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EXTENDED MAXIMUM PRINCIPLES

M. M. Al-Mahameed
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Abstract. In this paper we introduce some new results concerning the
maximum principles for second order linear elliptic partial differential equations
defined on a noncompact Riemannian manifold.

1. Introduction. We extend the classical generalized maximum prin-
ciple which holds in relatively compact subdomains to a generalized maximum
principle which holds in any domain, also we prove existence, uniqueness and
integral representation for solutions of the nonhomogeneous equation.

Let us first introduce some terminology and results which we need in this
paper.

Let P be a linear, second order, elliptic operator defined on a noncompact,
connected, C3-smooth Riemannian manifold Ω of dimension d. Here P is an
elliptic operator with real, Hölder continuous coefficients which in any coordinate
system (U ;x1, . . . , xd) has the form

(1.1) P (x, ∂x) = −
d

∑

i,j=1

aij(x)∂i∂j +

d
∑

i=1

bi(x)∂i + c(x),
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where ∂i = ∂/∂xi
. We assume that for every x ∈ Ω the real quadratic form

(1.2)
d

∑

i,j=1

aij(x)ξiξj ξ = (ξ1, . . . , ξd) ∈ Rd

is positive definite.
We denote the cone of all positive (classical) solutions of the elliptic

equation Pu = 0 in Ω by CP (Ω). In case that the coefficients of P are smooth
enough, we denote by P ∗ the formal adjoint of P .

Definition 1.1. (i) If CP (Ω) 6= ∅ and P has a positive Green function
in Ω, then P is said to be a subcritical operator in Ω.

(ii) If CP (Ω) 6= ∅ and P does not have a positive Green function in Ω,
then P is said to be a critical operator in Ω.

(iii) If CP (Ω) = ∅, i.e. the elliptic equation Pu = 0 does not have a
positive solution in Ω, then P is said to be a supercritical operator in Ω.

Remark 1.2. For Schrödinger equation

(−∆ + V )u = 0 in Ω

where Ω is a connected open set in Rn and V is a real-valued function belonging

to Lp,1oc(Ω) with p >
n

2
for n ≥ 2 and p = 1 for n = 1, M. Murata [3] introduced

the following classification: (i) V is subcritical if −∆ + V has a positive Green
function; (ii) V is critical if −∆+V ≥ 0 (nonnegative); and (iii)V is supercritical
if −∆ + V is not nonnegative. Definition 1.1 is due to [4].

Let {Ωk}
∞

k=1 be an exhaustion of Ω, i.e. a sequence of smooth, relatively
compact domains such that Ω1 6= ∅, Ωk ⊂ Ωk+1 and ∪∞

k=1Ωk = Ω. Assume

that CP (Ω) 6= ∅. Then for every k ≥ 1 the Dirichlet Green function GΩk

P (x, y)

exists and is positive. By the generalized maximum principle,
{

GΩk

P (x, y)
}∞

k=1
is

an increasing sequence which, by Harnak inequality, converges uniformly in any
compact subdomain of Ω either to GΩ

P (x, y), the positive minimal Green function
of P in Ω and P is said to be a subcritical operator in Ω, or to infinity and in
this case P is critical in Ω. The operator P is said to be supercritical in Ω if
CP (Ω) = ∅.

It follows that P is critical (resp. subcritical) in Ω if and only if P ∗ is
critical (resp. subcritical) in Ω. Furthermore, if P is critical in Ω, then CP (Ω) is
a one dimensional cone and any positive supersolution of the equation Pu = 0 in
Ω is a solution. In this case φ ∈ CP (Ω) in called a ground state of P in Ω.

We fix a reference point x0 ∈ Ω1. From time to time, we consider the
convex set

KP (Ω) := {u ∈ CP (Ω)/u(x0) = 1}
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of all normalized positive solutions.

Remark 1.3. We would like to point out that the criticality theory, and
in particular the results of this paper, are also valid for the class of weak solutions
of elliptic equations in divergence form and also for the class of strong solutions
of strongly elliptic equations with locally bounded coefficients. Nevertheless, for
the sake of clarity, we prefer to present our results only for the class of classical
solutions.

Subcriticality is a stable property in the following sence. If P is subcritical
in Ω and V ∈ Cα

0 (Ω) is a real function, then there exist ε > 0 such that P − µV
is subcritical, for all |µ| < ε [3, 4]. On the other hand, if P is critical in Ω and
V ∈ Cα(Ω) is a nonzero, nonnegative function, then for every ε > 0 the operator
P + εV is subcritical and P − εV is supercritical in Ω.

