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ABSTRACT. In this paper we introduce some new results concerning the
maximum principles for second order linear elliptic partial differential equations
defined on a noncompact Riemannian manifold.

1. Introduction. We extend the classical generalized maximum prin-
ciple which holds in relatively compact subdomains to a generalized maximum
principle which holds in any domain, also we prove existence, uniqueness and
integral representation for solutions of the nonhomogeneous equation.

Let us first introduce some terminology and results which we need in this
paper.

Let P be a linear, second order, elliptic operator defined on a noncompact,
connected, C3-smooth Riemannian manifold  of dimension d. Here P is an
elliptic operator with real, Holder continuous coefficients which in any coordinate
system (U;xy,...,x4) has the form

(1.1) P(x,@x):—Zaw )0;0; +Zb )05 + c(x),
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where 0; = 0/0;,. We assume that for every = € €2 the real quadratic form

d

(1.2) Y a6 §= (6., &) €RY

h,j=1

is positive definite.

We denote the cone of all positive (classical) solutions of the elliptic
equation Pu = 0 in ©Q by Cp(Q2). In case that the coefficients of P are smooth
enough, we denote by P* the formal adjoint of P.

Definition 1.1. (i) If Cp(2) # 0 and P has a positive Green function
in , then P is said to be a subcritical operator in Q.

(i) If Cp(Q) # 0 and P does not have a positive Green function in S,
then P is said to be a critical operator in €.

(iii) If Cp(Q2) = 0, i.e. the elliptic equation Pu = 0 does not have a
positive solution in ), then P is said to be a supercritical operator in 2.

Remark 1.2. For Schrodinger equation
(—A+V)u=01in Q

where (2 is a connected open set in R™ and V is a real-valued function belonging
to Ly 10c(£2) with p > g for n > 2 and p =1 for n = 1, M. Murata [3] introduced

the following classification: (i) V' is subcritical if —A + V has a positive Green
function; (ii) V is critical if —A+V > 0 (nonnegative); and (iii)V' is supercritical
if —A 4V is not nonnegative. Definition 1.1 is due to [4].

Let {Q}7—, be an ezhaustion of 2, i.e. a sequence of smooth, relatively
compact domains such that Q; # 0, Q, C Qpy; and U Q) = Q. Assume

that Cp(Q) # (). Then for every k > 1 the Dirichlet Green function G’g’“ (x,y)

oo
exists and is positive. By the generalized maximum principle, {ng (, y)}]C . is
an increasing sequence which, by Harnak inequality, converges uniformly in any

compact subdomain of € either to G%(l‘, y), the positive minimal Green function
of P in Q and P is said to be a subcritical operator in €2, or to infinity and in
this case P is critical in 2. The operator P is said to be supercritical in § if
Cp(Q) = 0.

It follows that P is critical (resp. subcritical) in © if and only if P* is
critical (resp. subcritical) in Q. Furthermore, if P is critical in €2, then C'p(Q2) is
a one dimensional cone and any positive supersolution of the equation Pu = 0 in
2 is a solution. In this case ¢ € Cp(Q) in called a ground state of P in Q.

We fix a reference point z¢g € 2. From time to time, we consider the
convex set

Kp(Q) :={u e Cp(Q)/u(xzg) = 1}
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of all normalized positive solutions.

Remark 1.3. We would like to point out that the criticality theory, and
in particular the results of this paper, are also valid for the class of weak solutions
of elliptic equations in divergence form and also for the class of strong solutions
of strongly elliptic equations with locally bounded coefficients. Nevertheless, for
the sake of clarity, we prefer to present our results only for the class of classical
solutions.

Subcriticality is a stable property in the following sence. If P is subcritical
in Q and V € C§(Q2) is a real function, then there exist € > 0 such that P — pV
is subcritical, for all |u| < € [3, 4]. On the other hand, if P is critical in © and
V € C*(Q) is a nonzero, nonnegative function, then for every ¢ > 0 the operator
P + €V is subcritical and P — €V is supercritical in €.

We associate to € a fixed exhaustion {Qn} 7 ,. For every k > 1, we denote
Q= O\Q and for every k > ko we denote by Qo the ‘annulus’ 0\, Let
fyg € C(2) be positive functions. We say that f is equivalent to g on Q and use
the notation f = g, if there exists a positive constant C such that

Clg(z) < f(z) < Cg(x) for all z € Q.

