Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use.

Serdica

Mathematical Journal

Сердика

Математическо списание

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.
For further information on
Serdica Mathematical Journal
which is the new series of
Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

A GENERAL APPROACH TO METHODS WITH A SPARSE JACOBIAN FOR SOLVING NONLINEAR SYSTEMS OF EQUATIONS

Nikolay Kyurkchiev, Anton Iliev

Communicated by G. Nikolov

Abstract

Here we give methodological survey of contemporary methods for solving nonlinear systems of equations in R^{n}. The reason of this review is that many authors in present days rediscovered such classical methods. In particular, we consider Newton's-type algorithms with sparse Jacobian. Method for which the inverse matrix of the Jacobian is replaced by the inverse matrix of the Vandermondian is proposed. A number of illustrative numerical examples are displayed. We demonstrate Herzberger's model with fixed-point relations to the some discrete versions of Halley's and EulerChebyshev's methods for solving such kind of systems.

1. Introduction. The multivariant Newton's method for solving equation

$$
\begin{equation*}
f(x)=0, \quad f=\left(f_{1}, \ldots, f_{n}\right), \quad x=\left(x_{1}, \ldots, x_{n}\right) \tag{1}
\end{equation*}
$$

is described by the iteration formula

[^0]\[

$$
\begin{equation*}
x^{k+1}=x^{k}-\left(f^{\prime}(x)\right)^{-1} f\left(x^{k}\right), \quad k=0,1,2, \ldots, \tag{2}
\end{equation*}
$$

\]

where

$$
f^{\prime}(x)=J(x)=\left(\frac{\partial f_{i}(x)}{\partial x_{j}}\right), \quad i, j=1,2, \ldots, n
$$

and suppose that $f^{\prime}(x)^{-1}$ exists in neighbourhood of solution $\xi\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$.
In a number of cases, the calculation of the Jacobian in (2) is quite difficult. Readers interested in some modifications of Newton's-type iterative schemes are referred to the books by Ortega and Rheinboldt [13] and by Petkov and Kyurkchiev [15].

Let $\theta_{i}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)$ solves

$$
\begin{array}{r}
f_{i}\left(x_{1}, \ldots, x_{i-1}, \theta_{i}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right), x_{i+1}, \ldots, x_{n}\right)=0 \tag{3}\\
i=1, \ldots, n
\end{array}
$$

Following Herzberger [5], we present a model for a class of iterative methods for the determination of the roots ξ_{1}, \ldots, ξ_{n} of a nonlinear system defined by some based fixed-point relations

$$
\begin{equation*}
\varphi_{i}\left(x_{1}, \ldots, x_{i-1}, \xi_{i}, x_{i+1}, \ldots, x_{n}\right)=\xi_{i}, \quad i=1, \ldots, n \tag{4}
\end{equation*}
$$

i.e. the i-th iteration function is stationary for $x_{i}=\xi_{i}$.

Our last assumption restrict the methods described here in our model to a class of simultaneous methods by demanding

$$
\begin{array}{r}
\varphi_{i}\left(\xi_{1}, \ldots, \xi_{i-1}, \theta_{i}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right), \xi_{i+1}, \ldots, \xi_{n}\right)=\theta_{i} \tag{5}\\
i=1, \ldots, n
\end{array}
$$

We demonstrate our model for the method

$$
\begin{equation*}
\varphi_{i}\left(x_{1}, \ldots, x_{n}\right)=x_{i}-\frac{f_{i}\left(x_{1}, \ldots, x_{n}\right)}{\frac{\partial f_{i}\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{i}}} \tag{6}
\end{equation*}
$$

and define the iteration methods by

$$
\begin{equation*}
x_{i}^{k+1}=\varphi_{i}\left(x_{1}^{k}, \ldots, x_{n}^{k}\right) \quad(\text { total-step method }) \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
x_{i}^{k+1}=\varphi_{i}\left(x_{1}^{k+1}, \ldots, x_{i-1}^{k+1}, x_{i}^{k}, \ldots, x_{n}^{k}\right) \quad(\text { single-step method) } \tag{8}
\end{equation*}
$$

for given initial values $x_{1}^{0}, \ldots, x_{n}^{0}$.
2. Main results. We prove the following theorem:

Theorem 1. For every member of the class of iteration methods defined by properties (4) and (5) the convergence of the total-step iteration (7) is locally linear.

Proof. In order to estimate the order of convergence for the methods defined by the iteration functions φ_{i}, we derive an error recursion for these functions.

