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1. Introduction. We say that an entire function f(z) is slowly in-

creasing if it belongs to Paley-Wiener-Schwartz (PWS) space, i.e., if for some

constants c > 0, m a non-negative integer, and σ ≥ 0

|f(z)| ≤ c(1 + |z|)m eσ|=(z)|, z ∈ C.

According to a result of Hörmander [10], [12], [17] an entire function belongs to

PWS space if and only if its Fourier transform is a tempered distribution with

a compact support in [−σ, σ]. In Section 2 of the present article we give a rep-

resentation of the PWS space in terms of a two-parametric decomposition into

sub-spaces with respect to the degree of the polynomial asymptotic on the real

line and the type of the entire functions. We show (see Lemma 1) that a function

is from a sub-space of our decomposition if and only if it is of given exponential

type and has a prescribed asymptotic on the real line. In Section 3 we charac-

terize the PWS space as a union of three-parametric linear normed subspaces

determined by the type of the entire functions, their polynomial asymptotic on

the real line, and the index p ≥ 1 of Sobolev type Lp-summability of the entire

functions on the real line with an appropriate weight function (see Theorem 1 and

Theorem 2). Each entire function belonging to a sub-space of the decomposition

is representable by a locally uniformly convergent sampling series. The sampling

formula obtained extends the Shannon sampling theorem [8], [13], [18], [20] to

band-limited signals having a polynomial time asymptotic preserving the optimal

Nyquist rate of sampling. The Shannon sampling theorem is a fundamental result

in the field of information theory, in particular telecommunications. Sampling is

a process of converting a signal (a function of continuous time) into a numeric

sequence (a function of discrete time). The process is called also analog-to-digital

conversion or digitizing. A sampling procedure gives a digital sequence (sequence

of numbers, functional values) which permits a complete recovery of the signal

with bounded highest frequency. We obtain Shannon type sampling formulas

that are of practical usefulness when digitize signals with polynomial growth on

the time axis. They can be used to accelerate the convergence of sampling series

even in the classical Shannon case. We extend also certain representation formu-

las due to Bernstein [2], [3] (see Example 1) and a transcendental interpolating

theory due to Levin [14] (see Corollary 2). By using a comparison with similar

results in the sampling theory [6], [5], [16] we attempt to see the usefulness of the

results obtained in the present article.
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2. Decomposition of Paley-Wiener-Schwartz Space.

Definition. An entire function f is said to be of exponential type σ > 0

if for every ε > 0 there exists a constant c(ε) such that

|f(z)| ≤ c(ε) e(σ+ε) |z| (z ∈ C) .

Thus, any entire function of order ρ < 1 is of exponential type σ and so

is any entire function of order 1 and type at most σ. Let us mention that the

representation theory for entire functions of exponential type is a useful tool for

establishing results on approximate recovery of functions on the real line. Bern-

stein [1] started the subject by proving an analog of Weierstrass approximation

theorem: A function defined on R can be approximated arbitrary closely by en-

tire functions of exponential type in C(R)-metric if and only if it is uniformly

continuous. An interesting recent contribution to the theory of approximation by

entire functions of exponential type can be found in [15].

For our study will be more convenient to give the following definition for

the linear space of PWS functions that is obviously equivalent to the usual one.

Definition. Let σ ≥ 0 be fixed. An entire function f(z) is from the linear

space PWSσ if for some non-negative integer m

|f(z)| = o(|z|m eσ|=(z)|), |z| → ∞ (z ∈ C).

Then obviously,

PWS = ∪σ≥0 PWSσ .

According to a result of Hörmander [10], [12], [17] an entire function is

from PWSσ if and only if its Fourier transform is a tempered distribution with a

compact support in [−σ, σ]. If σ = 0, i.e., f(z) ∈ PWS0, then f(z) is a polynomial

of degree at most m− 1 and its Fourier transform has a support at 0. Hence, the

non-trivial considerations are for σ > 0.

Let N0 denote the set of all non-negative integers.

Definition. Let m ∈ N0 and σ ≥ 0 be fixed. An entire function f(z)

belongs to PWSσ,m (a sub-space of PWSσ) with parameters σ and m if

|f(z)| = o(|z|m eσ|=(z)|), |z| → ∞ (z ∈ C).
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Obviously,

PWSσ = ∪m∈N0
PWSσ,m and PWS = ∪σ≥0 PWSσ = ∪σ≥0,m∈N0

PWSσ,m .

We prove that the set PWSσ,m is in fact the linear space of all entire functions of

exponential type σ having o(|x|m), |x| → ∞ polynomial asymptotic on the real

line. If f ∈ PWSσ,m then trivially, it is of exponential type σ with a polynomial

asymptotic o(|x|m), |x| → ∞ on R but the converse statement is not obvious. In

order to establish the converse statement we need auxiliary results, some of them

well known.

Definition of a harmonic measure of an arc. Let D be a domain

bounded by a finite number of rectifiable Jordan curves Γ. Let Γ = α1 ∪ α2 and

int(α1)∩int(α2) = ∅, where α1 and α2 are finite sets of Jordan arcs. The function

ω(z, α1; D) which is harmonic in D and takes value 1 on α1 and value 0 on α2 is

called a harmonic measure of α1. Then ω(z, α1; D) + ω(z, α2; D) = 1(z ∈ D) and

this is called a harmonic unit decomposition.

