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Abstract. The paper is an updated survey of our work on the approxima-
tion of univariate set-valued functions by samples-based linear approxima-
tion operators, beyond the results reported in our previous overview. Our
approach is to adapt operators for real-valued functions to set-valued func-
tions, by replacing operations between numbers by operations between sets.
For set-valued functions with compact convex images we use Minkowski con-
vex combinations of sets, while for those with general compact images metric
averages and metric linear combinations of sets are used. We obtain general
approximation results and apply them to Bernstein polynomial operators,
Schoenberg spline operators and polynomial interpolation operators.

1. Introduction. In this paper we present the progress of our work on

the approximation of univariate set-valued functions (multifunctions) by linear
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approximation operators, beyond the results reported in [11]. We adapt linear

samples-based approximation operators for real-valued functions to set-valued

functions (SVFs) with compact images in R
n, by replacing operations between

numbers by operations between sets. For this purpose, the well-known Minkowski

sum of sets is a proper substitute for addition of numbers, only in case of SVFs

with convex images. For such multifunctions, the representation of convex com-

pact sets in terms of their support functions allows to reduce approximation of

SVFs by linear positive operators to the approximation of the corresponding sup-

port functions. The application of known approximation results from the case of

real-valued functions to the case of SVFs with convex compact images is studied

in [19, 6, 2, 8]. The positivity of the operators is necessary for the approximants

to be well defined.

It was noticed by Vitale [19] that positive approximation operators with

Minkowski sums of sets fail to approximate multifunctions with general compact

images (not necessarily convex). Vitale also observed that the images of the

Bernstein approximants of increasing degree tend to convex sets. Similarly, limits

of spline subdivision schemes are convex-valued SVFs for any initial data [10].

The obvious conclusion is that operators with Minkowski sums of sets are not

appropriate for the approximation of SVFs with general compact images.

In [1] a binary operation between sets, the ”metric average”, is intro-

duced, and the piecewise linear interpolant based on it is shown to approximate

continuous SVFs with general images. The use of this operation in the adaptation

of known positive approximation operators to SVFs, requires a representation of

the approximation operators by repeated binary averages. Such a representation

exists for any samples-based linear operator, which reproduces constants, but is

not unique [20]. This non-uniqueness leads to different operators for SVFs which

are not necessarily approximating. Yet, spline subdivision schemes represented

by repeated binary averages [9], and the Schoenberg operators defined in terms

of the de Boor algorithm [13], approximate SVFs with general compact images.

On the other hand, for the adaptation of the Bernstein operators based on the

de Casteljau algorithm, an approximation result was obtained only for a certain

clas of SFVs with images in R [13].

The lack of associativity of the metric average is the reason why it is

hard to extend this binary operation to an average of three or more sets. Yet,

in [12] a set-operation on a finite sequence of compact sets, termed “metric linear

combination”, which extends the metric average, is devised. With this operation,

linear approximation operators are successfully adapted to univariate SVFs. It
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should be emphasized that this adaptation method is not restricted to positive

operators. To the best of our knowledge so far only positive operators were

applied to SVFs.

We apply the different adaptations to two classes of positive operators,

Bernstein operators and Schoenberg spline operators. Adaptation of polynomial

interpolation operators is constructed only with metric linear combinations of

sets. Such interpolation operators at the zeros of the Tchebyshev polynomials of

growing degree are shown to converge to Lipschitz continuous SFVs [12].

The outline of the paper is as follows. Section 2 contains definitions and

notation. Section 3 discusses operators based on Minkowski averages of sets;

their applicability for the approximation of convex-valued multifunctions, and

their failure in the case of SVFs with general compact images. In Section 4

two metric operations on sets are presented, and used in Section 5 to construct

approximating operators for multifunctions with general compact images. In

Section 6 error estimates for specific approximation operators are presented.

2. Preliminaries. First we introduce some notation. The collection

of all nonempty compact sets in R
n is denoted by Kn, Cn denotes the collection

of convex sets in Kn.
〈

·, ·
〉

is the inner product, | · | is the Euclidean norm and

Sn−1 is the unit sphere in R
n. We use coA for the convex hull of A ∈ Kn and

dist(x,A) = infa∈A |x− a| for the distance from a point x ∈ R
n to A.