By virtue of (4), (5), we have

$$
\begin{align*}
& \varphi_{i}\left(\xi_{1}, \ldots, \xi_{n}\right)=\xi_{i}, \quad i=1, \ldots, n \\
& \frac{\partial \varphi_{i}\left(\xi_{1}, \ldots, \xi_{n}\right)}{\partial x_{i}}=0, \quad i=1, \ldots, n \tag{9}\\
& \frac{\partial \varphi_{i}\left(\xi_{1}, \ldots, \xi_{n}\right)}{\partial x_{j}}=\frac{\partial \theta_{i}\left(\xi_{1}, \ldots, \xi_{i-1}, \xi_{i+1}, \ldots, \xi_{n}\right)}{\partial x_{j}}, \quad j \neq i
\end{align*}
$$

We expand φ_{i} in a Taylor series at the point $\left(\xi_{1}, \ldots, \xi_{n}\right)$

$$
\begin{array}{r}
\varphi_{i}\left(\xi_{1}+\epsilon_{1}, \ldots, \xi_{n}^{*}+\epsilon_{n}\right)=\varphi_{i}\left(\xi_{1}, \ldots, \xi_{n}\right)+\sum_{j=1}^{n} \frac{\partial \varphi_{i}}{\partial x_{j}}\left(\xi_{1}+\eta \epsilon_{1}, \ldots, \xi_{n}+\eta \epsilon_{n}\right) \epsilon_{j} \\
0<\eta<1
\end{array}
$$

On the other hand

$$
\begin{aligned}
& \frac{\partial \varphi_{i}}{\partial x_{j}}\left(\xi_{1}+\eta \epsilon_{1}, \ldots, \xi_{n}+\eta \epsilon_{n}\right)= \frac{\partial \varphi_{i}}{\partial x_{j}}\left(\xi_{1}, \ldots, \xi_{n}\right)+ \\
&+\sum_{l=1}^{n} \frac{\partial^{2} \varphi_{i}}{\partial x_{j} \partial x_{l}}\left(\xi_{1}+\sigma \epsilon_{1}, \ldots, \xi_{n}+\sigma \epsilon_{n}\right) \eta \epsilon_{l} \\
& 0<\sigma<1
\end{aligned}
$$

and

$$
\begin{aligned}
\varphi_{i}\left(\xi_{1}+\epsilon_{1}, \ldots, \xi_{n}+\epsilon_{n}\right)= & \varphi_{i}\left(\xi_{1}, \ldots, \xi_{n}+\frac{\partial \varphi_{i}}{\partial x_{i}}\left(\xi_{1}, \ldots, \xi_{n}\right) \epsilon_{i}+\right. \\
& +\sum_{\substack{j \neq i}}^{n} \frac{\partial \varphi_{i}}{\partial x_{j}}\left(\xi_{1}, \ldots, \xi_{n}\right) \epsilon_{j}+ \\
& +\sum_{j=1}^{n} \sum_{l=1}^{n} \frac{\partial^{2} \varphi_{i}}{\partial x_{j} \partial x_{l}}\left(\xi_{1}+\sigma \epsilon_{1}, \ldots, \xi_{n}+\sigma \epsilon_{n}\right) \eta \epsilon_{l} \epsilon_{j}
\end{aligned}
$$

Setting $\epsilon_{i}=x_{i}^{k}-\xi_{i}, e_{i}^{k}=\left|x_{i}^{k}-\xi_{i}\right|$ we get from (9) in view of the total-step method (7) the error recursion:

$$
\begin{align*}
e_{i}^{k+1}= & \left|x_{i}^{k+1}-\xi_{i}\right|=\left|\varphi_{i}\left(x_{1}^{k}, \ldots, x_{n}^{k}\right)-\xi_{i}\right|= \\
= & \left|\varphi_{i}\left(\xi_{1}+\epsilon_{1}, \ldots, \xi_{n}+\epsilon_{n}\right)-\xi_{i}\right| \leq \\
\leq & \sum_{j \neq i}^{n}\left|\frac{\partial \theta_{i}}{\partial x_{j}}\left(\xi_{1}, \ldots, \xi_{i-1}, \xi_{i+1}, \ldots, \xi_{n}\right)\right| e_{j}^{k}+ \tag{10}\\
& +\sum_{j=1}^{n} \sum_{l=1}^{n}\left|\frac{\partial^{2} \varphi_{i}}{\partial x_{j} \partial x_{l}}\left(\xi_{1}+\sigma \epsilon_{1}, \ldots, \xi_{n}+\sigma \epsilon_{n}\right)\right| \eta e_{j}^{k} e_{l}^{k} .
\end{align*}
$$

Obviously from this recursion that the convergence is linear.
Remark 1. Some methods, known from the literature occur as special cases on the family (4) ((9)).

In [22], Wegge proposed method (6). Here the inverse matrix of the Jacobian in well-known Newton's method (2) is replaced by the inverse of a matrix which consists of the main diagonal of the Jacobian.

In this case G. Iliev [8] shows that $\left\{x_{i}^{k}\right\}$ from (7) converges quadratic, when in (9)

$$
\frac{\partial \theta_{i}\left(\xi_{1}, \ldots, \xi_{i-1}, \xi_{i+1}, \ldots, \xi_{n}\right)}{\partial x_{j}}=0 ; \quad i, j=1, \ldots, n ; \quad j \neq i
$$

This result follows immediately from our recursion (10).
Other results can be found in the papers by Scheurle [17], Schubert [18] and Taiwo [21].

Extensions and applications in Banach spaces were given by Kantorovič [11], Altman [2], Stein [20], Ben-Israel [3], Yamamoto and Chen [23], Iliev [7] and others.