Here is an important theorem that plays an auxiliary role in our consid-

erations.

Theorem A (brothers Nevanlinna and Ostrowskii n-constants

theorem) [11]. Suppose f is harmonic in a domain D with a boundary, the

union of n distinct rectifiable arcs α1, . . . , αn and for each j there is a constant

Mj such that if z approaches any point from αj, the limits of |f(z)| do not exceed

Mj (in absolute value). Then,

log |f(z)| ≤
n
∑

j=1

ω(z, αj ; D) log Mj .

Next, we present a Lindelöf type result [11] on uniform limiting behavior

of a holomorphic function.

Lemma A. Let f(z) be holomorphic and bounded in the upper half plane.

If f(z) is continuous at all finite points of the real axis, and f(x) → l, x → ∞,

then

lim
z→∞

f(z) = l

uniformly in any sector 0 ≤ arg(z) ≤ π − δ, δ > 0.
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P r o o f o f L e mma A. Without any restriction we suppose that

|f(z)| ≤ 1 (=(z) > 0) and l = 0.

Given ε > 0 we can find xε large enough xε ∈ R such that

|f(x)| ≤ ε (xε ≤ x <∞ ).

We apply the n-constants theorem of brothers Nevanlinna and Ostrowskii for n =

2 in the upper half plane D with arcs α2 = (−∞, xε), M2 = 1 and α1 = (xε,∞),

M1 = ε to obtain

log |f(z)| ≤ ω1(z, α; D) log ε (0 < ε < 1),

where ω1(z, α; D) is the harmonic measure of (xε,∞) with respect to D and

evaluated at the point z. Observe that

ω1(z, α; D) =
ϕ

π
= 1 −

1

π
arg(z − xε),

where ϕ is the angle under which (xε,∞) is seen from the point z. In the sector

0 ≤ arg (z − xε) ≤ π (1 − γ) we have

γ ≤ ω1(z, α; D) ≤ 1.

Hence,

log |f(z)| ≤ γ log ε, |f(z)| ≤ εγ

and we complete the proof. �

In Lemma 1 we establish a result on asymptotic global behavior of entire

functions of exponential type on the complex plane C with isolated point at ∞.

It shows that a function is from PWSσ,m if and only if it is entire of exponential

type σ and has asymptotic o(|x|m), |x| → ∞ on the real line.

Lemma 1. Let f be entire function of exponential type σ. Then

f(x) = o (xm) , |x| → ∞ (x ∈ R)

if and only if

f(z) = o(zm eσ |y|), |z| → ∞ (z ∈ C, z = x+ iy, i2 = −1)
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uniformly on the complex plane C.

P r o o f. First note that if f(x) = O (xm ) , |x| → ∞ (x ∈ R), then the

auxiliary entire function

r(z) :=



 f(z) −
m−1
∑

j=0

( f (j)(0)/j! ) zj





/

zm

is O(1), |x| → ∞. Applying Bernstein’s inequality for entire functions of expo-

nential type [1] we obtain (z = x+ iy, i2 = −1)

|r(z)| ≤
∞
∑

k=0

|r(k)(x)||y|k/k! ≤ |r|C(R)

∞
∑

k=0

(σ|y|)k/k! = O(eσ |y|),

uniformly on the complex plane C. Hence,

f(z) = O
(

zmeσ |y|
)

and this is a well known result [1].

However, our goal is to prove not O(◦) but o(◦) estimate. Analogously,

consider the auxiliary entire function of exponential type σ

r(z) :=



f(z) −
m−1
∑

j=0

(f (j)(0)/j!) zj





/

zm.

Then, the entire function R(z) := r(z) eiσz is of exponential type with a Phragmén-

Lindelöf logarithmic indicator [4] at π/2

hR (π/2) := lim sup
y→∞

log |R(iy)|

y
≤ 0.

In view of

|R(x)| = |r(x)| = o(1), |x| → ∞,

the function R is bounded on R. Hence [4, Theorem 6.2.4], the function R is

bounded on the upper half plane. Since R(x) → 0, x → ∞, Lemma A implies

that R(z) → 0, |z| → ∞ and uniformly in 0 ≤ arg(z) ≤ π/2. In view of this

we obtain

r(z) e−σ |y| → 0, |z| → ∞,
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uniformly in 0 ≤ arg(z) ≤ π/2. Similar arguments show that in any sector of

opening π/2 the above limit holds hence, we can conclude that the above limit

holds uniformly in 0 ≤ arg(z) ≤ 2π ,i.e., uniformly on C. This completes the

proof. �

Remark. Lemma 1 shows that the Paley-Wiener-Schwartz space can

be characterized as the linear space of all entire functions of exponential type

having a polynomial asymptotic on the real line.