We associate to Ω a fixed exhaustion {Ωn}∞n=1. For every k ≥ 1, we denote
Ω∗

k = Ω\Ωk and for every k > k0 we denote by Ωk,k0
the ‘annulus’ Ωk\Ωk0

. Let
f, g ∈ C(Ω) be positive functions. We say that f is equivalent to g on Ω and use
the notation f ≈ g, if there exists a positive constant C such that

C−1g(x) ≤ f(x) ≤ Cg(x) for all x ∈ Ω.

We denote by f+ (resp. f−) the positive (resp. negative) part of a function f .
So, f = f+ − f−. By 1, we denote the constant function on Ω taking at any
point x ∈ Ω the value 1.

Let B be a Banach space and B∗ its dual. If T is a (bounded) operator in
B we denote by T∗ its adjoint. The range and the kernel of T are denoted by R(T )
and N(T ). For every f ∈ B and g∗ ∈ B∗ we use the notation 〈g∗, f〉 := g∗(f).
We denote the spectrum of an operator T acting on B by σ(T ).

Definition 1.4. Let P be an elliptic operator defined on Ω. Afunction
u ∈ C(Ω∗

n) is said to be a positive solution of the operator P of minimal growth
in a neighborhood of infinity in Ω if u satisfies the following two conditions:

(i) The function u is a positive solution of the equation Pu = 0 in Ω∗
n;

(ii) If v is a continuous function on Ω
∗

k for some k > n which is a positive
solution of the equation Pu = 0 in Ω∗

k, and u ≤ v on ∂Ωk, then u ≤ v on Ω∗
k.

Definition 1.5. Let Pi, i = 1, 2 be two subcritical operators in Ω. We
say that the Green functions GΩ

P1
(x, y) and GΩ

P2
(x, y) are equivalent (resp. semi-

equivalent) if GΩ
P1

≈ GΩ
P2

on Ω × Ω\{(x, x)\x ∈ Ω} (resp. GΩ
P1

(·, y0) ≈ GΩ
P2

(·, y0)
on Ω\{y0} for some fixed y0 ∈ Ω).

Our maximum principles are of Phragměn-Lindelöf type and state that
if Pu ≥ 0 in Ω, P is subcritical in Ω and u satisfies some growth condition near
infinity in Ω, then u ≥ 0 (see Theorems 1.6 and 2.6 ). As a consequence, we prove
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existence and uniqueness theorems for suitable solutions of the nonhomogeneous
equation (see Theorems 1.8 and 2.8).

Let P be a subcritical operator in Ω and let φ ∈ C(Ω) be a positive
function such that φ is a solution of the equation Pu = 0 in Ω∗

1 which has a
minimal growth in a neighborhood of infinity in Ω.

We denote by B the real ordered Banach space

B = {u ∈ C(Ω)/ |u(x)| ≤ cφ(x) for some c > 0 and all x ∈ Ω}

equipped with the norm

‖u‖B = inf {c > 0/ |u(x)| ≤ cφ(x) ∀x ∈ Ω} .

The ordering on B is the natural pointwise ordering of functions. For the purpose
of spectral theory, we consider also the canonical complexification of B without
changing our notation.

In [6] the following maximum principle for supersolutions in B is proved.

Theorem 1.6. Let P be a subcritical operator in Ω and let φ ∈ C(Ω) be
a positive function such that φ is a solution of the equation Pu = 0 in Ω∗

1 which
has a minimal growth in a neighborhood of infinity in Ω. Suppose that v ∈ B
satisfies the equation Pv = f ≥ 0 in Ω, where f ∈ Cα(Ω). Then v ≥ 0 in Ω.

In the critical case we have (see [6])

Proposition 1.7. Let P be a critical operator in Ω and let φ0 be a ground
state of the operator P in Ω. Suppose that Pu ≥ 0 in Ω and that for some C > 0,
u ≥ −Cφ0 in Ω∗

1. Then u = C1φ0, where C1 is a real constant.

The maximum principle (Theorem 1.6) implies the following theorem
concerning the existence, uniqueness and integral representation for solutions
of the nonhomogeneous equation [6].

Theorem 1.8. Let P be a subcritical operator in Ω and let φ be a
positive solution of the equation Pu = 0 in Ω∗

1 which has a minimal growth in a
neighborhood of infinity in Ω.