We define the set of metric pairs of A,B ∈ Kn by

Π(A,B) =
{

(a, b) ∈ A×B : |a− b| = dist(a,B) or |a− b| = dist(b, A)}.

For A,B ∈ Kn the Hausdorff metric is

haus(A,B) = sup{ |a− b| : (a, b) ∈ Π(A,B) }.

The space Kn is a complete metric space with respect to this metric. [17].

The support function δ∗(A, ·) : R
n → R is defined for A ∈ Kn as

δ∗(A, l) = max
a∈A

〈

l, a
〉

, l ∈ R
n.

A linear Minkowski combination of sets is

k
∑

i=1

λiAi =

{

k
∑

i=1

λiai : ai ∈ Ai, i = 1, . . . , k

}

, Ai ∈ Kn, λi ∈ R.



498 Nira Dyn, Elza Farkhi, Alona Mokhov

In particular, A + B = {a + b, a ∈ A, b ∈ B} is the Minkowski sum of two

sets. A Minkowski average (a Minkowski convex combination) of sets is a linear

Minkowski combination with λi non-negative, summing up to 1.

We consider functions defined on [0, 1] with images in a metric space

(X, ρ), withX either R
n or Kn, and ρ either the Euclidean metric or the Hausdorff

metric respectively. The notions of convergence, continuity, Hölder/Lipschitz

continuity are to be understood with respect to the appropriate metric, e.g. f(·)
is Hölder continuous with exponent α if

ρ(f(x), f(y)) ≤ L|x− y|α, x, y ∈ [0, 1],

where the constant L depends on f . The collection of Hölder continuous multi-

functions with exponent α and constant L is denoted by Hα(L). For α = 1 the

notation is Lip(L).

We recall that the modulus of continuity (see e.g. [5], Chapter 2) of a

function f : [0, 1] → X with a step δ ≥ 0 is

ω(f, δ) = sup
0<h≤δ

‖∆h(f, ·)‖∞,

where

∆h(f, x) =

{

ρ(f(x+ h), f(x)) for x, x+ h ∈ [0, 1],

0 otherwise.

ω(f, δ) is also known as the first modulus of smoothness. The k−th modulus of

smoothness is defined by

ωk(f, δ) = sup{‖∆k
h(f, ·)‖∞ : 0 < h ≤ δ},

with ∆1
h = ∆h and ∆k

h(f, x) = ∆h

(

∆k−1
h (f, x), x

)

.

Note that for f ∈ Hα(L), ωk(f, δ) = O(δα), k ≥ 1 and for f k−times

continuously differentiable ωk(f, δ) = O(δk).

In this paper we discuss the adaptation to univariate SVFs of certain lin-

ear operators approximating real-valued functions. We consider linear operators

based on samples at a set of points χ = {x0, . . . , xN}, 0 ≤ x0 < x1 < · · · < xN ≤ 1

of the form

(1) Aχ(f, x) =
N
∑

i=0

ci(x)f(xi).
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We restrict this class to operators which approximate continuous functions in

[0, 1] or in most of it. Thus, we require that
∑N

i=0 ci(x) = 1 either in [0, 1], or in

most of it. We denote by |χ| = max{xi+1 − xi : i = 0, . . . , N − 1}. χN denotes

the set of equidistant points {i/N : 0 ≤ i ≤ N}, with |χN | = 1/N . An operator

based on χN we denote by AN .

We recall that a linear operator L(f, x) is called positive if for a non-

negative f , L(f, x) is non-negative. Obviously, Aχ is a positive linear operator if

ci(x) ≥ 0, i = 0, . . . , N . It reproduces the constant functions, namely Aχ(f, x) =

f(x) for f(x) = Const at all x such that
∑N

i=0 ci(x) = 1. At all such points,

Aχ(f, x) is a weighted average of the function values f(xi), i = 0, 1, . . . , N .

3. Approximation based on Minkowski averages. The first

adaptations of operators of type (1) to SFVs were done with the help of Minkowski

sum of sets. In this section we survey some general results for such adapta-

tions [19, 2, 6, 8].

