associated inner Carathéodory distance ¢ is given by

cy(z,w) :=1inf{L,(a) : o is a || - |-rectifiable
curve in A connecting z,w}, z,w € A,
where L., denotes the ca-length. We say that the curve « is || - ||-rectifiable if its
Euclidean length is finite. Obviously, c4 < 4.

Theorem 3 (cf. Theorem 3 in [5]). Let A € D. Then

’m1—1

va(p(N);p' (V) = TI_M,W
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Theorem 4 (cf. Theorem 1 in [5]). Let A\, € D. Then

po(A™, ™) if Re(Am) = cos(m/m1)|Aul
pp(A™,0) + pp(0, u™) otherwise |

Theorem 5 (cf. Theorem 4.1 in [4]). Let A\, € D.
(a) If S = @, i.e. m1 =1, then

ca(p(A);p(w)) = po(X, ).
(b) If S = {1}, i.e. my =2,m; =3 for some 1 < j < n, then

pp(A%, 1?) if la]>1

CA(p()\),p(ILL)) = 9 a_A 2 G_M . )
po (A —, 4 - if  lal <1
1—a\ 1—ap

1 1 1
where a = ay, = 2 <)\—|— X +p+ j>. In the case when A\p = 0 the formula
i

should be read as in the case |a| > 1

Due to the results above we have the following correspondence between
the Carathéodory distance and its associated inner one.

Corollary 6 (cf. Corollary 2 in [5]). Let A, € D.
(a) If Re(Ait) = cos(m/mq)|Au| then

i (p(A), p(w)) = calp(A), ().

(b) If Re(Air) < cos(m/my)|Au| then

ca(pN), p(n)) = calp(N), p(r)) ff (@)™ < 0.

Thus, the following conditions are equivalent
o ci(p(N), (k) = calp(N),p(n);
o cu(p(A),p(p)) = pp(A™, p™);
o Re(A\it) = cos(m/mq)|Ap| or (Ap)™ < 0.

In particular, cq is inner iff my = 1.
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It turns out that (as in the case of domains in C") 4 is the infinitesimal
form of c4 outside the origin.

Corollary 7 (cf. [5]). Let A € D, (if mi1 =1 we may take A\ € D). Then

i AP, p(p))

s S p— =74(p(A); (V).

Now assume that m; > 1. Let X € TpA = C". Observe that
74(0; X) = max{[f'(0)X| : f € O(A,D), f(0) = 0}.

Then for such an f we have (f o p)(\) = A™h()\), A € D, where h € O(D, D).
Observe that
of

azj
Thus, for X = (X1,...,X,) € C" we have

plmi=mu(Q)
(0) = 7(mj_m1)!7 j=1...,n.

v4(0; X) = max {‘ Zn: h(:fb)"(o)xj‘ . h € Oy (D), h(0) = o}
=1
n_ pmy—my)
W :max{‘jzli(bmj—mi()?)(j‘ :

h e OM,D),hD(0) = 0,5 +m; € 5}.

In particular, v4(0; X) = || X]|| if n — 1 coordinates of X is equal 0. Using the
first equality above, we will prove the following infinitesimal result at the origin.

Proposition 8 (cf. Prop. 4in [5]). Let Xy, = (A" —p™, ..., A" —
w™m). Then

i AP (k)

=1.
Au—0  y4(0; X, )
pe :

Corollary 9 (cf. Corollary 5in [5]). Letmy > 1. Foranyj € {2,...,n}
there are points A\, € D such that

(2) ca(p(A), p(p)) > max{pp(A"™*, ™), pp(A™7, ")}
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In the proof of Proposition 8 we use the following

Lemma 10 (cf. [5]). There exists a constant ¢ > 0 such that for any

ApeD
(3) ca(p(A),p(p)) = max{pp(AN™, ™) : j=1,...,n} > c| X ul;
_ _ c
@ mas A [ X > SN ], <,
(5) Y405 X ) = cl| X ull-
Moreover,
0o ) A
N o—
(6) lim > N =l
amo 2a ]
Ay J=mat

Proposition 11 (cf. Proposition 7 in [5]). Let M = (mq,...,my) be

such that my = --- =m; =2, mj11 =2k+1 for some1 < j<n—1andkcN.
Then
2|>\|2k+1
ma(p(A),p(=A)) = T+ T2’ AeD.

Finally, we discuss the Kobayashi distance and Kobayashi-Royden metric
on A. Due to Lemma 2, we have the following result.