(i) Let f ∈ Cα(Ω), 0 < α ≤ 1, be a real function such that

(1.3)

∫

Ω

GΩ
P (x, y) |f(y)| dy ≤ Cφ(x)

for all x ∈ Ω∗
2. Then there exists a unique solution u ∈ B of the equation Pu = f

in Ω. Moreover,

u(x) =

∫

Ω

GΩ
P (x, y)f(y)dy.
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(ii) Suppose that f ∈ Cα(Ω), 0 < α ≤ 1, and f ≥ 0. Then f satisfies
estimate (1.3) if and only if there exists a solution u ∈ B of the equation Pu = f
in Ω. In this case, u is the minimal nonnegative solution of the equation Pv = f
in Ω.

2. The results and their proofs. We present now a new version
of the maximum principle which extends Theorem 1.6 and is valid for solutions
which don’t grow too fast.

We denote by β = βK the real ordered Banach space.

β = βK := {f ∈ C(Ω)/ |f(x)| ≤ cu(x) for some fixed c > 0 and u ∈ Kp(Ω ),

(2.1) and for all x ∈ Ω }

equipped with the norm

‖f‖β := inf
u∈Kp(Ω )

inf {c > 0/ |f(x)| ≤ cu(x) ∀x ∈ Ω } .

The ordering on β is the natural pointwise ordering of functions. For the purpose
of spectral theory, we consider also the canonical complexification of β whithout
changing our notation. Clearly, B ⊂ β and there exist C > 0 such that ‖f‖β ≤ C

‖f‖B , for all f ∈ B.
Recall that φ ∈ C(Ω) is a fixed positive function such that φ is a solution

of the equation Pu = 0 in Ω∗
1 which has a minimal growth in a neighborhood of

infinity in Ω. We consider also the set

BK,φ
∞ :=

{

f / f ∈ C(Ω
∗

N ) for some N ∈ N, and ∀ε > 0 ∃n ≥ N,

Cε ≥ 0, uε ∈ Kp(Ω) such that |f(x)| ≤ εuε(x) + Cεφ(x) in Ω∗
n} .

Remark 2.1. (i) Note that BK,φ
∞ ∩ C(Ω) is a closed subspace of β. We

denote this Banach subspace by β0 = βK
0 . Clearly, B ⊂ β0.

(ii) Consider the following closed subspace of β

(2.2) AK :=

{

f ∈ C(Ω) lim
n→∞

inf
u∈Kp(Ω )

sup
x∈Ω∗

n

{|f(x)| /u(x)} = 0

}

,

which contains functions that grow slower than functions in Kp(Ω). Clearly,
AK ⊂ β0 and if B ⊂ AK , then AK = β0. There are examples where B * AK

[2]. Note that A. Ancona proved recently that if P is symmetric with respect to
a Riemannian measure σ, then B ⊂ AK [2].
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We first prove some lemmas which will imply the maximum principle
in β0.

Lemma 2.2. Let P be a critical or subcritical operator in Ω. Suppose

that v ∈ C(Ω
∗

2)∩BK,φ
∞ is a solution of the equation Pu = 0 in Ω∗

2 such that v = 0
in ∂Ω2. Then v = 0.

P r o o f. Suppose that v(x1) > 0 for some x1 ∈ Ω∗
2 and let ε > 0. By

definition, there exist n ∈ N, Cε ≥ 0 and uε ∈ Kp(Ω) such that |v(x)| ≤ εuε +Cεφ
in Ω∗

n. By the generalized maximum principle |v(x)| ≤ εuε(x) + Cεφ(x) in Ω∗
2.

Let
C0,ε = inf {C ≥ 0/εuε + Cφ(x) − v(x) ≥ 0 in Ω∗

2 } .

It follows that εuε+C0,εφ(x)−v(x) > 0 in Ω∗
2. Since φ is a positive solution of the

equation Pu = 0 in Ω∗
2 which has a minimal growth in a neighborhood of infinity

in Ω, it followes that there exist δ = δ(ε) > 0 such that εuε + C0,εφ(x) − v(x) >
δφ(x) in Ω∗

2. By the minimality of C0,ε, we infer that for every ε > 0 C0,ε = 0.
Hence, εuε − v(x) > 0 in Ω∗

2 for every ε > 0, contradicting the hypothessis that
v(x1) > 0. �

Lemma 2.3. Let P be a critical or subcritical operator in Ω. Suppose

that v ∈ C(Ω
∗

2)∩BK,φ
∞ is a solution of the equation Pu = 0 in Ω∗

2 such that v 	 0
on ∂Ω2. Then v 	 0 and v/φ is bounded in Ω∗

2. Moreover, if v > 0 on ∂Ω2 then
v is a positive solution of minimal growth in a neighborhood of infinity in Ω.

P r o o f. Denote by wk, k > 2 the solutions of the following Dirichlet
problems

Pu = 0 in Ωk,2,

u = v on ∂Ω2,

u = 0 on ∂Ωk.