We denote by f* (resp. f~) the positive (resp. negative) part of a function f.
So, f = fT — f~. By 1, we denote the constant function on Q taking at any
point z € ) the value 1.

Let B be a Banach space and B* its dual. If T' is a (bounded) operator in
B we denote by T* its adjoint. The range and the kernel of T" are denoted by R(T')
and N(T). For every f € B and ¢g* € B* we use the notation (g*, f) := ¢*(f).
We denote the spectrum of an operator T' acting on B by o(T).

Definition 1.4. Let P be an elliptic operator defined on Q. Afunction
u € C(2F) is said to be a positive solution of the operator P of minimal growth
in a neighborhood of infinity in Q if u satisfies the following two conditions:

(i) The function u is a positive solution of the equation Pu =0 in Q;

(ii) If v is a continuous function on ﬁz for some k > n which is a positive
solution of the equation Pu =0 in 7, and u < v on 08y, then u < v on .

Definition 1.5. Let P;, i = 1,2 be two subcritical operators in ). We
say that the Green functions G% (x,y) and G%Q (x,y) are equivalent (resp. semi-
equivalent) if G%l R~ G%Z on Q x Q\{(z,z)\x € Q} (resp. G%l(-,yo) ~ G%2(~,y0)
on Q\{yo} for some fized yo € Q).

Our maximum principles are of Phragmén-Lindel6f type and state that
if Pu> 0 in €, P is subcritical in 2 and u satisfies some growth condition near
infinity in €, then u > 0 (see Theorems 1.6 and 2.6 ). As a consequence, we prove
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existence and uniqueness theorems for suitable solutions of the nonhomogeneous
equation (see Theorems 1.8 and 2.8).

Let P be a subcritical operator in Q and let ¢ € C(Q2) be a positive
function such that ¢ is a solution of the equation Pu = 0 in 27 which has a
minimal growth in a neighborhood of infinity in €.

We denote by B the real ordered Banach space

B={ueC(Q)/|u(z)|] < cp(x) for some ¢ > 0 and all z € Q}
equipped with the norm
|lul| 5 = inf {¢ > 0/ |u(x)| < cop(z) Vo € Q}.

The ordering on B is the natural pointwise ordering of functions. For the purpose
of spectral theory, we consider also the canonical complexification of B without
changing our notation.

In [6] the following maximum principle for supersolutions in B is proved.

Theorem 1.6. Let P be a subcritical operator in 2 and let ¢ € C(§2) be
a positive function such that ¢ is a solution of the equation Pu = 0 in Q7] which

has a minimal growth in a meighborhood of infinity in Q. Suppose that v € B
satisfies the equation Pv = f >0 in Q, where f € C*(Q). Then v >0 in Q.

In the critical case we have (see [6])

Proposition 1.7. Let P be a critical operator in 2 and let ¢g be a ground
state of the operator P in ). Suppose that Pu > 0 in Q and that for some C > 0,
u>—Ce¢o in Q7. Then u = Ci¢y, where Cy is a real constant.

The maximum principle (Theorem 1.6) implies the following theorem

concerning the existence, uniqueness and integral representation for solutions
of the nonhomogeneous equation [6].

Theorem 1.8. Let P be a subcritical operator in € and let ¢ be a
positive solution of the equation Pu = 0 in Q] which has a minimal growth in a
neighborhood of infinity in §2.

(i) Let f € C*(2), 0 < a < 1, be a real function such that

(1.3) / GR(x) | f(v)| dy < Cé(x)
Q

for all x € Q5. Then there exists a unique solution u € B of the equation Pu = f
in Q. Moreover,

u(z) = / Gz, y)f (w)dy.
Q
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(ii) Suppose that f € C*(Q), 0 < a < 1, and f > 0. Then f satisfies
estimate (1.3) if and only if there exists a solution uw € B of the equation Pu = f
in Q. In this case, u is the minimal nonnegative solution of the equation Pv = f

mn €.

2. The results and their proofs. We present now a new version
of the maximum principle which extends Theorem 1.6 and is valid for solutions
which don’t grow too fast.

We denote by 3 = 3% the real ordered Banach space.