Proposition 12 (cf. Proposition 8 in [5]). (a) Let A, € D. Then
ka(p(N), p(n) = ka(p(N), p(1)) = pp (A, ).
(b) If A € D, then
ka(p(A):P' (V) = (A1)
IfA\=0and X = (X1,...,X,) € ToA, X #0 then

| X1 if mip=1

00 if mp>1

ra(0; X) = {



Invariant functions on Neil parabola in C" 327

We conclude this note by generalizing the example of the coordinate cross
discussed in [5]. Let e; = (0,...,0,1,0,...,0) € C", j=1,...,n. Put
——

7j—1
n
= U ]Dej.
j=1

Proposition 13 (cf. Remark in [5]). (a) Let A\,u € D. Then

pD(Anu’) if =k

e = kv (\e; =
) enlejmen) = k(e ier) {PD()\,O)-FPD(O,M) i Ak

(8) %VI(A6j7M6k) = {pD()" D) if j=k

ifj#k, Ap#0
(b) If X € D, then
9) i (Aej;ej) = kv (Aejsej) = p(A; 1),

IfA=0and X = (X4,...,X,,) € C" then

(10) i (0; X) Z!X I
X, f X =X.e;, j=1,...
(11> /ivl(O;X) — ’ J| Zf . jejv J ) , N
00 otherwise

2. Proofs.
Proof of Lemma 1. hoq is holomorphic on A, because it may be
extended to a holomorphic function on the set

Q= {(21,...7 )eD"™: H 2|7 < H e T’“}

jeM+ k¢ M+

where M :={j € {1,...,n}:r; € Z;}, and Q is an open neighborhood of A,.
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To prove that h o ¢ is holomorphic at the origin observe that

(12) hA) = > aM, XeD.
JEZLN\S

Moreover, the following identities hold

m
Z'k

J :ZZLjv gk ed{l,....n}, (21,...,20) € A.

Hence for any j = mibj1 + -+ mpbjn € Zy \ S and 2z = (21,...,2,) € A we
obtain

j rimibj 1 T1Mnbj n rnmib; 1 rnMnbj n
7(z) =2 2 .. Zn .. Zn
rimibj r1m1bjn TnMnbj 1 TnMnbjn
=2 R, - .. Zn
rimi4-+rpmn)b; rimi4-4rpmn)b; b; b;
:z§ nn) “...z,(I nmin)bj,n =zt Lz

Using the equality above and (12) we get

(13) (hoq)(z Z a]zljl... nj‘", z2=(21,...,2n) € A,
JELZL\S

where bj, € Zy forall j€e Zy\Sand k=1,...,n

The series (13) is convergent for z = (A™,...,A"), |A\] < R < 1. Thus
it converges for z € R™D x --- x R™ D which gives us holomorphicity of the
extension of h o ¢ in some neighorhood of the origin. O

Proof of Lemma 2. Since p € O(D, A), we have that poy € O(D, A).
Now assume that f € O(D,A). Since f = poqo f it suffices to show that

go f € O(,D).
Fix A € D. If f(A) # 0 then go f is holomorphic in some neighborhood of
A IEf(A) =0, ie fi(A) == fu(A) =0, where f = (f1,..., fn), then f;(() =

(C — /\)sjfj(C) for some S5 € N and fj S O(U,\), f](C) #£0,CeUy, j=1,....n
where Uy C D is some neighborhood of A. Since

(14)  (C= N () = (= NP (), (€U, jke{l,...,n},

there exists [ € N such that s; = Im;, j =1,...,n. Indeed, from (14) it follows
that

(15) Sjmg = Spmj, J k€ {1, e ,n}.
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Fix j € {1,...,n}. Observe that m; = pj1...p;;), where p;s’s are prime

numbers. Since my, ..., m, are relatively prime, for any 1 < s < s(j) there exists

1 < k < nsuch that pj s f mg. Then (15) implies that s; = pj1...pj ¢(;)!; for some

l; € N. Using (15) again, we conclude that I; =l =: [ for all j,k € {1,...,n}.
Hence

(@o £)CQ) = Q) £ () = (C=N'FQ) ... fir(Q), C€Un

Thus go f € O(Uy) and the proof is complete. O
Proof of Theorem 3. Recall that

ya(p(\);p'(N)) = max {% :he (’)M(ID))} )

Observe that if ¢ € Aut(D) and h € Op(D) then ¢ o h € Op (D) and

[0y I CCEYOR Y]
L= [pN]? 1= |(@eon) (NP

Thus
va(p(N);p'(N))