By the generalized maximum principle, the sequence {wk}k>2 is a nondecreasing
bounded sequence of nonnegative solutions which converges to a function w ≤
C1φ. Recall that v 6= 0 on ∂Ω2. It follows that w is a nonzero, nonnegative
solution of the equation Pu = 0 in Ω∗

2 (in fact, w > 0 on at least one component
of Ω∗

2). Moreover, if v > 0 on ∂Ω2, then w is a positive solution of minimal
growth in a neighborhood of infinity in Ω.

Let vk, k > 2, be the solutions of the Dirichlet problems

Pu = 0 in Ωk,2,

u = 0 on ∂Ω2,

u = v on ∂Ωk.



Extended maximum principles 357

Then v = wk + vk and therefore, the sequence {vk}k>2 coverges to a function

v0. On the other hand, since v ∈ BK,φ
∞ , it follows that for every ε > 0 there

exist n ∈ N, Cε ≥ 0 and uε ∈ Kp(Ω) such that |v(x)| ≤ εuε + Cεφ in Ω∗
n. By

the generalized maximum principle, for every k ≥ n we have |vk(x)| ≤ εuε + Cεφ

in Ω∗
k,2. Hence, |v0(x)| ≤ εuε + Cεφ in Ω∗

2 and v0 ∈ BK,φ
∞ . Lemma 2.2 implies

that v0 = 0. Hence, v = w ≥ 0 and v is a nonnegative solution such that v/φ is
bounded in Ω∗

2. �

Lemma 2.4. Let P be a critical or subcritical operator in Ω. Let f ∈

Cα(Ω
∗

2) be a nonnegative function. Suppose that v ∈ C(Ω
∗

2) ∩ BK,φ
∞ is a solution

of the equation Pu = f in Ω∗
2 such that v ≥ 0 on ∂Ω2. Then v ≥ 0. Moreover,

(2.3) v(x) = h(x) +

∫

Ω∗

2

G
Ω∗

2

P (x, y)f(y)dy,

where h ∈ C(Ω
∗

2) is a nonnegative solution of the equation Pu = 0 in Ω∗
2 which

is bounded by Cφ (for some constant C > 0) and satisfies the boundary condition

h = v on ∂Ω2. In particular,
∫

Ω∗

2

G
Ω∗

2

P (x, y)f(y)dy < ∞.

P r o o f. Since |v| = v+ + v−, it follows that v± ∈ BK,φ
∞ . Let wk,±, k > 2

be the nonnegative solutions of the Dirichlet problems

Pu = f± in Ωk,2,

u = v± on ∂Ω2,

u = v± on ∂Ωk.

By the generalized maximum principle and the definition of BK,φ
∞ it follows that

for every ε > 0 there exist n ∈ N, Cε ≥ 0 and uε ∈ Kp(Ω ) such that for every
k ≥ n we have 0 ≤ wk, −(x) ≤ εuε+Cεφ in Ω∗

k,2. By a standard elliptic argument,

the sequence {wk,−} has a converging subsequence to a nonnegative solution of
the equation Pu = 0 in Ω∗

2 which takes the value zero on ∂Ω∗
2. Since any such

solution is in BK,φ
∞ , it follows from Lemma 2.2 that it is the zero solution and

lim
k→∞

wk,− = 0.

On the other hand, wk,+ ≥ 0 and since

(2.4) wk,+ − wk,− = v,

it follows that lim
k→∞

wk,+ = v ≥ 0.
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Note that

wk,+(x) = hk(x) + gk(x) +

∫

Ωk,2

G
Ωk,2

P (x, y)f(y)dy,

where hk satisfies
Pu = 0 in Ωk,2,

u = v on ∂Ω2,

u = 0 on ∂Ωk,

and gk satisfies
Pu = 0 in Ωk,2,

u = 0 on ∂Ω2,

u = v on ∂Ωk.