For given data points χ, a positive operator of the form (1) with Minkowski

sums of sets replacing addition of numbers is

(2) Aχ(F, x) =

N
∑

i=0

ci(x)F (xi), x ∈ [0, 1], ci(x) ≥ 0.

3.1. The case of convex-valued multifunctions. Here we consider

SVFs with images in Cn, and the operation of Aχ defined by (2) on such multi-

functions. It is clear, that

(3) Aχ(λF + µG, ·) = λAχ(F, ·) + µAχ(G, ·), λ, µ ≥ 0.

Moreover, by the positivity of ci(x), the images of Aχ(F, ·) remain in the cone

Cn.

The approximation and the shape-preservation properties of such oper-

ators follow from the parametrization of convex compact sets by their support

functions. The well known properties of the support functions δ∗, relevant to our

investigation, are [16]:

for A,B ∈ Cn,

1. δ∗(A+B, ·) = δ∗(A, ·) + δ∗(B, ·),

2. δ∗(λA, ·) = λδ∗(A, ·), λ ≥ 0,
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3. A ⊆ B ⇐⇒ δ∗(A, l) ≤ δ∗(B, l) for each l ∈ R
n,

4. haus(A,B) = max
l∈Sn−1

|δ∗(A, l) − δ∗(B, l)|.

Thus, the operator Aχ in (2) is related to the operator Aχ in (1) by,

(4) δ∗(Aχ(F, t), l) = Aχ(δ∗(F, l), t), l ∈ R
n.

Also, F ∈ Hα(L) iff δ∗(F (·), l) ∈ Hα(L), uniformly in l ∈ Sn−1.

By the above two observations, approximation results for positive op-

erators can be extended from the case of real-valued functions to the case of

set-valued functions with compact convex images. Here we formulate a general

result of this type.

Theorem 3.1. Let Aχ approximate continuous real-valued functions with

the error estimate

|Aχ(f, x) − f(x)| ≤ Cωk(f, ψ(x, |χ|)),

where ψ : [0, 1] × R+ → R+ is a continuous real-valued function, non-decreasing

in its second argument, satisfying ψ(x, 0) = 0.

Then for a continuous convex-valued multifunction F : [0, 1] → Cn

haus(Aχ(F, x), F (x)) ≤ C sup
l∈Sn−1

ωk(δ
∗(F, l), ψ(x, |χ|)).

As in the real-valued case, the adapted positive operators (2) have shape

preservation properties in the convex-valued case. The positivity of Aχ pre-

serves the order between two multifunctions in the sense of set-inclusion: F (x) ⊆
G(x) ⇒ Aχ(F, x) ⊆ Aχ(G, x).

Moreover, by Property 3 of support functions, if Aχ preserves monotonic-

ity of real-valued functions, then Aχ preserves monotonicity of multifunctions.

Here monotonicity of SVFs is in the sense of set-inclusion, namely if F (x) ⊆
F (x + h) for all h > 0, then Aχ(F, x) ⊆ Aχ(F, x+ h) for all h > 0 (see [8] for

more details).

3.2. The general case – convexification. Vitale [19] noticed that

for the constant multifunction F (x) = {0, 1}, the piecewise-linear approximation
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constructed with Minkowski sums does not converge to F (x) when |χ| → 0 .

He also observed that the Bernstein approximants of a multifunction with gen-

eral compact images converge, when increasing their degree, to a convex-valued

multifunction.

More generally, if the number of summands in (2) grows with N , as for

the Bernstein operators, the Shapley-Folkman-Starr Theorem (see Appendix 2 in

[18] and Theorem 2 in [4]) yields

haus(Aχ(F, x), coAχ(F, x)) ≤
√
n max

0≤i≤N
ci(x) max

s∈[0,1]
sup{|y| : y ∈ F (s)},

for any multifunction with compact images in R
n. Since coAχ(F, x) = Aχ(coF, x),

by Theorem 3.1, lim
N→∞

Aχ(coF, x) = coF (x). Thus, if lim
N→∞

max
i
ci(x) = 0, as in

the case of Bernstein operators, then lim
N→∞

Aχ(F, x) = coF (x) (see [10] for other

operators with this property).