3. Shannon Sampling Theorem for Bandlimited Signals with

Polynomial Time Asymptotic. Let us denote by Bσ,p the normed linear

space of all entire functions of exponential type that belong to Lp(R) on the real

line, 1 ≤ p < ∞. A σ band-limited signal is a function of continuous time (the

real line) such that its Fourier transform, i.e., its representation as a function of

the frequency variable has a finite support in [−σ, σ]. A signal is said to have

a bounded energy if it is L2(R)-summable. Hence, the set of all σ band-limited

signals with bounded energy is in fact the normed linear space Bσ,2 equipped

with L2(R) norm. According to a result of Paley-Wiener [1]: f ∈ Bσ,2 if and only

if supp(f̂) ⊂ [−σ, σ] and f̂ ∈ L2[−σ, σ]. Sampling is a process of converting a

signal (function of continuous time) into a numeric sequence (function of discrete

time). The process is based on an appropriate interpolating formula given below

and it is called also analog-to-digital conversion, or digitizing.

Shannon Sampling Theorem [8], [13], [18], [20]. Let f ∈ Bσ,2. Then

f(z) =
∑

k∈Z

f(kπ/σ)
sin(σz − kπ)

σz − kπ
,

the sampling series being absolutely and uniformly convergent on R and l.u.c.

on C.

Remark. The meaning of the Shannon sampling formula (see above) is

that the signal f(x) of continuous time x is completely determined by the digit

sequence {f(kπ/σ), k ∈ Z} that is a function of discrete time. The Shannon

sampling theorem holds also for the normed linear space Bσ,p, endowed with

Lp(R) norm, of all σ-band limited signals that are Lp(R)-summable on the real

line (1 ≤ p < ∞) [9]. It is known [1] that Bσ,p1
⊂ Bσ,p2

for 1 ≤ p1 < p2 < ∞.

Note that for p > 2 the Fourier transform of f ∈ Bσ,p is a generalized function so,

some additional considerations are needed in the proof of the Shannon formula
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for Bσ,p signals, p > 2. The Shannon sampling theorem states conditions under

which a sampling of σ band-limited signal at a rate π/σ represents no loss of

information and can therefore be used to reconstruct (recover) the original signal

with arbitrary at the very beginning chosen accuracy. The sampling theorem

states that the signal must be band-limited which is a natural restriction assuming

that there are no waves with arbitrary small length, and that the rate of sampling

must be at least twice the reciprocal value of the signal bandwidth (multiplied by

π). The sampling rate π/σ is called Nyquist rate and it is optimal in a sense that

no information is lost if a signal is sampled at the Nyquist rate, and no additional

information is gained by sampling faster than this rate.

Remark. We obtain exact sampling recovery by digitizing of band-

limited signals having a polynomial time asymptotic at the optimal Nyquist rate

(see Theorem 1 and Theorem 2). Even in the classical case of Bσ,2 signals the

Shannon sampling series can be very slowly convergent. By using the sampling

formulas obtained we can accelerate the convergence of the sampling series at the

cost of a finite number of additional digits (functional values and values of the

derivatives) to be added to the sampling sequence.

The proof of the sampling formula for PWS functions (see Theorem 1)

uses the following Hermite weighted polynomial interpolation.

Lemma 2. Let f be enough smooth function, let S1 := {mµπ/σ, µ =

1, . . . , r1} be a set of zeros of sinσz, and let S2 := {zν , ν = 1, . . . , r2} be a set

of points non of them zero of sinσz. Let {λ1, . . . , λr1
} and {β1, . . . , βr2

} be two

sets of positive integers such that

r1
∑

µ=1

λµ +

r2
∑

ν=1

βν = m.

Then, there exists a unique algebraic polynomial qm−1 of degree ≤ m − 1 which

is a solution of the following weighted interpolating problem:

(sinσz qm−1(z))
(j)
z=mµπ/σ =

(

f(z) −
r1
∑

κ=1

f
(mκπ

σ

) sin(σz −mκπ)

σz −mκπ

)(j)

z=
mµπ

σ

for j = 1, . . . , λµ and µ = 1, . . . , r1 ,
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and

(sinσz qm−1(z))
(j)
z=zν

=

(

f(z) −
r1
∑

κ=1

f
(mκπ

σ

) sin(σz −mκπ)

σz −mκπ

)(j)

z=zν

for j = 0, . . . , βν − 1 and ν = 1, . . . , r2 .

Remark. The coefficients of qm−1 are uniquely determined by the

interpolation data f (j)(mµπ/σ) ( j = 0, 1, . . . , λµ ; µ = 1, . . . , r1 ) and f (j)(zν)

( j = 0, 1, . . . , βν − 1 ; ν = 1, . . . , r2 ) .

P r o o f o f L emma 2. Applying Newton-Leibnitz differentiation rule

we obtain

(sinσz qm−1(z))
(j)
x=mµπ/σ = j σ (−1)mµ q

(j−1)
m−1 (mµπ/σ) +

j−2
∑

s=0

αs,j q
(s)
m−1(mµπ/σ)

to conclude that the interpolating conditions for the function sinσz qm−1(z) at

the point mµπ/σ ∈ S1, are in fact Taylor’s type interpolating conditions up to

(λµ − 1)-derivative for qm−1(z) at the same point mµπ/σ . Summing up, we have

Hermite interpolation problem for qm−1 based on m interpolation conditions and

this ends the proof. �

Let us denote by Eσ the complex vector space of all entire functions of

exponential type σ > 0 and let us define for fixed σ > 0, m ∈ N0, and p ≥ 1 the

following subspace of Eσ:

Aσ,p,m :=







f : f ∈ Eσ; f(x) = o(xm), |x| → ∞;
∑

k∈Z\{0}

|f(kπ/σ)|p

|k|mp
<∞







.