= max {% :h € On(D),h(0) = 0}

O™ BOYL 5 ¢ o, 5).50(0) < 0.
— A AL e o, D), D (0)=0,j +my €8
max{l—\ww GO =

) () + AR (V)|
— Aml 1 |m1 .
A max{ RSP CTITPVIE

ml’)\‘ml_l

— () _ . - -
h € O(D,B), k9 (0) = 0,5 +my eS}— e

The last equality may be proved exactly as in the proof of Theorem 3 in [5] with
my instead of m. O

Proof of Theorem 4. The proof follows the proof of Theorem 1 in
[5] with m; instead of m. O

Proof of Theorem 5. Ad (a). It is a consequence of Theorem 4,
since my = 1.
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Ad (b). Since S = {1}, the proof of Theorem 4.1 from [4] may be repea-
ted. O

Proof of Corollary 6. The proof follows the proof of Corollary 2 in
[5] with my instead of m. O

Remark 14 (cf. Remark (a) in [5]). In [5] for m € N the following
distance was introduced

" (A 1) = max{pp(X"h(A), " h(p)) : h € O(D,D)}.

Note that
(m1) /
.oy V(N A+e) 1 |mih(X) + AR (M| _
1 R 1 N ID) ID)
= T A e T ey OB

=74(p(A\);p' (V)

by the proof of Theorem 3. So it follows that the associated inner distance [ p]%)ml)

of p]gm) equals to ¢ (p(),p()). Then

(PN, p()) = ™ (A, 1)
> ca(p(N), p(p) = pp(A™, ™).

Moreover, the proof of Corollary 6 shows that the following conditions
are equivalent

o i (V) p() = p§™ (A );

o c(p(N), p(p)) = calp(N), p(1));

o ch(p(N), (1) —101@()\7"1 pm);

o Re(Ait) > cos(m/my)|Ap| or (Az)™ < 0.

Proof of Corollary 7. Since

ca(P(N),p(r) = calp(N), p(n)) = pp(A™, ™), A €D,

for A € D, (if m; = 1 we may take A\ € D) we have
mi mi mi mi
iy AP p() AT ) mp (AT ™)
p=h (A=l p=X A= pl p=X (A=l

ml’)\’ml_l
= W = va(p(\);p' (V).
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Proof of Lemma 10. Fix A\, u € D. Without loss of generality we may
assume that A # p and |u| < |A|. Moreover, it suffices to obtain each inequality
with different constant, since minimum of these constants will do the job.

A d (3). The first inequality in (3) we obtain with help of the projection
from A onto its m;-th coordinate, while the second one is a consequence of the
equivalence of norms in C™.

Ad (4). Let "™/1 = {€m; 05+ Emym -1} and let Ry, s = e 5[0, 1],
s =0,...,m; — 1. Observe that there is a constant ¢ = 6(M) > 0 such that

Amj,s,(s N Aml,t,é =0 if ij,s 75 le,tv

where Ay, s := {ret:re R 5,0 € (=6,0)}, s=0,...,m; =1, j=1,...,n.

Observe that p/\ € D. Since m;’s are relatively prime, one of the
following two cases holds:

1° There exists j € {1,...,n} such that u/\ ¢ Uggl Ao 6,65

2° /,L/A S Amn,0,5-

A d 1°. Then there is a constant ¢ = ¢(§) > 0 such that [1—(u/\)™i] > 2¢.
Therefore

A7 X0 = AE (A — |

ZINE k).

= AP = (/2™ | = 2¢]A)F > k

Ad 2°. To obtain (4) in this case it suffices to prove that there exists
¢ > 0 such that

c| 1—(u/N"
—|——1 <1, k>m,.
k11— (u/A)mn
1— (u/N)F
Since lim M = ——, there is a constant r > 0 such that
p/A—1 |1 — (p/X)mn My,
L= (/N | 2
—— L —, |1=p/A<r, k>m,.
e R

Hence in case |1 — p/\| < r, a constant ¢q := Mn il do the job.

On the other hand, if |1 —u/A| > r then there is a constant ca = co(r) > 0
such that |1 — (u/A)™"| = 2co. Therefore

| 1= (/N | _ 20
ELL— (p/N)mnl = 2e0k ~




332 Pawetl Zapatowski

Finally we take ¢ := min{cy, ca}.