Another type of operators for which convexification occurs are spline sub-

division schemes. For these operators the Shapley-Folkman-Starr Theorem is not

applicable. Subdivision schemes are recursive averaging procedures with a fixed

finite number of summands and fixed weights. For this case an inequality, involv-

ing a measure of non-convexity of sets, introduced in [4], is used to prove that

spline subdivision schemes with Minkowski averages applied to arbitrary initial

compact sets in R
n converge to a multifunction with convex images [10].

The convexification occuring with Minkowski averages, motivated the

search for alternative operations on sets.

4. Metric operations on general sets. The lack of approximation

by operators of type (2) in case of SVFs with general images, is due to the fact

that the Minkowski averages of non-convex sets are too big. For example, the

convex combination λA + (1 − λ)A, λ ∈ [0, 1] equals A if A is convex, but is a

superset of A for general A. Two operations on sets are introduced in [1] and [12]

which produce subsets of the Minkowski average or linear Minkowski combination

respectively. With these operations it is possible to avoid convexification and to

achieve approximation for SVFs with general images.

4.1. The metric average of two sets. A binary operation between

sets was constructed in [1] and used for piecewise-linear approximation of SVFs

with compact (not necessarily convex) images. This binary operation is termed

in [9] “metric average”.
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Definition 4.1. Let A,B ∈ Kn, t ∈ [0, 1]. The t-weighted metric

average of A and B is

A⊕ t B = {ta+ (1 − t)b : (a, b) ∈ Π(A,B)}.

The following properties of the metric average are important for our ap-

plications. The first three are easy to observe [9], and the fourth is the metric

property proved in [1].

Let A,B,C ∈ Kn and 0 ≤ t ≤ 1, 0 ≤ s ≤ 1. Then

1. A⊕0 B = B, A⊕1 B = A, A⊕t B = B ⊕1−t A.

2. A⊕t A = A.

3. A ∩B ⊆ A⊕t B ⊆ tA+ (1 − t)B.

4. haus(A⊕t B,A⊕s B) = |t− s|haus(A,B).

Note that the analogues of properties 2 and 4 are true in the case of

Minkowski averages only for convex sets, while with the metric average these

essential properties are valid for general compact sets.

Although the metric average is a non associative binary operation, there

exists an extension of this operation to a finite number of ordered sets.

4.2. The metric linear combination of sets. In [12] a new operation

on a finite sequence of sets is introduced. It is based on the notion of a metric

chain, which is an extension of a metric pair.

Definition 4.2. For {A0, . . . , AN} with Ai ∈ Kn, a vector (a0, . . . , aN )

is called a metric chain of {A0, . . . , AN}, if ai ∈ Ai, i = 0, . . . , N , and there

exists j, 0 ≤ j ≤ N such that

ai−1 ∈ ΠAi−1
(ai), 1 ≤ i ≤ j and ai+1 ∈ ΠAi+1

(ai), j ≤ i ≤ N − 1.

Here ΠA(b) = { a ∈ A : |a− b| = dist(b, A) } for b ∈ R
n. An illustration of such

a metric chain is given in Figure 4.1.

a0 ∈ ΠA0
(a1) aj−1 ∈ ΠAj−1

(aj) aj ∈ Aj aj+1 ∈ ΠAj+1
(aj) aN ∈ ΠAN

(aN−1)

Fig. 4.1
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Thus each element of each set Ai, i = 0, . . . , N generates at least one

metric chain. We denote by CH(A0, . . . , AN ) the collection of all metric chains

of {A0, . . . , AN}. The set CH(A0, . . . , AN ) depends on the order of the sets Ai,

i = 0, . . . , N . With this notion of metric chains we can define,

Definition 4.3. A metric linear combination of a sequence of sets

A0, . . . , AN with coefficients λ0, . . . , λN ∈ R, is

(5)
N
⊕

i=0

λiAi =

{

N
∑

i=0

λiai : (a0, . . . , aN ) ∈ CH(A0, . . . , AN )

}

.