Then by Lemma 1

PWS = ∪σ≥0, m∈N0, p≥1Aσ,p,m

and

PWSσ = ∪m1∈N0
PWSσ,m1

= ∪m2∈N0, p≥1Aσ,p,m2

and for 1 ≤ p1 < p2 < ∞: Aσ,p1,m ⊂ Aσ,p2,m . Note that if f ∈ PWSσ,m, then

for sure f ∈ Aσ,p,m+1, p > 1. Later, we shall prove that in the case 1 < p < ∞,

the linear space Aσ,p,m coincides with the linear normed space of all functions f
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from Eσ, satisfying the following Sobolev type of weighted integrable condition

(weighted Lp-norm):
∫

R

|f(x)|p

(1 + x2)mp/2
dx < ∞ .

Remark. The example zm−1 sin(σz) (σ > 0, p = 1) shows that both

functional classes are not equivalent when p = 1. Obviously, zm−1 sin(σz) ∈

Aσ,1,m but does not satisfy the above Sobolev type integrable condition (p = 1).

Theorem 1. Let f ∈ Aσ,p,m, where p ≥ 1 and m ∈ N0. Given two

sets S1 = {mµπ/σ, µ = 1, . . . , r1} and S2 := {zν , ν = 1, . . . , r2} together with

positive integer multiplicities {λµ, µ = 1, . . . , r1 } {βν , ν = 1, . . . , r2 }, let qm−1

be the unique interpolating solution from Lemma 2. Let us define

Ωm(z) :=

r1
∏

µ=1

(z − mµπ/σ)λµ

r2
∏

ν=1

(z − zν)
βν and ω1 := {m1, . . . ,mr1

} .

Then, the following Shannon type sampling formula holds

f(z) =

r1
∑

µ=1

f
(mµπ

σ

) sin(σz − mµ π)

σ z − mµ π

+ Ωm(z)
∑

k∈Z\ω1

f(kπ/σ)

Ωm (kπ/σ)

sin(σz − kπ)

σz − kπ
(1)

+ sinσ z qm−1(z) .

The infinite series in the sampling formula (1) is absolutely and uniformly con-

vergent on R and l.u.c on C. The sampling representation (1) is l.u.c. on C.

Remark. The sampling formula (1) can be considered as a blending

interpolant based on two processes: One of them is the usual Shannon sam-

pling process at the Nyquist rate π/σ and the other one is weighted Hermite

interpolation process by using additional finite m bits of information, functional

and derivative values. Blending these two interpolating procedures results in a

new sampling formula (1), where the digital sampling sequence consists of the

functional values multiplied by appropriate sampling multipliers
{

f(kπ/σ)

Ωm (kπ/σ)
, k ∈ Z\ω1; f(lπ/σ), l ∈ ω1

}
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plus m functional and derivative values of f . The sampling sequence has asymp-

totic o(1), |k| → ∞. Hence, at the cost of additional m bits of information we

digitize a band-limited signal with polynomial time asymptotic without any loss

of information by using the Nyquist optimal rate. This gives a new sampling

characterization of the PWS space in terms of classical functions, not distribu-

tions.

P r o o f o f Th e o r em 1. Let us consider the series

∑

k∈Z\ω1

f(kπ/σ)

Ωm (kπ/σ)

sin ( σz − kπ)

σz − kπ
.

In view of
∑

k∈Z\ω1
|f(kπ/σ)/Ωm(kπ/σ)|p < ∞, where p ≥ 1 we conclude (see

[14]) that the above series, being locally uniformly convergent on C, represents

an entire function of exponential type σ which is Lp(R) integrable on the real

line [14]. By using Bernstein’s inequality for entire functions of exponential type

[1] it is seen that the function is o(1), |x| → ∞ on the real axis and by Lemma

1, it is o
(

eσ |y|), |z| → ∞, z = x+ iy, i2 = −1 uniformly on the complex plane.

Let us denote by h(z) the right hand side of the formula (1). Then,

assuming that f(x) = O ( xm ) , |x| → ∞ and by using Lemma 1 and the

inequality

| sinσz | ≥
1

3
eσ |y| ( z ∈ Γn ) ,

where Γn is the square contour with corners (n+ 1/2) π
σ (± 1 ± i) (n ∈ N0 ), we

conclude that the auxiliary entire function

r(z) := ( f(z) − h(z) ) / ( Ωm(z) sinσz )

is bounded on Γn (n → ∞) and from the maximum modulus principle, the

function r(z) is bounded on the complex plane. By Liouville’s theorem r(z) must

be a constant on C, i.e.,

f(z) =

r1
∑

µ=1

f
(mµπ

σ

) sin(σz − mµ π)

σ z − mµ π

+ Ωm(z) sin σz
∑

k∈Z\ω1

(−1)k f(kπ/σ)

Ωm (kπ/σ) (σz − kπ)

+ sinσ z qm−1(z) + AΩm(z) sinσz .
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The restriction f(x) = o (xm) , |x| → ∞ (x ∈ R) implies that the constant A

must be zero.