Ad (5). Let I € {1,...,n} be such that |\ — p™| = max{|\" — p™| :
j=1,...,n}. Let h(¢) = ¢™, ¢ € D. Observe that h € Oy (D) and h(0) =
Thus

n
h(m3)(0)
A0 2 [0 O (s — )| = x> el Xl
—1 .7

where ¢ > 0 is a constant from the inequality (3).
Ad (6). First assume that m; + 1 < j < my,. Then

|)\j—Mj’< N o—

)\O‘j — /‘Laj

< = (A )
ol < 1w o | = [T = calAl
where a; > 1. Therefore
m . ,
nIN — )
(16) Jim |X7“’ = 0.
SO it Xl
Observe that, using (4), we have
o0 ; ; oo o0
(M= _ 1 =
2wl S 2 W= Z (mn + )NV
j:mn+1 || A’“” Cj:mn+1 :

\/\\)

\

Hence, letting A\, u — 0, X\ # u, and using (16) we obtain (6). O

Proof of Proposition 8. Let hi_u € O (D) be an extremal function
for co(p(A),p(1)). Then

hIM(C): Z a)\,u,jcj'

JEZL\S

Since |ay ;| < 1, it follows that

153, (A) = Y, ()]

H O 1) = |37 angum, O = )|+ > IV =],
j=1 j=mi+1
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Thus, using (3), (6), and (1)

. HY(\ p) . H*(\ 1)
LS o ht ] i e p)
A Aot At e
> axngum, A =) 30 N =]
< lim inf < =1 J=mitl )
M0 ca(p(N),p(u)) cl| Xl
D A pumy (AT — ™)
= Hom e 7405 X )
= liminf < liminf ————2~—.
Afi—0 ca(p(\), p(w)) Au—0 ca(p(A), p(u))
AFEp AFE

Let now hy , € Op (D) be an extremal function for v4(0; Xy ). Then

h Q)= > aru;¢.

JELZLN\S

Since |ay ;| < 1, it follows that

— Z N — ).

1) = ()] > | D7 0, (N = ™)
7j=1

j=mi1+1
Then, using (5) and (6), we have
>N -]
N — ! 00 , 4
L= : N — |
lim 2 it < lim Z ’720,
/\3\,1;—,;0 IVA(OvXA,M) )\;\;;ész:ml+1 C||X)\7M||
and, consequently,
AZIW—M! ,ZIW—M
lim ="t < lim It = 0.
Au—0 [hy (A) — hy A p—0 S P
e S T L
Jj=mi+
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Thus, using (3), (6), and the last equality,

Ya(0; X)) = X2 1W — 1|
1 > lim sup — J:mi+
A,u—0 ’h,\“u()‘) - h)\,u('u”
AFu
> |V =]

lim sup ( VA(O;XA#) _ ot )
Au—0 \CA(P(A),p(k)  [hy ,(A) = Ry, (1)

pem 7 7

. 74(0; X )

= limsup ——————.
A,pu—0 CA(p(A)up(:U’))
AZp

O

Proof of Corollary 9. Observe that for any neighborhood U of 0
one may find points A, u € U such that A" — p™ = X" — ™ # 0. Then, by
Proposition 8, it suffices to show that

(17) ’}’A(O;Xo) > 1, X() = (Xl, - ,Xn), X1 = Xj =1.
Indeed, having (17) and using the equality (cf. Corollary 1.13 (d) in [2])
pJD)(/\/, A//)
A2 )
/\/)\llr/n_@ ’)\/ _ )\//‘
)\/7£A”

we obtain the required result.
By the second equality in (1) and the fact that max s = s* < oo,

SES

(0 XO) max{|a+b| (a,b) € ij*ml}7

where Ty, —m, = {(a,b) € C*: Fheomp) : (C) = a+bCMIT™ + o(¢T7™)}.
Let k € N be such that k(m; — m1) = s* —my. We shall show that there
is a function f € O(D, D) of the form f(¢) = a + b¢ + o(¢*), where a,b > 0 and
a+ b > 1, which will imply (17).
From now on the rest of the proof of Corollary 5 in [5] may be repeated.
For convenience of the Reader we recall that proof.

Note that by Shur’s theorem (cf. [1]) such a function f exists if and only
if

k k
(18) 1—a®=0)> X722 X; 1X;, (X1,...,X) €RE.
J=1 j=



Invariant functions on Neil parabola in C" 335

Since cos is the maximal eigenvalue of the quadratic form defined by

™
kE+1
k
Z Xj1Xj, it follows that
j=2

k k
m k
cos . El EQXJ 1X5,  (Xq,...,Xg) € RY.
j= j=

Then all pairs (a,b) € R? for which 2abcos < 1—a? = b? satisfy (18); in

T
k+1 -
particular, we may choose a,b > 0 such that 2abcos ?