The following distributive laws are easily derived from the definition,

(i)
N
⊕

i=0

λiA =

(

N
∑

i=0

λi

)

A , (ii)
N
⊕

i=0

λAi = λ

(

N
⊕

i=0

1 ·Ai

)

.

Note that λ0, . . . , λN can be any real numbers, and that if
N
∑

i=0
λi = 1, then by (i),

N
⊕

i=0
λiA = A.

5. Metric approximation operators. In this section we describe

our general approach to the adaptation of operators of type (1) to the set-valued

setting, based on the metric operations of Section 4. The discussion of the adap-

tation of specific operators is postponed to Section 6.

5.1. Operators based on the metric average. The metric average was

successfully used in [9] for the construction of set-valued subdivision schemes and

in [13] for the adaptation of the Schoenberg spline operators to multifunctions.

Also in [13] the Bernstein operators based on the metric average are shown to

approximate a certain class of SVFs with images in R.

The main disadvantage of the metric average, as an operation on sets, is

the lack of associativity. Hence it is not directly extendable to several sets. This

is the reason why the adaptation of (1) based on the metric average requires to

represent it in terms of repeated binary averages. Let us note that a represen-

tation by repeated binary averages exists for any samples-based linear operator,

which reproduces constants, but it is not unique [20]. The non-uniqueness leads
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to a variety of operators, which are not necessarily approximating. Therefore

general approximation results are not available. Yet, the representations cho-

sen in [9, 13], for concrete approximation operators, are proved to be adequate

theoretically and experimentally.

5.2. Operators based on the metric linear combinations. All the

results of this subsection are cited from [12].

We use the metric linear combination (5) to define the metric analogue

of the linear operator (1).

Definition 5.1. For F : [0, 1] → Kn, we define a metric linear opera-

tor AM
χ by

(6) AM
χ (F, x) =

N
⊕

i=0

ci(x)F (xi).

In contrast to the adaptations of positive operators based on the metric

average, the metric analogues (6) of two linear operators of the form (1), which

are identical on single-valued functions, are identical on SVFs.

Here we formulate a general error estimate for these operators.

Theorem 5.2. Let Aχ be of the form (1), then for a continuous F :

[0, 1] → Kn

(7) haus(AM
χ (F, x), F (x)) ≤ 2ω(F, |χ|) + sup

ϕ∈CH

|Aχ(s(χ, ϕ), x) − s(χ, ϕ)(x)|,

where s(χ, ϕ) is a piecewise-linear single-valued function interpolating the data

(xi, fi),

i = 0, . . . , N , with ϕ = (f0, . . . , fN ) ∈ CH(F (x0), . . . , F (xN )) .

In case F ∈ Lip(L), then also s(χ, ϕ) ∈ Lip(L), and we have

Corollary 5.3. Let F ∈ Lip(L) and let Aχ be of the form (1), satisfying

|Aχ(f, x) − f(x)| ≤ C Lψ(x, |χ|), f ∈ Lip(L),

where ψ is as in Theorem 3.1. Then

(8) haus(AM
χ (F, x), F (x)) ≤ 2L|χ| + CLψ(x, |χ|),
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6. Adaptation of specific approximation operators. The ap-

proximation results from Sections 3, 5 are specialized here to two classes of pos-

itive operators: the Schoenberg spline operators and the Bernstein polynomial

operators. We also present the adaptation of polynomial interpolation operators

to SVFs as examples of non-positive operators.

Error estimates for the various types of adapted approximation operators

are provided, using C as a generic constant.

6.1. Bernstein operators. The Bernstein operator BN (f, x) for a real-

valued function f : [0, 1] → R is

(9) BN (f, x) =
N
∑

i=0

(

N

i

)

xi(1 − x)N−if

(

i

N

)

.

It is known (see [5], Chapter 10) that there exists a constant C independent of f

such that for a continuous f

|f(x) −BN (f, x)| ≤ Cω[0,1](f,
√

x(1 − x)/N).

The value BN (f, x) can be calculated recursively by repeated binary averages,

using the de Casteljau algorithm [15],

f0
i = f(i/N), i = 0, . . . , N,(10)

fk
i = (1 − x)fk−1

i + xfk−1
i+1 , i = 0, 1, . . . , N − k, k = 1, . . . , N,

BN (f, x) = fN
0 .