The sharpness of our result. Estimating the sharpness of Theorem 1

we may ask the following question: Can we recover exactly σ-bandlimited signals

with O(xm), |x| → ∞ (x ∈ R) time asymptotic by sampling at the optimal

Nyquist rate π/σ with an additional m – bits Hermite type of information to the

sampling sequence, as it is in Theorem 1?

The simple example Ωm(z) sin σ z shows that this is not possible. In

other words, the asymptotic

f(x) = o(xm), |x| → ∞ (x ∈ R)

is the best possible for exact sampling recovery of f ∈ PWSσ based on interpola-

tion data at {kπ/σ+α, k ∈ Z, α ∈ R} and an additional, m - bits Hermite type

information - functional values and derivatives of f(z). Similar example shows

that σ-bandlimited signals with o(xm), |x| → ∞ (x ∈ R) time asymptotic can

not be recovered by sampling at rate π/σ plus less than m additional bits of

information.

Remark. Let us clarify that the sampling formula (1) is interpolating

at kπ/σ, k ∈ Z, satisfies additional m Hermite interpolating condition, and has

been constructed by the following interpolation data:

f(kπ/σ), k ∈ Z ;

f (j)(mµπ/σ), j = 1, . . . , λµ, µ = 1, . . . , r1;

f (j)(zν), j = 0, . . . , βν − 1, ν = 1, . . . , r2 (zν 6= kπ/σ);
r1
∑

µ=1

λµ +

r2
∑

ν=1

βν = m.

Remark. The case m = 0 covers the well known Shannon sampling

theorem (see p. 417). In the particular case m = 1, S1 = {0}, and S2 = ∅ the

corresponding interpolating formula has been known since 1934 [19], [6, Theorem

4, and the footnotes on p. 47] but under more stringent conditions.

Example 1. The case ω1 = {0} (r1 = 1, m1 = 0, λ1 = m) and S2 = ∅

has been considered by Bernstein [3] under the condition

(2) f(kπ/σ) = O (| k |α) , | k | → ∞ ( k ∈ Z, α < m ),
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which is a bit more restrictive than f ∈ Aσ,p,m. In this particular case of Theorem

1 we have Ωm(z) = zm and the corresponding sampling formula reads as follows

f(z) = f(0)
sin σz

σz
+ (σz)m sinσz

∑

k∈Z\{0}

(−1)k f(kπ/σ)

(kπ)m(σz − kπ)

+ sin σ z qm−1(z) ,

The coefficients of qm−1 are linear combinations of the data

{

f(0), f ′(0), . . . , f (m)(0)
}

.

and they are uniquely determined by the Hermite interpolating conditions (see

Lemma 2)

[

f(x) − f(0)
sin σ x

σ x

](j)

x=0

= [sinσ x qm−1(x)]
(j)
x=0 , j = 1, 2, . . . ,m

and in view of this the coefficients of qm−1 can be computed by using the recursion

formulas

q
(2l)
m−1(0) =

1

2l + 1

l
∑

k=1

σ2k

(

2l + 1

2k + 1

)

(−1)k+1 q
(2l−2k)
m−1 (0) +

1

(2l + 1)σ
f (2l+1)(0)

(l = 0, 1, . . . ; 2l ≤ m− 1)

q
(2l+1)
m−1 (0) =

1

2l + 2

l
∑

k=1

σ2k

(

2l + 2

2k + 1

)

(−1)k+1 q
(2l−2k+1)
m−1 (0)

+
1

(2l + 2)σ

(

f (2l+2)(0) + f(0)
(−1)l

2l + 3
σ2l+2

)

(l = 0, 1, . . . ; 2l + 1 ≤ m− 1).

In particular, qm−1(0) = f ′(0)/σ, q′m−1(0) = f ′′(0)/(2σ)+σ f(0)/6, q′′m−1(0) =

f ′′′(0)/(3σ)+σ f ′(0)/3, q
′′′

m−1(0) = f (4)(0)/(4σ)+σ f ′′(0)/2+7σ3 f(0)/60, etc.

Concerning Bernstein condition (2), we take as an example

f(z) := (σ z)m
∑

k∈Z\{0}

yk

(kπ)m

sin(σ z − kπ)

σ z − kπ
,

where y2s := 2ms−√
s (s ∈ N0) and yk := 0 (k 6= 2s (s ∈ No, k ∈ Z ) .

Then, f ∈ Aσ,m,p (p ≥ 1) but it does not satisfy the condition (2). Conversely,
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each function from Eσ which is o(xm) (|x| → ∞) and satisfying (2), belongs to

Aσ,m,p for some p ≥ 1. Hence, our condition of weighted lp-summability (see

the definition of the linear space Aσ,m,p) of the sampling sequence is weaker than

that proposed by Bernstein (2) and gives a complete characterization of the PWS

space. Moreover, we shall see that the class Aσ,m,p can be completely characterized

by an Lp(R) weighted integral norm of Sobolev type.