Note that (6) is a Jacoby-Newton-like iteration, but it possible to use a Gauss-Seidel procedure as follows:

$$
\begin{align*}
x_{i}^{k+1}= & \varphi_{i}\left(x_{1}^{k+1}, \ldots, x_{i-1}^{k+1}, x_{i}^{k}, \ldots, x_{n}^{k}\right) \\
= & x_{i}^{k}-\frac{f_{i}}{\frac{\partial f_{i}}{\partial x_{i}}}\left(x_{1}^{k+1}, \ldots, x_{i-1}^{k+1}, x_{i}^{k}, \ldots, x_{n}^{k}\right), \tag{11}\\
& \quad i=1,2, \ldots, n ; \quad k=0,1,2, \ldots
\end{align*}
$$

For other SOR (successive overrelaxation) methods with parameter see the paper by Ishihara, Muroya and Yamamoto [9].

We give some discrete versions of Halley's and Euler-Chebyshev's methods for solving nonlinear systems of equations.

First, we define the following iteration (total-step Halley's method (HM)):

$$
\begin{align*}
& x_{i}^{k+1}=x_{i}^{k}-\frac{f_{i}\left(x^{k}\right)}{\frac{\partial f_{i}\left(x^{k}\right)}{\partial x_{i}}}\left(1+\frac{1}{2} \frac{f_{i}\left(x^{k}\right) \frac{\partial^{2} f_{i}\left(x^{k}\right)}{\partial x_{i}^{2}}}{\left(\frac{\partial f_{i}\left(x^{k}\right)}{\partial x_{i}}\right)^{2}}\right)^{-1}, \tag{12}\\
& i=1, \ldots, n ; \quad k=0,1, \ldots
\end{align*}
$$

This method obviously is improvement of the method (6).
We note that, in (12) we use the main diagonal of the Hessean

$$
H:=\left\|f_{i}^{m n}=\frac{\partial^{2} f_{i}}{\partial x_{m} \partial x_{n}}\right\|
$$

There are many methods based on the fixed-point relations (see, the books by Alefeld and Herzberger [1], Petkovic [16], Sendov, Andreev and Kyurkchiev [19]) and Kyurkchiev [11].

These algorithms can be arranged for solving nonlinear equations in several variables.

For example, we define the following iteration (total-step Euler-Chebyshev's method):
(13) $x_{i}^{k+1}=x_{i}^{k}-\frac{f_{i}\left(x^{k}\right)}{\frac{\partial f_{i}\left(x^{k}\right)}{\partial x_{i}}}\left(1-\frac{1}{2} \frac{f_{i}\left(x^{k}\right) \frac{\partial^{2} f_{i}\left(x^{k}\right)}{\partial x_{i}^{2}}}{\left(\frac{\partial f_{i}\left(x^{k}\right)}{\partial x_{i}}\right)^{2}}\right), i=1, \ldots, n ; k=0,1, \ldots$

Numerical example (G.Iliev [8]). Let

$$
\left\lvert\, \begin{aligned}
& f_{1}\left(x_{1}, x_{2}\right)=\left(x_{2}-0.07\right) x_{1}^{2}-0.3 x_{1} x_{2}-0.15 x_{2}^{2}=0 \\
& f_{2}\left(x_{1}, x_{2}\right)=\left(x_{1}-0.15\right) x_{2}^{2}-0.14 x_{1} x_{2}-0.07 x_{1}^{2}=0
\end{aligned}\right.
$$

and $x_{1}^{0}=x_{2}^{0}=1$.

The solutions of this system are:

$$
\begin{aligned}
& x_{1}=0.504939015319191968 \\
& x_{2}=0.344939015319191968
\end{aligned}
$$

For the numerical determination of these roots, we apply Newton-Raphson method, method (6) and method (12).

The results are shown in Table 1, Table 2 and Table 3.
The presented numerical example was realized in precision arithmetic (about 18 significant digits).

Table 1. Solution by Newton's method

k	x_{1}^{k}	x_{2}^{k}
0	1.	1.
1	0.770320656226696495	0.695749440715883669
2	0.626370174040210892	0.505673164801260020
3	0.545377788002368922	0.398768875062025654
4	0.511666539615088034	0.353997741004263732
5	0.505175082853654779	0.345262185297826159
6	0.504939323674820933	0.344939445744945562
7	0.504939015319723450	0.344939015319950318
8	0.504939015319191968	0.344939015319950318

Table 2. Solution by method (6)

k	x_{1}^{k}	x_{2}^{k}
0	1.	1.
1	0.692307692307692308	0.589743589743589744
2	0.555123173090900958	0.409350643541659678
3	0.510754813273147686	0.352251613156086770
4	0.505035199913144336	0.345057597334594785
5	0.504939042018383390	0.344939047675290015
6	0.504939015319193995	0.344939015319194388
7	0.504939015319191968	0.344939015319191968

In [6], Ibidapo-Obe, Asaolu and Badiri developed a new technique for solving nonlinear system of equations (1). This is achieved by the iterative solution of a parametric linear system coupled with a nonlinear single variable equation.