This algorithm is commonly used in CAGD.

Next we present three different adaptations of the Bernstein operators to

SVFs .

The adapted Bernstein operator of the form (2) is

(11) BMn
N (F, x) =

N
∑

i=0

(

N

i

)

xi(1 − x)N−iF

(

i

N

)

,

and by Theorem 3.1 we have,

Theorem 6.1. For a convex-valued multifunction F ∈ Hα(L)

haus
(

F (x), BMn
N (F, x)

)

≤ C

(

x(1 − x)

N

)
α
2

.
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In the adaptation of (9), based on the metric average with the de Casteljau

algorithm, starting with F 0
i = F (i/N), we replace in (10) the average f k

i =

(1 − x)fk−1
i + xfk−1

i+1 by the metric average F k
i = F k−1

i ⊕ 1−x F
k−1
i+1 and obtain

the approximant BMA
N (F, x) = FN

0 , x ∈ [0, 1]. It is not known whether these

operators approximate multifunctions with general compact images in R
n, yet for

a certain class of SVFs with compact images in R, the following approximation

result holds [13],

Theorem 6.2. Let F ∈ Lip(L) be such that for ∀x ∈ [0, 1],

F (x) =
⋃J

j=1 Fj(x), where Fj(x) are disjoint compact intervals. Then for suf-

ficiently large N

haus
(

BMA
N (F, x), F (x)

)

≤ C/
√
N, x ∈ [0, 1].

The metric analogue of the Bernstein operator for set-valued functions is

[12],

BM
N (F, x) =

N
⊕

i=0

(

N

i

)

xi(1 − x)N−iF

(

i

N

)

=

{

N
∑

i=0

(

N

i

)

xi(1 − x)N−ifi : (f0, . . . , fN ) ∈ CH

}

,

where CH = CH(F (0), F (1/N), . . . , F (1)).

It follows from Corollary 5.3 that

Corollary 6.3. Let F ∈ Lip(L), then

haus
(

BM
N (F, x), F (x)

)

≤ 2L/N + CL
√

x(1 − x)/N.

6.2. Schoenberg operators. For the Schoenberg operators we have

four successful adaptations to SVFs. The approximation results in this case are

numerous.

6.2.1. The real-valued case. The Schoenberg spline operator of order

m with uniform sampling points χN , for a real-valued function f , is

(12) Sm,N (f, x) =
N
∑

i=0

f(i/N)bm (Nx− i) , x ∈ [0, 1],
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where bm (x) is the B-spline of order m (degree m − 1) with integer knots and

support [0,m]. By the known approximation result (see [3], Chapter XII),

(13) |Sm,N (f, x) − f(x)| ≤
⌊

m+ 1

2

⌋

ω[0,1](f, 1/N), x ∈
[

m− 1

N
, 1

]

,

where bxc is the maximal integer not greater than x.

Note, that the rate of approximation of the Schoenberg operators can be

improved if bm in (12) is replaced by the centered B-spline b̃m = bm(· + m/2).

We omit the details here.

In [3], Chapter X it is shown that (12) can be evaluated recursively in

terms of repeated binary averages. For x ∈ [j, j + 1] let

f1
i = f (i/N) , i = j −m+ 1, . . . , j,(14)

fk
i = λk

i f
k−1
i−1 +

(

1 − λk
i

)

fk−1
i , i = j −m+ k, . . . , j, k = 2, . . . ,m,

Sm,N (f, x) = fm
j .

with λk
i =

i+m+ 1 − k −Nt

m+ 1 − k
, i = j −m+ k, . . . , j, k = 2, . . . ,m.