Example 2. Let z1, z2, . . . , zm be m numbers on the complex plane such

that sinσzl 6= 0, l = 1, . . . ,m,. So, we have S1 = ∅ and S2 = {z1, . . . , zm} (r2 =

m, β1 = · · · = βm = 1). The unique solution qm−1(z) of the interpolating

problem (see Lemma 2)

qm−1(zl) =
f(zl)

sinσzl
(l = 1, . . . ,m)

is easily constructed by Lagrange interpolating formula. Thus, in this particular

case of Theorem 1, we have Ωm(z) =
∏m

ν=1 (z − zν) and the corresponding

sampling formula (see Theorem 1) has the form

f(z) = Ωm(z) sinσz
∑

k∈Z

(−1)k f(kπ/σ)

Ωm(kπ/σ) (σz − kπ)
+ sinσz qm−1(z),

where

qm−1(z) =

m
∑

l=1

f(zl)

sinσzl

Ωm(z)

(z − zl)Ω
′

m(zl)
.

Remark. It is known [14] that the set Aσ,p,0, 1 < p < ∞ coincides

with the set of functions from Eσ which are Lp(R) integrable on the real line.

Let f ∈ Aσ,p,0, p ≥ 1 . Then, f is Lp(R) integrable and according to a result in

[14] :

f(z) =
∑

k∈Z

f (kπ/σ)
sin(σz − kπ)

σz − kπ
,

where the Shannon sampling series is absolutely and uniformly convergent on the

real line an locally uniformly convergent on the complex plane.

For σ > 0, m ∈ N0, and p ≥ 1 we define the following Sobolev type

normed linear subspace of Eσ:

Bσ,p,m :=

{

f : f ∈ Eσ, |f |σ,p,m =

(∫

R

| f(x) |p

(1 + x2)mp/2
d x

)1/p

< ∞

}

.
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Theorem 2. Let σ > 0, m ∈ N0, 1 < p < ∞. Consider

Aσ,p,m = { f : f ∈ Eσ; f(x) = o(xm), |x| → ∞;
∑

k∈Z\{0}

|f(kπ/σ)|p

|k|mp
<∞}

and

Bσ,p,m =

{

f : f ∈ Eσ, |f |σ,p,m =

(∫

R

| f(x) |p

(1 + x2)mp/2
d x

)1/p

< ∞

}

.

Then

Bσ,p,m ≡ Aσ,p,m

and following the notations of Theorem 1, each f ∈ Bσ,p,m (Aσ,p,m) is exactly

recovered by the sampling formula

f(z) =

r1
∑

µ=1

f
(mµπ

σ

) sin(σz − mµ π)

σ z − mµ π

+ Ωm(z)
∑

k∈Z\ω1

f(kπ/σ)

Ωm (kπ/σ)

sin(σz − kπ)

σz − kπ

+ sinσ z qm−1(z)

that is l.u.c. on C.

Corollary 1. If 1 ≤ p1 < p2, then Bσ,p1,m ⊂ Bσ,p2,m.

Decomposition of the PWS space in terms of Bσ,p,m. Consider

PWSσ,m, the linear subspace of PWS functions with parameters σ and m (see

p. 3). According to Lemma 1 and Theorem 2

∪m1∈N0
PWSσ,m1

= ∪m2∈N0, 1≤p<∞Bσ,p,m2
.

Obviously, if f ∈ PWSσ,m, then f ∈ Bσ,p,m+1 for each p > 1. The practical

meaning of the above decomposition is that each PWSσ,m function can be exactly

recovered by making use of the sampling formula of Theorem 2, i.e., with an

optimal rate π/σ of sampling at the cost of a finite number bits of information to

be added to the sampling data.
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Interpolation theory in Bσ,p,m (σ > 0, m ∈ N0, 1 < p < ∞).

Corollary 2. Consider the following linear space of infinite sequences of

complex numbers:

lp,m :=

{

y := {. . . , y−1, y0, y1, . . .} :
∑

k∈Z

|yk|
p

(1 + |k|)mp
<∞, yk ∈ C

}

.

Then, following the notations of Theorem 1, for each y ∈ lp,m there exists a

unique within m Hermite type interpolation conditions function fy ∈ Bσ,p,m

with an explicit construction by the l.u.c. Shannon type sampling series

fy(z) =

r1
∑

µ=1

ymµ

sin(σz − mµ π)

σ z − mµ π

+ Ωm(z)
∑

k∈Z\ω1

yk

Ωm (kπ/σ)

sin(σz − kπ)

σz − kπ

+ sinσ z qm−1(z)

satisfying the interpolation conditions fy(kπ/σ) = yk (k ∈ Z). Conversely, by

Theorem 2, for each f ∈ Bσ,p,m, the sequence { f(kπ/σ)}k∈Z
belongs to lp,m and

f can be recovered by the sampling formula (1).