B=p%:={fecC)/|f(z) < cu(x) for some fixed ¢ > 0 and u € K,(Q ),

(2.1) and for all x € Q }
equipped with the norm
= inf inf{c>0 < Ve e},
/15 weilto )i {c>0/[f(2)] <cu(x)VeeQ}

p

The ordering on (3 is the natural pointwise ordering of functions. For the purpose
of spectral theory, we consider also the canonical complexification of § whithout
changing our notation. Clearly, B C 3 and there exist C' > 0 such that [|f||; < C
| fll g, for all f € B.

Recall that ¢ € C(9) is a fixed positive function such that ¢ is a solution
of the equation Pu = 0 in {27 which has a minimal growth in a neighborhood of
infinity in 2. We consider also the set

BE9 .— {f / f€C@Qy) forsome N eN, and Ve>03In > N,
Ce >0, uc € Kp(Q) such that |f(z)] < eue(z) + Cep(z) in Q}.

Remark 2.1. (i) Note that B&? N C(Q) is a closed subspace of 3. We
denote this Banach subspace by 3o = 8&. Clearly, B C fo.
(ii) Consider the following closed subspace of 3

(2.2) AK = {f €eC(Q) lim inf  sup {|f(2)] /u(x)} = O} ,

n—=00 ueKp() zeQy

which contains functions that grow slower than functions in K,(Q2). Clearly,
AKX C By and if B ¢ AK, then A® = 3. There are examples where B ¢ AKX
[2]. Note that A. Ancona proved recently that if P is symmetric with respect to
a Riemannian measure o, then B C AX [2].
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We first prove some lemmas which will imply the maximum principle
in ﬁ().
Lemma 2.2. Let P be a critical or subcritical operator in €. Suppose

that v € C(Q) N BX? is a solution of the equation Pu = 0 in 2 such that v =0
in 0Qy. Then v = 0.

Proof. Suppose that v(x;) > 0 for some z; € Q3 and let ¢ > 0. By
definition, there exist n € N, Cc > 0 and ue € K,(f2) such that |v(z)| < euc+Ce
in Q. By the generalized maximum principle |v(z)| < euc(z) + Cep(z) in Q3.
Let

Co,e =inf{C > 0/euc + Cop(z) —v(z) >0in Q3 }.

It follows that euc+Co p(x) —v(x) > 0in Q5. Since ¢ is a positive solution of the
equation Pu = 0 in 25 which has a minimal growth in a neighborhood of infinity
in Q, it followes that there exist 6 = d(e) > 0 such that eu. + Co cp(x) — v(z) >
dp(x) in Q5. By the minimality of Cy, we infer that for every e > 0 Cy = 0.
Hence, euc —v(z) > 0 in Q5 for every e > 0, contradicting the hypothessis that
v(zy) >0. O

Lemma 2.3. Let P be a critical or subcritical operator in ). Suppose
that v e C(Q3)NBI? is a solution of the equation Pu = 0 in Q5 such that v 2 0
on 0Qy. Then v 2 0 and v/¢ is bounded in Q5. Moreover, if v >0 on 0y then
v 18 a positive solution of minimal growth in a neighborhood of infinity in ).

Proof. Denote by wg, k& > 2 the solutions of the following Dirichlet
problems

Pu=0 in o,

u=v on 0f,

u=0 on 0.
By the generalized maximum principle, the sequence {wy, }r~2 is a nondecreasing
bounded sequence of nonnegative solutions which converges to a function w <
Cig. Recall that v # 0 on 0. It follows that w is a nonzero, nonnegative
solution of the equation Pu = 0 in Q3 (in fact, w > 0 on at least one component
of Q%). Moreover, if v > 0 on 99, then w is a positive solution of minimal

growth in a neighborhood of infinity in 2.
Let v, k > 2, be the solutions of the Dirichlet problems

Pu=0 in Qo
u=0 on 0o,

u=v on 0.
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Then v = wy, + v; and therefore, the sequence {v},., coverges to a function
vg. On the other hand, since v € B£’¢, it follows that for every ¢ > 0 there
exist n € N, Cc > 0 and u, € K,(2) such that |v(z)| < eu + Ce¢p in Q. By
the generalized maximum principle, for every k > n we have |vg(z)| < eu, + Ced
in O} 5. Hence, [vo(z)| < eue + Ceg in Q5 and vy € BE?. Lemma 2.2 implies
that vg = 0. Hence, v = w > 0 and v is a nonnegative solution such that v/¢ is
bounded in Q3. O