Let \mathbf{x}_{0} be an approximate solution to (1). The authors construct a new vector $\mathbf{y}=\left(y_{1}, \ldots, y_{n-1}, t\right)$ such that $y_{j}, j=1, \ldots, n-1$ are distinct elements of

Table 3. Solution by method (12)

k	x_{1}^{k}	x_{2}^{k}
0	1.	1.
1	0.623188405797101449	0.471634208298052498
2	0.515759913152825672	0.352702914879984042
3	0.504992271181411001	0.344986324556096995
4	0.504939017246729918	0.344939016459300214
5	0.504939015319191969	0.344939015319191969
6	0.504939015319191968	0.344939015319191968

\mathbf{x}_{0} (though y_{j} does not necessarily map into x_{j}); t is variable correspond to the \mathbf{x}_{0} and renumber the system of equations in (1) such that y_{j} corresponds to x_{j}. Assuming \mathbf{y}_{0} is an approximate solution but with t fixed and unknown implies (1) becomes

$$
\mathbf{f}_{j}\left(\mathbf{y}_{0}\right)+\sum_{k=1}^{n-1} \frac{\partial \mathbf{f}_{j}\left(\mathbf{y}_{0}\right)}{\partial y_{k}} \xi_{k}=0, j=1,2, \ldots, n ;\left(\xi_{k}=d y_{k}\right)
$$

The updated solution to (1) becomes $\mathbf{y}_{1}=\left(y_{01}+\xi_{1}, y_{02}+\xi_{2}, \ldots, t\right)$. The proposed method [6] is a convergent method for a good initial guess.

Evidently, this procedure yields the exact solution \mathbf{x}, when applied to a linear system since the Jacobian then becomes the constant coefficient matrix.

Remark 2. Note that the iteration $\mathbf{y}_{j}, j=0,1,2, \ldots$ has been mentioned by N. Obreshkoff in [12].

Remark 3. The convergence order can be increased by the following way.

Let

$$
\begin{aligned}
& \mathbf{f}_{j}(\mathbf{x})= \mathbf{f}_{j}\left(\mathbf{y}_{0}+\xi\right)= \\
&= \mathbf{f}_{j}\left(\mathbf{y}_{0}\right)+\sum_{k=1}^{n-1} \frac{\partial \mathbf{f}_{j}\left(\mathbf{y}_{0}\right)}{\partial y_{k}} \xi_{k}+\frac{1}{2} \sum_{l=1}^{n-1} \sum_{k=1}^{n-1} \frac{\partial^{2} \mathbf{f}_{j}\left(\mathbf{y}_{0}\right)}{\partial y_{l} \partial y_{k}} \xi_{l} \xi_{k}=0 \\
& j=1, \ldots, n
\end{aligned}
$$

The simultaneous system of equations given by (14) is quadratic in the $\xi_{k}^{\prime} s$.
Convergence to the solution is attained when $\mathbf{f}\left(y_{l+1}\right) \approx 0$ and $\| y_{l+1}-$ $y_{l} \|<\eta$, for an arbitrary chosen η, depending on the accuracy desired $\left(y_{l+1}=\right.$ $\left.\left(y_{l 1}+\xi_{1}, y_{l 2}+\xi_{2}, \ldots, t\right)\right)$.

The new procedure (based on (14)) yields the exact solution \mathbf{x}, when applied to quadratic nonlinear system.

Numerical example (Paterson [14], [6]). Consider the following system

$$
\left\lvert\, \begin{align*}
& 4 x_{1}+x_{2}^{2}+x_{3}-11=0 \tag{A}\\
& x_{1}+4 x_{2}+x_{3}^{2}-18=0 \\
& x_{1}^{2}+x_{2}+4 x_{3}-15=0
\end{align*}\right.
$$

with $\mathbf{x}_{0}=(1,1,1)^{T}$. The system (A) has the different roots: $\mathbf{x}=(1,2,3)^{T}$. The method by Ibidapo-Obe, Asaolu, Badiru [6], with $\mathbf{y}_{0}=\left(t, x_{20}, x_{30}\right)^{T}$ gives

$$
\left\lvert\, \begin{align*}
& 4 t+x_{20}^{2}+x_{30}-11+2 x_{20} \xi_{1}+\xi_{2}=0 \tag{B}\\
& t+4 x_{20}+x_{30}^{2}-18+4 \xi_{1}+2 x_{30} \xi_{2}=0 \\
& t^{2}+x_{20}+4 x_{30}-15+\xi_{1}+4 \xi_{2}=0
\end{align*}\right.
$$

In particular, with $y_{0}=(t, 1,1)^{T}$, we have
(C)

$$
\left\lvert\, \begin{aligned}
& 4 t-9+2 \xi_{1}+\xi_{2}=0 \\
& t-13+4 \xi_{1}+2 \xi_{2}=0 \\
& t^{2}-10+\xi_{1}+4 \xi_{2}=0
\end{aligned}\right.
$$

From the last two equations in (C) we find

$$
\xi_{1}=\frac{32-4 t+2 t^{2}}{14}, \xi_{2}=\frac{-4 t^{2}+t+27}{14}
$$

Substituting in the first equation (C) yields

$$
49 t-35=0, \text { or } t=0.7145 ; \xi_{1}=2.1543 ; \xi_{2}=1.834
$$

i.e. $\mathbf{y}_{1}=(0.7145,3.1543,2.834)^{T}=\left(t, 1+\xi_{1}, 1+\xi_{2}\right)^{T}$.