P r o o f o f Th e o r e m 2. Suppose that f ∈ Bσ,p,m, 1 ≤ p <∞ . Then

the auxiliary function F (z) :=
(

f(z) −
∑m−1

k=0 (f (k)(0)/k!) zk
)

/zm is from Eσ

and it is Lp(R) integrable on the real line. Bernstein’s Lp-inequality for entire

functions of exponential type [1] implies that

∑

k ∈Z

|F (ξk) |
p ≤ 2p−1

(

πp−1 + π−1
)

σ

∫

R

|F (t) |p d t,

where ξk ∈ [ kπ/σ , (k + 1)π/σ ], k ∈ Z . First, substituting ξk := kπ/σ we

conclude that

∑

k ∈Z

| f(kπ/σ) |p

(1 + |k|)m p
≤ c(p, σ,m)

[

max
0≤k≤m−1

| f (k)(0) | +

∫

R

|F (t) |p d t

]

.

On the other hand, substituting ξk := ξ∗k , where

|F (ξ∗k) | := max
x∈ [kπ/σ , (k+1)π/σ ]

|F (x) |



Sobolev Type Decomposition of Paley-Wiener-Schwartz Space. . . 427

we obtain that F (x) = o(1) (|x| → ∞) so, f(x) = o(xm) (|x| → ∞) . Hence,

f ∈ Aσ,p,m.

Conversely, let f ∈ Aσ,p,m, where 1 < p < ∞. Then, applying the

sampling formula of Theorem 1 we obtain:

(
∫

R

|f(x)|p

(1 + x2)mp/2
d x

)1/p

≤ c1(p,m)





∑

k∈Z\ω1

π

σ

∣

∣

∣

∣

f(kπ/σ)

Ωm(kπ/σ)

∣

∣

∣

∣

p




1/p

+ c2(p,m, σ)

r1
∑

µ=1

λµ
∑

j=0

∣

∣

∣
f (j)

(mµπ

σ

)∣

∣

∣

+ c3(p,m, σ)

r2
∑

µ=1

βν−1
∑

j=0

∣

∣

∣
f (j) (zν)

∣

∣

∣

and in view of this f ∈ Bσ,p,m. Note that the method of proof fails if p = 1.

The case p = 1. Let f ∈ Bσ,1,m. Then, let us consider the auxiliary

function

F (z) :=

(

f(z) −
m−1
∑

k=0

f (kπ/σ)
sin(σz − kπ)

σz − kπ

)

/

(

m−1
∏

k=0

( z −
kπ

σ

)

.

Obviously, F ∈ Bσ,1,0 and from here we conclude that f ∈ Aσ,1,m. How-

ever, the function g(z) = zm−1 sinσz belongs to Aσ,1,m but g(x)/(1 + x2)m/2 =
(

xm−1 sinσx
)

/(1+x2)m/2 is not L1(R)-integrable. Hence, g /∈ Bσ,1,m and in view

of this Bσ,1,m ⊂ Aσ,1,m ⊂ Aσ,p,m = Bσ,p,m (1 < p <∞) .

Acceleration of the convergence of sampling series, including the

sampling of classical Shannon type Bσ,2 signals. As we mentioned even for

Bσ,2 signals the corresponding Shannon sampling series (see Shannon Sampling

Theorem [8], [13], [18], [20]) could be slowly convergent. Here we show how the

convergence can be accelerated by adding a finite Hermite type of information to

the sampling representation, following the representation sampling formula (1)

(see Theorem 1 and Theorem 2, Example 1, and Example 2). Let f(x) ∈ Bσ,p,m.

Then, f ∈ Bσ,p,N for N ≥ m (N ∈ N) and p > 1. Following Example

1, for a fixed S ∈ N consider the truncated sampling approximant to f(z) in
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D := {z : |z| ≤ R}, R > 1 of the form

fS,N(z) = (σz)N
∑

|k|≤S−1, k 6=0

f(kπ/σ)

(kπ)N

sin(σz − kπ)

σz − kπ

+ f(0)
sinσz

σz
+ sin σ z qN−1(z)

Then, by using Theorem 2 and well known technique given in [1], [14] we obtain

max
z∈D

|f(z) − fS,N(z)| ≤ c(p, σ)
RN eσ R

SN−m
.

Let S ≥ R(2N)/(N−m). Then by making use of the above estimate we obtain

max
z∈D

|f(z) − fS,N(z)| ≤ c(p, σ)
eσ R

RN

to conclude that by choosing N larger we accelerate the l.u.c. of the truncated

sampling approximant. Similar approximation estimates can be obtained by using

the same technique and Example 2 based on Lagrange interpolating formula. For

Bσ,p-signals, obviously, m = 0 hence, S ≥ R2 and if we take S ≥ Rk, k ≥ 2 then,

the estimate will be

max
z∈D

|f(z) − fS,N(z)| ≤ c(p, σ)
eσ R

R(k−1)N
.

Next, we compare Theorem 1 and Theorem 2 with some similar state-

ments in the sampling theory [6], [5], [16] in order to see the usefulness of the

results obtained in the present article.