Lemma 2.4. Let P be a critical or subcritical operator in 2. Let f €
C*(%5) be a nonnegative function. Suppose that v € C(Qy) N BL? is a solution
of the equation Pu = f in Q5 such that v >0 on 0Q. Then v > 0. Moreover,

(2.3) oa) =h(o) + [ G @) 1wy
85

where h € C(Qy) is a nonnegative solution of the equation Pu = 0 in Q} which
is bounded by C'¢ (for some constant C' > 0) and satisfies the boundary condition

h=v on 8Qs. In particular, [ Ggg (z,y)f(y)dy < co.
Q3

Proof. Since |[v| = v+ + v, it follows that v* € BE?. Let Wk,+, k> 2
be the nonnegative solutions of the Dirichlet problems

Pu=f* in Qo,
u=ovt on 09,

u=ovt on 0.

By the generalized maximum principle and the definition of BLE? it follows that
for every € > 0 there exist n € N, C. > 0 and u. € K,(2 ) such that for every
k > n we have 0 < wy, —(x) < euc+Ce¢p in Q} o- By a standard elliptic argument,
the sequence {wy _} has a converging subsequence to a nonnegative solution of
the equation Pu = 0 in 25 which takes the value zero on 023. Since any such
solution is in B£’¢, it follows from Lemma 2.2 that it is the zero solution and

lim wg _ = 0.
k—oo

On the other hand, wy ; > 0 and since
(2.4) Wk 4 — Wk, — =,

it follows that lim wyy =v > 0.
k—oo
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Note that

wi (o) = (o) + o)+ [ GR ) f(w)d,

where hj, satisfies
Pu=0 in o,

u=v on 0,
u=0 on O,
and g satisfies
Pu=0 in Qo,
u=0 on 0o,
u=v on 0.

Clearly, 0 < hy < C¢, and {hy} converges to a nonnegative solution h of the
equation Pu = 0 in €3, which is bounded by C'¢ and satisfies the boundary
condition A = v on 023. On the other hand, for every ¢ > 0 there exist n € N,
Ce > 0 and u, € K, () such that for every k > n we have 0 < gi(x) < eu+Cc¢ in
92,2' The same argument used for wy, _ — 0 demonstrates now that the sequence
{gr} converges to zero.

Moreover, the sequence { J Gg“ (x,y)f (y)dy} is a nondecreasing locally
Qg 2
bounded sequence of nonnegative solutions of the equation Pu = f. By monotone

convergence, this sequence converges to [ Ggg (z,y)f(y)dy and the lemma

Q3

follows. O

Lemma 2.5. Let P be a critical or subcritical operator in € and let
U € C(8Qy) be a real function. Let f € C*(Qy) be a real function such that

(2.5) [cEwliwli < 55
J

2

Then there exists a unique solution v € C(€3) N BE? of the equation Pu = f in
Q5 which satisfies v =¥ on 0§25. Moreover,

oa) =h(o) + [ G @) 1wy
4
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where h(z) is a solution of the homogeneous equation Pu = 0 in 25 which satisfies

h =W on 0025 and |h(x)| < Co(x) in Q5 for some C > 0.

Proof. Let hy be the unique nonnegative solution of the equation Pu = 0
in 3 which is bounded by C¢ for some constant C' > 0, and satisfies hy = U™
on 0§25. Consider the function

velo) = (o) + [ G )y,
Q3

Clearly, vy € C(Q%) N BE? and satisfies the equation Pvr = f* in 25 and the
boundary condition v4 = ¥* on Q5. Therefore, the function v = vy —v_ is a
desired solution. The uniqueness follows from Lemma 2.2. O

Now we establish the maximum principle for solutions which do not grow
too fast at infinity.

Theorem 2.6. Let P be a subcritical operator in ). Suppose that Pv =
f>01inQ, where f € C*(Q) and v € By. Then v >0 in .

Proof. Suppose that there exists 1 € Q such that v(x;) > 0. Then
there exists a ball B = B( x1,¢) C © such that v > 0 in B. Lemma 2.4 implies
that v > 0 in B} := Q\ B, and therefore v > 0 in .

So, we may assume that v < 0 in 2 and suppose that there exists 1 € Q
such that v(z1) < 0. Then there exists a ball B, = B(x1,¢) C Q such that v < 0
in B.. Without loss of generality, we may assume that B, C €2y. Let u be the
solution of the following Dirichlet problem

Pu=0 in Q\Be,
u=0 on 0B,
u=v on 0.