Finally

$$
\mathbf{x}=\mathbf{y}_{5}=\mathbf{y}_{6}=(1.0000,2.0000,3.0000)^{T}
$$

The new method (based on (14), with $\mathbf{y}_{0}=(t, 1,1)^{T}$ gives

$$
\left\lvert\, \begin{align*}
& 4 t+x_{20}^{2}+x_{30}-11+2 x_{20} \xi_{1}+\xi_{2}+\xi_{1}^{2}=0 \\
& t+4 x_{20}+x_{30}^{2}-18+4 \xi_{1}+2 x_{30} \xi_{2}+\xi_{2}^{2}=0 \\
& t^{2}+x_{20}+4 x_{30}-15+\xi_{1}+4 \xi_{2}=0
\end{align*}\right.
$$

and
$\left(\mathrm{C}^{\prime}\right)$

$$
\left\lvert\, \begin{aligned}
& 4 t-9+2 \xi_{1}+\xi_{2}+\xi_{1}^{2}=0 \\
& t-13+4 \xi_{1}+2 \xi_{2}+\xi_{2}^{2}=0 \\
& t^{2}-10+\xi_{1}+4 \xi_{2}=0
\end{aligned}\right.
$$

From (C^{\prime}), we have

$$
\xi_{2}=\frac{321+12 t-42 t^{2}-t^{4}}{137+8 t^{2}} ; \quad \xi_{1}=10-t^{2}-4 \xi_{2}
$$

Substituting in the second equation (C^{\prime}) yields

$$
\begin{equation*}
t-13+4 \xi_{1}(t)+2 \xi_{2}(t)+\xi_{2}^{2}(t)=0 \tag{D}
\end{equation*}
$$

Evidently, for $t=1$, we have $\xi_{2}=2, \xi_{1}=1$, i.e. $y_{1}=(1,2,3)^{T}$.
Here we give a method for which the inverse matrix of the Jacobian $J(x)$ is replaced by the inverse matrix of the Vandermondian $V(x)$. The notation $V\left(x_{1}^{k}, \ldots, x_{n}^{k}\right)$ will denote a Vandermonde matrix:

$$
V\left(x_{1}^{k}, \ldots, x_{n}^{k}\right)=\left(\begin{array}{ccccc}
\left(x_{1}^{k}\right)^{n-1} & \left(x_{1}^{k}\right)^{n-2} & \ldots & x_{1}^{k} & 1 \\
\left(x_{2}^{k}\right)^{n-1} & \left(x_{2}^{k}\right)^{n-2} & \ldots & x_{2}^{k} & 1 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\left(x_{n}^{k}\right)^{n-1} & \left(x_{n}^{k}\right)^{n-2} & \ldots & x_{n}^{k} & 1
\end{array}\right)
$$

of dimension n, and $\left|V\left(x_{1}^{k}, \ldots, x_{n}^{k}\right)\right|$ is its determinant and is equal to $\prod_{i<j}\left(x_{i}^{k}-x_{j}^{k}\right) \neq 0\left(x_{i}^{k} \neq x_{j}^{k}, i \neq j, i, j=1,2, \ldots, n\right)$. Let
$V^{-1}=\left(\begin{array}{cccc}c_{11} & c_{12} & \ldots & c_{1 n} \\ c_{21} & c_{22} & \ldots & c_{2 n} \\ \ldots & \ldots & \ldots & \ldots \\ c_{n 1} & c_{n 2} & \ldots & c_{n n}\end{array}\right)=\frac{1}{\left|V\left(x_{1}^{k}, x_{2}^{k}, \ldots, x_{n}^{k}\right)\right|}\left(\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n}\end{array}\right)$.
Let us consider the following method

$$
\begin{equation*}
x_{i}^{k+1}=x_{i}^{k}-\sum_{j=1}^{n} c_{i j} f_{j}\left(x_{1}^{k}, x_{2}^{k}, \ldots, x_{n}^{k}\right), \quad i=1,2, \ldots, n ; \quad k=0,1,2, \ldots \tag{15}
\end{equation*}
$$ or

$$
\begin{equation*}
x^{k+1}=x^{k}-V^{-1}\left(x^{k}\right) f\left(x^{k}\right), \quad k=0,1,2, \ldots \tag{16}
\end{equation*}
$$

Let $x_{i}^{k}=x_{i}+\epsilon_{i}, i=1,2, \ldots, n$ and f has a continuous derivative in the neighborhood of the root x. Then

$$
f_{i}\left(x_{1}^{k}, x_{2}^{k}, \ldots, x_{n}^{k}\right)=f_{i}\left(x_{1}+\epsilon_{1}, x_{2}+\epsilon_{2}, \ldots, x_{n}+\epsilon_{n}\right)=
$$

$$
\begin{gathered}
=f_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\sum_{j=1}^{n} \frac{\partial f_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial x_{j}} \epsilon_{j}+o(\|\epsilon\|) \\
x_{i}^{k+1}-x_{i}=x_{i}^{k}-x_{i}-\sum_{j=1}^{n} c_{i j}\left(f_{j}\left(x_{1}^{k}, x_{2}^{k}, \ldots, x_{n}^{k}\right)-f_{j}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)= \\
=x_{i}^{k}-x_{i}-\sum_{j=1}^{n} c_{i j}\left(\sum_{l=1}^{n} \frac{\partial f_{j}\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial x_{l}}\left(x_{l}^{k}-x_{l}\right)+o(\|\epsilon\|)\right) .
\end{gathered}
$$