Campbell’s method [5] for exact recovery of bandlimited signals

with polynomial asymptotic on the time axis. The following method can

be applied also for exact recovery of PWS functions. Let f ∈ Eσ and f(x) =

o(xm) (|x| → ∞). We take a Sobolev function

ψ(x) := c exp

(

−
1

1 − x2

)

for x ∈ (−1, 1),

ψ(x) = 0 for |x| ≥ 1, and
∫

R
ψ(x) d x = 1. The function ψ is infinitely dif-

ferentiable on the real line and with a compact support in [−1, 1] so, it is fast

decreasing. The Fourier transform ϕε(z) of (1/ε)ψ(x/ε) will be also a fast decreas-

ing function which is entire of exponential type ε > 0 and such that ϕε(0) = 1.
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Then, for a fixed x, the auxiliary function Fε(z) := f(z)ϕε(x − z) is an entire

function of exponential type σ + ε which is L2(R) integrable. Applying Shannon

sampling theorem to Fε(z) for a fixed x and substituting z = x we obtain the

sampling formula:

f(x) =
∑

k∈Z

f

(

kπ

σ + ε

)

sin((σ + ε)x− kπ)

(σ + ε)x− kπ
ϕε

(

x−
kπ

σ + ε

)

.

First, when ε → 0, then ϕε(z) will tend uniformly to 1 in each time interval

[−T, T ] which makes the above sampling series slowly convergent. Second, if we

take π/(σ+ ε) rate of sampling then the sampling sequence to recover a function

from Bσ,p,m in the time interval [−T, T ], T > 0 consists of 2T (σ+ε)/π digits that

is with 2Tε/π digits more than in the case of sampling at the optimal Nyquist

π/σ rate and as we observed before the parameter ε can not be taken too small.

Now, what gives the sampling formula from Theorem 1? By Theorem 1, for

exact sampling recovery of functions from Bσ,p,m, i.e., for digitizing of a time

polynomial signal without any loss of information, we need the functional values

at kπ/σ, k ∈ Z, i.e., digitizing at the optimal Nyquist rate π/σ and the digit

sequence contains m more bits of information (finite number of data, functional

values and derivatives) and this is in fact the Hermite type of information needed

to construct the auxiliary polynomial qm−1 (see Lemma 1).

The sampling observation of Cartwright [6]. Sampling of ban-

dlimited and time-bounded (bounded as functions of the time) signals

at the optimal Nyquist rate by using the sampling formula (1). Let

Bσ,∞ denote the linear space of all functions f ∈ Eσ which are O(1), |x| →

∞ (x ∈ R), i.e., we consider the class of all σ band-limited, time-bounded sig-

nals. Cartwright showed [4, Theorem 10.2., Theorem 10.2.3], [6], [7] that for

each ε > 0 the sequence {kπ/(σ + ε)}, k ∈ Z is sampling for Bσ,∞, i.e., for σ

band-limited signal that are time-bounded. However, if we take π/(σ + ε) rate

of sampling data to recover exactly a Bσ,∞ function, then in the time interval

[−T, T ], T > 0 we need 2T (σ + ε)/π functional values which is 2Tε/π functional

values more than in the case of recovery by using the optimal Nyquist rate π/σ

of sampling. On the other hand, obviously, Bσ,∞ ⊂ Bσ,p,1 (p > 1). In view of

this, by using Theorem 1 and Theorem 2 each Bσ,∞ signal can be recovered by

sampling at the optimal Nyquist rate π/σ plus only one bit of information in

addition: A functional value or a value of the derivative at a point x∗: f(x∗) if

sinσ x∗ 6= 0 or f ′(k∗π/σ) if x∗ = k∗π/σ, k∗ ∈ Z.
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The sampling observation of Lyubarskii and Madych [16]. The

results in the present article are closely related to those obtained in [16] obtained

by a different approach. The authors consider a generalized Paley-Wiener space

Wm
σ,p of entire functions f(z) of exponential type σ such that f (m)(z) ∈ Bσ,p,

1 < p < ∞ endowed with the semi-norm |f (m)|Lp(R). They prove that each

interpolating sequence in Bσ,p is an interpolating sequence in Wm
σ,p, in particular

that, obtained by sampling at the Nyquist rate. However, the Sobolev type

normed linear space Bσ,p,m considered in the present paper includes functions

like zm−1 sinσz, zm−1[sin(σz/k)]k which are not in Wm
σ,p for any m ∈ N and can

not be recovered by using Nyquist rate of sampling without additional sampling

information. Also, if f ∈ Wm
σ,p, then easy calculations show that f ∈ Bσ,p1,m

for each p1 > p hence, the sampling representation (1) holds for such functions.

The sampling formula (1) is using m bits more information than the sampling

representation given in [16] but on the other side taking m bigger makes the

infinite part of the sampling representation faster convergent. From practical,

signal point of view, we have a signal developing during the time so, only sampling

at real (time) moments is accessible and that is because the Nyquist (real) time

rate is important, being optimal. Also, it is not so straight to be seen that f (m)

is Lp(R)-summable because the signal practically is accessible only at discrete

time (real) moments and the numerical differentiation is not a stable process

with respect to the initial data. Similar problem we have with computing the

Hermite polynomial qm−1 in (1) but the advantage here is that we are to compute

a finite number of data and it is a simple procedure based only on functional

values (samples) in the Lagrangian case (see Example 2). In addition, the time

asymptotic of a signal can be easily estimated by using the sampling data.
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par des fonctions entières de degré fini. III. C. R. (Doklady) Acad. Sci. URSS
(N.S.) 52 (1946) 563–566.

[3] S. Bernstein. Sur la meilleure approximation des fonctions sur l’axe réel
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