Using again the generalized maximum principle and Lemma 3.6 it follows that
lim uep = 0.
k—oo
Consider also the Dirichlet problem
Pu=0 in Q\Be,

u=v on 0B,

u=0 on O,
and denote its negative solution by v . Set v, := klim Ve - Clearly, 0 < —v, <

— 00

CeG%(~,m1). Using the well known asymptotic behavior of G%(~,x1) near the
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pole z1, it follows that there exists C' > 0 such that for ¢ > 0 small enough
0 < —v. < Ced2GR(-,21) ifd > 3, and 0 < —ve < —C(loge) " 'GL(-,21) if d = 2.
Therefore, 1in% ve = 0.

€—

Finally, let w, j be the solution of the Dirichlet problem

Pu=f in Q\Be,
u=0 on 0B,
u=0 on 0Q.

Then wj, > 0. On the other hand,
(2.6) U= Uefp + Ve + We k-

Letting first & — oo and then € — 0 in equation (2.6), we obtain that

v = lim <lim we,k> >0

e—0 \ k—oo

contradicting the hypothesis that v <0, v #0. O

The next proposition deals with the critical case and extends Pro-
position 1.7.

Proposition 2.7. Let P be a critical operator in 2 and let ¢g be a ground
state of the operator P in Q. Let W € C§ () be a nonzero, nonnegative function.

Suppose that Pu > 0 (Pu < 0) in Q, where u € ﬁg(PJ’W. Then u = C¢g, where
C1 is a real constant.

Proof. Suppose that Pu 2 0. Then there exists V € C§(Q2) a nonzero
nonnegative function such that (P + V)u > 0in €. Since the cones Cp iy and

Cp, v are equivalent [4], it follows that u € Bg( PHVe - Applying the maximum
principle (Theorem 2.6) it follows that u > 0. Therefore, u is a nonnegative
supersolution of the critical operator P and hence u = c¢g, where ¢ > 0.
Assume that Pu = 0. If uw > 0, then u = c¢g. Suppose that u(z1) < 0.
We may assume that u < 0in ©;. Let V € C§(Q1) be a nonzero, nonnegative
function. Using the equivalence of the cones C'pyw and Cpyy, it follows that

u € Bé(PJ’V"z’. Therefore, Lemma 2.3 implies that v < 0 in 7. Hence —u is a
global nonnegative solution of the critical operator P. Thus u = c¢g, where c is
a real constant. O

In the following theorem we prove existence, uniqueness and integral
representation for solutions in 5y of the nonhomogeneous equation.
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Theorem 2.8. Let P be a subcritical operator in 2.
(i) Let f € C*(2), 0 < a < 1, be a real function such that

27) [ GBaalrwldy e oo

Q
Then there exists a unique solution u € [y of the equation Pu = f in .
Moreover,

- / Gz, y) [ (w)dy
Q

(ii) Suppose that f € C*(Q), 0 < a <1, and f > 0. Then

/Gﬂxy y)dy € Bo

if and only if there exists a solution u € By of the equation Pu = f in . In this
case, u is the minimal nonnegative solution of the equation Pv = f in €.

Proof. (i) Let
un(z) = /G%"(:U,y)f(y)dy-
1979

By the Lebesgue dominated convergence theorem and a standard elliptic argument,

n—oo

u(@) = lim un(z) = / Gz, y)(w)dy

is a solution of Pu = f in Q. It follows that u € By. The uniqueness follows from
Theorem 2.6.

(ii) Suppose that u € fy is a solution of the equation Pu = f > 0 in .
Theorem 2.6 implies that « > 0. Consider again the sequence

- [6¥ s
Qp

Clearly, 0 < u,, < u in €, and therefore,

0< w( /pry dy—hm/G (2 9)F(w)dy < u(z) € Bo.
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Part (i) implies now that w = u € .

Let @ >0 be a solution of the equation Pv = f in {2 and consider again
the sequence {u,}. By the generalized maximum principle 0 < u,, < %. Hence,
u(z) = lim wu,(x) < @(z) and w is the minimal nonnegative solution of the

n—oo
equation Pv = fin Q2. O

Remark 2.9. Condition (2.7) holds true if f/u is a small perturbation
of P in Q for some u € Cp(f2). In particular, it holds for all f € §if 1 is a small
perturbation.
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