Clearly, 0 ≤ hk ≤ Cφ, and {hk} converges to a nonnegative solution h of the
equation Pu = 0 in Ω∗

2, which is bounded by Cφ and satisfies the boundary
condition h = v on ∂Ω2. On the other hand, for every ε > 0 there exist n ∈ N,
Cε ≥ 0 and uε ∈ Kp(Ω) such that for every k ≥ n we have 0 ≤ gk(x) ≤ εuε+Cεφ in
Ω∗

k,2. The same argument used for wk,− → 0 demonstrates now that the sequence

{gk} converges to zero.

Moreover, the sequence

{

∫

Ωk,2

G
Ωk,2

P (x, y)f(y)dy

}

is a nondecreasing locally

bounded sequence of nonnegative solutions of the equation Pu = f . By monotone

convergence, this sequence converges to
∫

Ω∗

2

G
Ω∗

2

P (x, y)f(y)dy and the lemma

follows. �

Lemma 2.5. Let P be a critical or subcritical operator in Ω and let
Ψ ∈ C(∂Ω2) be a real function. Let f ∈ Cα(Ω

∗

2) be a real function such that

(2.5)

∫

Ω∗

2

G
Ω∗

2

P (x, y)|f(y)|dy ∈ BK,φ
∞ .

Then there exists a unique solution v ∈ C(Ω
∗

2) ∩BK,φ
∞ of the equation Pu = f in

Ω∗
2 which satisfies v = Ψ on ∂Ω∗

2. Moreover,

v(x) = h(x) +

∫

Ω∗

2

G
Ω∗

2

P (x, y)f(y)dy,
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where h(x) is a solution of the homogeneous equation Pu = 0 in Ω∗
2 which satisfies

h = Ψ on ∂Ω∗
2 and |h(x)| ≤ Cφ(x) in Ω∗

2 for some C > 0.

P r o o f. Let h± be the unique nonnegative solution of the equation Pu = 0
in Ω∗

2 which is bounded by Cφ for some constant C > 0, and satisfies h± = Ψ±

on ∂Ω∗
2. Consider the function

v±(x) = h±(x) +

∫

Ω∗

2

G
Ω∗

2

P (x, y)f±(y)dy.

Clearly, v± ∈ C(Ω∗
2) ∩ BK,φ

∞ and satisfies the equation Pv± = f± in Ω∗
2 and the

boundary condition v± = Ψ± on ∂Ω∗
2. Therefore, the function v = v+ − v− is a

desired solution. The uniqueness follows from Lemma 2.2. �

Now we establish the maximum principle for solutions which do not grow
too fast at infinity.

Theorem 2.6. Let P be a subcritical operator in Ω. Suppose that Pv =
f ≥ 0 in Ω, where f ∈ Cα(Ω) and v ∈ β0. Then v ≥ 0 in Ω.

P r o o f. Suppose that there exists x1 ∈ Ω such that v(x1) > 0. Then
there exists a ball Bε = B( x1, ε) ⊂ Ω such that v > 0 in Bε. Lemma 2.4 implies
that v ≥ 0 in B∗

ε := Ω\Bε and therefore v > 0 in Ω.
So, we may assume that v ≤ 0 in Ω and suppose that there exists x1 ∈ Ω

such that v(x1) < 0. Then there exists a ball Bε = B(x1, ε) ⊂ Ω such that v < 0
in Bε. Without loss of generality, we may assume that Bε ⊂ Ω1. Let uε,k be the
solution of the following Dirichlet problem

Pu = 0 in Ωk\Bε,

u = 0 on ∂Bε,

u = v on ∂Ωk.

Using again the generalized maximum principle and Lemma 3.6 it follows that
lim

k→∞
uε,k = 0.

Consider also the Dirichlet problem

Pu = 0 in Ωk\Bε,

u = v on ∂Bε,

u = 0 on ∂Ωk,

and denote its negative solution by vε,k. Set vε := lim
k→∞

vε,k. Clearly, 0 < −vε ≤

CεG
Ω
P (·, x1). Using the well known asymptotic behavior of GΩ

P (·, x1) near the
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pole x1, it follows that there exists C > 0 such that for ε > 0 small enough
0 < −vε ≤ Cεd−2GΩ

P (·, x1) if d ≥ 3, and 0 < −vε ≤ −C(log ε)−1GΩ
P (·, x1) if d = 2.

Therefore, lim
ε→0

vε = 0.