Let $\left\|x-x^{k}\right\| \longrightarrow 0$, then

$$
x^{k+1}-x=\left(x^{k}-x\right)\left(I-V^{-1}\left(x^{k}\right) \frac{\partial f\left(p^{k}\right)}{\partial x}\right)
$$

with p^{k} on the line $l_{x^{k} x}=0$, where $l_{x^{k} x}$ denotes the equation of the straight-line through the points $x^{k}=\left(x_{1}^{k}, x_{2}^{k}, \ldots, x_{n}^{k}\right)$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Let $\epsilon, \delta<1$ be positive constants such that for all $k=0,1,2, \ldots$.

$$
\begin{gathered}
\left\|I-V^{-1}\left(x^{k}\right) \frac{\partial f\left(p^{k}\right)}{\partial x}\right\| \leq \delta<1 \\
\rho\left(x^{k}, x\right)=\left\|x^{k}-x\right\| \leq \epsilon
\end{gathered}
$$

Then the sequence $\left\{x_{i}^{k+1}\right\}_{i=1}^{n}$ converges to a solution of $f(x)=0$ and

$$
\begin{equation*}
\rho\left(x^{k+1}, x\right)<\epsilon \tag{17}
\end{equation*}
$$

For $k=0$, we have

$$
\rho\left(x^{1}, x\right)=\left\|x^{1}-x\right\|=\left\|I-V^{-1}\left(x^{0}\right) \frac{\partial f\left(p^{0}\right)}{\partial x}\right\|\left\|x^{0}-x\right\| \leq \delta \epsilon<\epsilon
$$

Assuming (17) it is true for all subscripts $\leq k$, we prove (17) for $k+1$. Indeed,

$$
\begin{gather*}
\rho\left(x^{k+1}, x\right)=\left\|x^{k+1}-x\right\| \leq \delta\left\|x^{k}-x\right\| \leq \delta \epsilon<\epsilon \\
\rho\left(x^{k+1}, x\right) \leq \delta^{k+1} \rho\left(x^{0}, x\right) \tag{18}
\end{gather*}
$$

But $\delta<1$, the right-hand side of (18) tends to zero as $k \longrightarrow \infty$. So that we now frame a theorem

A general approach to methods with a sparse Jacobian. . .

Theorem 2. Let f be defined in the closed ball $B\left(\left\|x^{0}-x\right\| \leq \epsilon\right)$ and have continuous Frechét derivative. Moreover, suppose that

$$
\begin{gathered}
\left\|I-V^{-1}\left(x^{0}\right) \frac{\partial f\left(x^{0}\right)}{\partial x}\right\| \leq \delta<1 \\
\rho\left(x^{0}-x\right)=\left\|x^{0}-x\right\| \leq \varepsilon, \quad \varepsilon>0
\end{gathered}
$$

Then the sequence $\left\{x^{k}\right\}$ generated by (16), starting with x^{0} converges to a solution of the equation $f(x)=0$.

Remark 4. The standard implementation of the method (16) is as follows:

$$
x^{k+1}=x^{k}-\frac{\left.\left(\begin{array}{l}
a_{11} \ldots a_{1 n} \tag{19}\\
\vdots \\
a_{n 1} \ldots a_{n n}
\end{array}\right)\left(\begin{array}{l}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right)\right|_{x=x^{k}}}{\left|V\left(x_{i}^{k}, x_{1}^{k}, \ldots, x_{i-1}^{k}, x_{i+1}^{k}, \ldots, x_{n}^{k}\right)\right|}, \quad k=0,1,2, \ldots
$$

Remark 5. For each $1 \leq j \leq n$, we have

$$
\left\{\begin{array}{l}
c_{1 j}=(-1)^{j+1} \frac{\left|V\left(x_{1}^{k}, \ldots, x_{j-1}^{k}, x_{j+1}^{k}, \ldots, x_{n}^{k}\right)\right|}{\left|V\left(x_{1}^{k}, \ldots, x_{n}^{k}\right)\right|} \tag{20}\\
c_{2 j}=(-1)^{j+2} \frac{\left|V\left(x_{1}^{k}, \ldots, x_{j-1}^{k}, x_{j+1}^{k}, \ldots, x_{n}^{k}\right)\right|}{\left|V\left(x_{1}^{k}, \ldots, x_{n}^{k}\right)\right|} \sum_{i \neq j}^{n} x_{i}^{k} \\
\ldots \\
c_{n j}=(-1)^{j+n} \frac{\left|V\left(x_{1}^{k}, \ldots, x_{j-1}^{k}, x_{j+1}^{k}, \ldots, x_{n}^{k}\right)\right|}{\left|V\left(x_{1}^{k}, \ldots, x_{n}^{k}\right)\right|} \prod_{i \neq j}^{n} x_{i}^{k}
\end{array}\right.
$$

Remark 6. The convergence order can be increased by calculating the new approximations x_{i}^{k+1}, in (19) using the already calculated approximations $x_{1}^{k+1}, \ldots, x_{i-1}^{k+1}$ (the so called Gauss-Seidel approach).