<1—a®—b? < 2ab,
+1
ie.a+b>1. O

Proof of Proposition 11. Observe that in this case S = {2j — 1 :
j=1,2,...,k} and the proof of Proposition 7 from [5] may be repeated. O

Proof of Proposition 12. Ad (a). ka(p(A),p(1)) < pp(, ), since
p € O(D,A). From Lemma 2 we already know that for any ¢ € O(D, A)
with ©(A) = p(\) and @(fi) = p(u) there exists some ¢ € O(D,D) such that
Y(A) = X and (i) = p. Hence pp(\, 1) < pp(X, i). Taking infimum over all
appropriate ¢ € O(D, A) we obtain pp(A, p) < ka(p(\), p(p)). Hence, pp(\, p) =
Ea(p(\), p(p)). In particular, k4 is a distance and, consequently, kg = k4.

Ad (b). Again, using Lemma 2, we obtain
ra(p(\):p' (V)
= inf{a > 0: 3pcom,a) : 9(0) = p(A), ag'(0) =p'(A\)}
> inf{a > 0: Jyecomp) : ¥(0) = A, a’(0) =1}

= /Q]D)()\; 1) = 'Y]DJ()‘; 1)'

On the other hand, for ¢ := p o1, where ¢y € Aut(D) is such that ¥(0) = A,
we have that ¢ € O(D, A), ¢(0) = p(N), and yp(A;1)¢’(0) = p/(N). Therefore

£A(P(A);P' (V) < (A D).
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It remains to prove formula for A = 0. Observe that
ka(0; X) = inf{la > 0: 3,com,a) : »(0) =0, ag’(0) = X}
> inf{a > 0: 3ycomp) : ¥(0) =0, ap’(0)¥'(0) = X}

. ‘Xl‘ ifm1:1
oo ifmy >1

It suffices to prove the opposite inequality in case m; = 1. Fix X €
(ToA).. Then there exists £k € N such that X; = -+ = X} # 0 and X1 =
<o = X, = 0. We define p(\) := p(X1|X1|7'A\), A € D. Observe that ¢ €
O(D, A), ¢(0) =0, and |X1]¢'(0) = X. Hence r4(0; X) < |X1| which ends the
proof. O

Proof of Proposition 13. Ad (7). Let p;(2) := z;, 2 = (21,...,2n) €
Vi, and 9;(¢) = Cej, ¢ € D, for j = 1,...,n. Since ¢; € O(V;,D) and
1/Jj € O(D, Vl), then

(19) po(\ 1) < ey (Nej, pes) < kv (Nej, pes) < po(A, ).

Now assume that j # k. Since ¢ := > 1, p; € O(V3,D), then

Po(X,0) + (0, 1) = oAl ~ul) < evi (Mg, —lpler) = evi (hej, reg).

Moreover, using (19),

kv (Aej, per) < kv (Aej, 0) + kv, (0, pex) = pp(X, 0) + pp(0, ).

Ad (8). It remains to consider the case j # k, Au # 0. Suppose there
is a disc ¢ € O(ID, V1) such that (¢) = Ae; and ¢(§) = pey for some ¢, € D.
However, these equalities imply, together with the identity principle, that ¢ = 0;
a contradiction, since Ay # 0.

Ad (9). Using again the functions ¢; and v¢;, j =1,...,n, defined in the
part of the proof of (7), we obtain

A1) < i (Aejieg) < rvi(Aejieg) < (A1)

Ad (10). For X = (Xy,...,Xpn) € C" let ox(2) == > 7, zje tATE X
where z = (21,...,2,) € V1. Since ¢ € O(V1,D), then

Z X1 = (px (0); ¢y (0)X) < s (05 X).
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Recall now that
O(V1,D {ij (n—1)f1(0) :

fi € O(e;, D) £5(0) = fx(0), j.k=1,....n}.
Therefore

Y7 (0; X) = sup{p(F(0); F'(0)X) : F € O(V1,D)}

n n
<D swp{m(f5(0); f{(0)X;)) : f; € O, D)} = > |X;].
j=1 j=1
Ad (11). Assume that X = Xje;. Define ¥, x(() = CejeiArng,C €
D. Observe that ¢; x € O(D, V1), 1;x(0) = 0 and | X[y} +(0) = X. Hence
K’VI(O;X) < |XJ|
To prove the opposite inequality observe that for any ¢ € O(D, V;) there
exist j and f € O(D, D) such that ¢ = fe;. Hence

kv, (0; X) = inf{a > 0: Jpeomn) $(0) =0, ayp’(0) = X}

> inf{a > 0:3reomp) : F(0) =0, af'(0) = X;} = |X;].

Now assume that X is not of the form Xje; for some j = 1,...,n. Then
there are X; # 0 # X, for some j # k. Suppose there is a disc ¢ € O(D, V1)
such that ay’(0) = X for some a > 0. This, however, implies that 1; # const
and vy, # const ; a contradiction, since j # k. O
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