Finally, let wε,k be the solution of the Dirichlet problem

Pu = f in Ωk\Bε,

u = 0 on ∂Bε,

u = 0 on ∂Ωk.

Then wε,k ≥ 0. On the other hand,

(2.6) v = uε,k + vε,k + wε,k.

Letting first k → ∞ and then ε → 0 in equation (2.6), we obtain that

v = lim
ε→0

(

lim
k→∞

wε,k

)

≥ 0

contradicting the hypothesis that v ≤ 0, v 6= 0. �

The next proposition deals with the critical case and extends Pro-
position 1.7.

Proposition 2.7. Let P be a critical operator in Ω and let φ0 be a ground
state of the operator P in Ω. Let W ∈ Cα

0 (Ω) be a nonzero, nonnegative function.

Suppose that Pu ≥ 0 (Pu ≤ 0) in Ω, where u ∈ β
KP+W

0 . Then u = C1φ0, where
C1 is a real constant.

P r o o f. Suppose that Pu � 0. Then there exists V ∈ Cα
0 (Ω) a nonzero

nonnegative function such that (P + V )u ≥ 0 in Ω. Since the cones CP+W and

CP+ V are equivalent [4], it follows that u ∈ B
KP+V,φ

0 . Applying the maximum
principle (Theorem 2.6) it follows that u ≥ 0. Therefore, u is a nonnegative
supersolution of the critical operator P and hence u = cφ0, where c ≥ 0.

Assume that Pu = 0. If u ≥ 0, then u = cφ0. Suppose that u(x1) < 0.
We may assume that u < 0 in Ω1. Let V ∈ Cα

0 (Ω1) be a nonzero, nonnegative
function. Using the equivalence of the cones CP+W and CP+V , it follows that

u ∈ B
KP+V,φ

0 . Therefore, Lemma 2.3 implies that u < 0 in Ω∗
1. Hence −u is a

global nonnegative solution of the critical operator P . Thus u = cφ0, where c is
a real constant. �

In the following theorem we prove existence, uniqueness and integral
representation for solutions in β0 of the nonhomogeneous equation.
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Theorem 2.8. Let P be a subcritical operator in Ω.
(i) Let f ∈ Cα(Ω), 0 < α ≤ 1, be a real function such that

(2.7)

∫

Ω

GΩ
P (x, y)|f(y)|dy ∈ β0.

Then there exists a unique solution u ∈ β0 of the equation Pu = f in Ω.
Moreover,

u(x) =

∫

Ω

GΩ
P (x, y)f(y)dy.

(ii) Suppose that f ∈ Cα(Ω), 0 < α ≤ 1, and f ≥ 0. Then
∫

Ω

GΩ
P (x, y)f(y)dy ∈ β0

if and only if there exists a solution u ∈ β0 of the equation Pu = f in Ω. In this
case, u is the minimal nonnegative solution of the equation Pv = f in Ω.

P r o o f. (i) Let

un(x) =

∫

Ωn

GΩn

P (x, y)f(y)dy.

By the Lebesgue dominated convergence theorem and a standard elliptic argument,

u(x) = lim
n→∞

un(x) =

∫

Ω

GΩ
P (x, y)f(y)dy

is a solution of Pu = f in Ω. It follows that u ∈ β0. The uniqueness follows from
Theorem 2.6.

(ii) Suppose that u ∈ β0 is a solution of the equation Pu = f ≥ 0 in Ω.
Theorem 2.6 implies that u ≥ 0. Consider again the sequence

un(x) =

∫

Ωn

GΩn

P (x, y)f(y)dy.

Clearly, 0 ≤ un ≤ u in Ωn and therefore,

0 ≤ w(x) :=

∫

Ω

GΩ
P (x, y)f(y)dy = lim

n→∞

∫

Ωn

GΩn

P (x, y)f(y)dy ≤ u(x) ∈ β0.
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Part (i) implies now that w = u ∈ β0.
Let ŭ ≥0 be a solution of the equation Pv = f in Ω and consider again

the sequence {un}. By the generalized maximum principle 0 ≤ un ≤ ŭ. Hence,
u(x) = lim

n→∞
un(x) ≤ ŭ(x) and u is the minimal nonnegative solution of the

equation Pv = f in Ω. �

Remark 2.9. Condition (2.7) holds true if f/u is a small perturbation
of P in Ω for some u ∈ CP (Ω). In particular, it holds for all f ∈ β if 1 is a small
perturbation.
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