Remark 7. An interesting modification of (6) is to use so-called Weierstrass' correction:

$$
\begin{equation*}
x_{i}^{k+1}=x_{i}^{k}-\frac{f_{i}\left(x_{1}^{k}, \ldots, x_{n}^{k}\right)}{\prod_{j \neq i}\left(x_{i}^{k}-x_{j}^{k}\right)}, \quad i=1,2, \ldots, n ; \quad k=0,1,2, \ldots \tag{21}
\end{equation*}
$$

Remark 8. Wide area of problems and practical tasks in electrodynamics, and physics are reduced to the problem of solving a system of nonlinear algebraic equations with some constraint conditions. For example, from Kirchhoff law, we have system of nonlinear algebraic equations for determining the bus voltages (see, Cai and Chen [4]).

In this case, equations (15) can be rewritten in the following form:

$$
\begin{aligned}
& x_{1}^{k+1}=x_{1}^{k}-\sum_{j=1}^{n} \frac{f_{j}\left(x_{1}^{k}, \ldots, x_{n}^{k}\right)}{\prod_{s \neq j}^{n}\left(x_{j}^{k}-x_{s}^{k}\right)}, \\
& x_{2}^{k+1}=x_{2}^{k}-\sum_{j=1}^{n} \frac{\sum_{s \neq j}^{n} x_{s}^{k} f_{j}\left(x_{1}^{k}, \ldots, x_{n}^{k}\right)}{\prod_{s \neq j}^{n}\left(x_{j}^{k}-x_{s}^{k}\right)}, \\
& \ldots \\
& x_{n}^{k+1}=x_{n}^{k}-\sum_{j=1}^{n} \frac{\prod_{s \neq j}^{n} x_{s}^{k} f_{j}\left(x_{1}^{k}, \ldots, x_{n}^{k}\right)}{\prod_{s \neq j}^{n}\left(x_{j}^{k}-x_{s}^{k}\right)}
\end{aligned}
$$

and iteration algorithm can be refined using Euler's formula:

$$
\sum_{i=1}^{n} \frac{\left(x_{i}^{k}\right)^{t}}{\prod_{j \neq i}^{n}\left(x_{i}^{k}-x_{j}^{k}\right)}=\left\{\begin{array}{l}
\sum_{i=1}^{n} x_{i}^{k}, t=n \\
1, \quad t=n-1 \\
0, \quad 0 \leq t \leq n-2
\end{array}\right.
$$

3. Numerical examples. To illustrate the method (19) we present the following simple example (see Ortega and Rheinboldt [13]):

Let

$$
\left\lvert\, \begin{aligned}
& f_{1}\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}-1=0 \\
& f_{2}\left(x_{1}, x_{2}\right)=-x_{1}+x_{2}^{2}-1=0
\end{aligned}\right.
$$

The solutions of this system are: $\left(x_{1}=0, x_{2}=-1\right)$;
$\left(x_{1}=-1, x_{2}=0\right) ;\left(x_{1}=x_{2}=\frac{1+\sqrt{5}}{2}\right) ;\left(x_{1}=x_{2}=\frac{1-\sqrt{5}}{2}\right)$.
Compute simultaneously, the solution $(0,-1)$.

The choice of initial guess $\left(x_{1}^{0}=-0.2, x_{2}^{0}=-1.25\right)$ is critical for the Newton's method.

Indeed,

$$
J(x)=\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right)=\left(\begin{array}{cc}
2 x_{1} & -1 \\
-1 & 2 x_{2}
\end{array}\right), \quad \operatorname{det} J\left(x^{0}\right)=4 x_{1}^{0} x_{2}^{0}-1=0!
$$

We illustrate the behavior of Newton's method (2), starting from initial guess: $x_{1}^{0}=-0.19, x_{2}^{0}=-1.24$.

Table 4. Solution by Newton's method

k	x_{1}^{k}	x_{2}^{k}
0	-0.19	-1.24
1	0.55430555555555555	-1.24673611111111111
2	0.187353268299377751	-1.0995527339800818
3	0.036885904446349925	-1.02127985763805421
4	0.002021592710723367	-1.0012114333957109
5	0.000006662067951401	-1.00000405990111203
6	0.000000000072281936	-1.00000000004438219
7	0	-1

The components x_{1}^{7} and x_{2}^{7} tend to solution $(0,-1)$. For numerical determination of $x_{i}^{k+1}, \quad i=1,2$, we apply method (19), with $x_{1}^{0}=-0.2$ and
$x_{2}^{0}=-1.25:$

$$
\left\lvert\, \begin{aligned}
& x_{1}^{k+1}=x_{1}^{k}-\frac{f_{1}\left(x_{1}^{k}, x_{2}^{k}\right)-f_{2}\left(x_{1}^{k}, x_{2}^{k}\right)}{x_{1}^{k}-x_{2}^{k}} \\
& x_{1}^{k+1}=x_{1}^{k}-\frac{x_{1}^{k} f_{2}\left(x_{1}^{k}, x_{2}^{k}\right)-x_{2}^{k} f_{1}\left(x_{1}^{k}, x_{2}^{k}\right)}{x_{2}^{k}-x_{1}^{k}}
\end{aligned}\right.
$$

Table 5. Solution by method (19)

k	x_{1}^{k}	x_{2}^{k}
0	-0.2	-1.25
1	0.25	-1.05
2	0.05	-0.9875
3	-0.0125	-1
4	0	-1

The components x_{1}^{4} and x_{2}^{4} tend to exact solution $(0,-1)$. The method (21) leads to

Table 6. Solution by method (21)

k	x_{1}^{k}	x_{2}^{k}
0	-0.19	-1.24
1	-0.452952380952380952	-0.547047619047619048
2	2.180406400616926930	-3.18040640061692694
3	0.88683791957015072	-1.88683791957015072
4	0.283552059144475374	-1.28355205914447537
5	0.051305953003849593	-1.051305953003849590
6	0.002387332115035988	-1.00238733211503599
7	0.000005672271435954	-1.00000567227143595
8	0.000000000032174298	-1.0000000000321743
9	0	-1

We receive the exact solution with accuracy of 18 decimal digits after 9 iterations.

REFERENCES

[1] G. Alefeld, J. Herzberger. Introduction to interval computations. Academic Press, New York, 1983.
[2] M. Altman. A generalization of Newton's method. Bull. Acad. Pol. Sci., Cl. III 3 (1955) 189-193.
[3] A. Ben-Israel. A Newton-Raphson method for the solution of systems of equations. J. Math. Anal. Appl. 15 (1966), 243-252.
[4] D. Cai, Y. Chen. Application of homotopy methods to power systems. J. Comput. Math. 22, 1 (2004), 61-68.
[5] J. Herzberger. On the R-order of convergence of a class of simultaneous methods of approximating the roots of a polynomial. In: Numerical methods and error bounds (Eds G. Alefeld, J. Herzberger) Mathematical Research vol. 89, Akademie Verlag GmbH, Berlin, 1996, 113-119.
[6] O. Ibidapo-Obe, O. Asalolu, A. Badiru. A new method for the numerical solution of simultaneous nonlinear equations. Appl. Math. Comput. 125 (2002), 134-140.
[7] A. Iliev. Numerical solution of non-linear equations. PhD Thesis, Sofia, 2000.
[8] G. Iliev. Monotone convergence of an iteration process of Newton's type. Serdica Bulg. Math. Publ. 17 (1991), 264-269.
[9] K. Ishihara, Y. Muroya, T. Yamamoto. On nonlinear SOR-like methods, II-convergence on the SOR-Newton method for mildly nonlinear equations. Japan J. Indust. Appl. Math. 14 (1997), 99-110.
[10] L. Kantorovic. Functional analysis and applied mathematics. Uspehi Mat. Nauk (N.S.) 3, 6(28) (1948) 89-185.
[11] N. Kyurkchiev. Initial approximations and root finding methods, WILEYVCH Verlag GmbH, Berlin, 1998.
[12] N. Obreshkoff. Verteilung und Berechnung der Nullstellen Reeller Polynome, VEB Deutscher Verlag der Wissenschaften, Berlin, 1963.
[13] J. Ortega, W. Rheinboldt. Iterative solution of nonlinear equations in several variables. Academic Press, NY, 1970.
[14] W. Paterson. On preferring iteration in a transformed variable to the method of successive substitution. Chem. Eng. Sci. 41 (1986), 601.
[15] M. Petkov, N. Kyurkchiev. Numerical methods for solving nonlinear equation. Sofia, University Press, 2000, 207 pp , (in Bulgarian).
[16] M. Petkovic. Iterative methods for simultaneous inclusion of polynomial zeros. Lect. Notes in Math. vol. 1287, Springer Verlag, 1989.
[17] J. Scheurle. Newton iterations without inverting the derivative. Math. Methods Appl. Sci. 1 (1979), 514.
[18] L. Schubert. Modifications of a quasi-Newton method for nonlinear equations with a sparse Jacobian. Math. Comput. 25 (1970), 27.
[19] B. Sendov, A. Andreev, N. Kyurkchiev. Numerical solution of polynomial equations. In: Handbook of Numerical Analysis, Vol. III, (Eds P. Ciarlet, J. Lions) Elsevier Science Publishers, Amsterdam, 1994.
[20] M. Stein. Sufficient conditions for the convergence of Newton's method in complex Banach spaces. Proc. Amer. Math. Soc. 3 (1952), 858-863.
[21] O. Taiwo. The solution of simultaneous nonlinear equations by the single variable Newton-Raphson method. NSChE J. 8 (1989), 52.
[22] L. Wegge. On a discrete version of the Newton-Raphson method. SIAM J. Numer. Anal. 3 (1960), 134-142.
[23] T. Yamamoto, X. Chen. An existence and nonexistence theorem for solutions of nonlinear systems and its application to algebraic equations. J. Comput. Appl. Math. 30 (1990) 87-97.

Nikolay Kyurkchiev
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 8
1113 Sofia, Bulgaria
e-mail: nkyurk@math.bas.bg

Anton Iliev
Faculty of Mathematics and Informatics
University of Plovdiv
24, Tsar Assen Str.
4000 Plovdiv, Bulgaria
e-mail: aii@uni-plovdiv.bg
Institute of Mathematics and Informatics Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 8
1113 Sofia, Bulgaria

Received May 29, 2007

[^0]: 2000 Mathematics Subject Classification: 65H10.
 Key words: Nonlinear systems of equations, numerical solution, Iliev's, Halley's and EulerChebyshev's methods, fixed-point relations.