For real-valued functions the Schoenberg operators can be also evaluated

by subdivision schemes (see e.g. [7]). Given the initial sequence f 0
i = f( i

N
), i =

0, . . . , N of values in R, with f 0
i = 0 for i ∈ Z\{0, 1, . . . , N}, the spline subdivision

scheme for the evaluation of Sm,N (f, ·) is given by the refinement steps

(15) fk+1
i =

∑

j∈Z

a
[m]
i−2jf

k
j , i ∈ Z, k = 0, 1, 2, . . .

where a
[m]
i =

(

m+1
i

)

/2m, i = 0, 1, . . . ,m+1 and a
[m]
i = 0 for i ∈ Z\{0, 1, . . . ,m+

1}. At the k−th refinement level one defines the piecewise-linear function

(16) f [k](x) =
∑

i∈Z

fk
i b̃2(2

kx− i), x ∈ R,

where {fk
i , i ∈ Z} are the values generated by the subdivision scheme at refine-

ment level k.

The scheme (15) is uniformly convergent, namely the sequence {f [k](·)}k≥0

is a Cauchy sequence, and its limit function is of the form (see e.g. [7])

f∞(x) =
N
∑

i=0

f0
i bm(x− i), x ∈ R.
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Therefore

(17) Sm,N (f, x) = f∞(Nx), x ∈ [0, 1].

The refinement step (15) can be computed by repeated binary averages

as follows:

fk+1,0
2i = fk

i , fk+1,0
2i−1 = (1/2)fk

i−1 + (1/2)fk
i , i ∈ Z,(18)

fk+1,j
i = (1/2)fk+1,j−1

i + (1/2)fk+1,j−1
i+1 , j = 1, . . . ,m− 1

fk+1
i = fk+1,m−1

i+bm−1

2
c
, i ∈ Z.

6.2.2. The convex-valued case. To define Schoenberg operators for

a multifunction with convex images F , one can use the direct formula (12), the

evaluation procedure (14) or spline subdivision schemes with a refinement step

given by (15) or by (18), replacing f by F and sums of numbers by Minkowski

sums of sets. By the results obtained for the real-valued case and by (4), all

methods of computation lead to the same SVF, denoted by Sm,N (F, ·) [8],[11].

By Theorem 3.1 we have for F ∈ Hα(L)

(19) haus (Sm,N (F, x), F (x)) ≤
⌊

m+ 1

2

⌋

1

Nα
, x ∈

[

m− 1

N
, 1

]

.

6.2.3. Schoenberg operators based on the metric average.In [13]

the Schoenberg operator for a multifunction F , SMA
m,N (F, ·), is defined in terms

of algorithm (14) with the binary averages between numbers replaced by the

corresponding metric averages between sets. It is shown there that

Theorem 6.4. For a set-valued function F : [0, 1] → Kn, F ∈ Hα(L),

the Schoenberg operator SMA
m,N (F, x) satisfies

(20) haus
(

SMA
m,N (F, x), F (x)

)

≤ C

Nα
.

Another way to adapt the Schoenberg operators using the metric aver-

age as a basic operation is to adapt the m-th degree spline subdivision scheme,

represented by the sequence of repeated binary averages (18). Starting with

F 0
i = F (i/N), i = 0, . . . , N and F 0

i = {0} otherwise, we replace in (18) the aver-

ages of numbers by corresponding metric averages of sets to obtain {F k+1
i : i ∈ Z}

from {F k
i : i ∈ Z}
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At the (k+1)−th refinement level, a metric piecewise-linear SVF, F [k+1](t)

is defined by

(21) F [k+1](t) = F k+1
i ⊕λ(t) F

k+1
i+1 , i2−(k+1) ≤ t ≤ (i+ 1)2−(k+1), i ∈ Z

with λ(t) = (i+ 1) − t2k+1.

The following results are proved in [9].

Theorem 6.5. Let {F 0
i : i ∈ Z} be compact sets with L = sup{haus(F 0

i ,

F 0
i+1) : i ∈ Z} <∞. Then the sequence {F [k](·)}k∈Z+

in (21) converges uniformly

on R to a set-valued function F∞(·) ∈ Lip(L).

Theorem 6.6. Let the initial sets for the subdivision be the samples

F 0
i = F (i), i ∈ Z, with F ∈ Lip(L) on R, and let F∞(·) be as in Theorem 6.5.

Then

max
x∈R

haus(F∞(x), F (x)) ≤ L(7 +m)/2.

Applying these results to the initial data relevant to the evaluation of the

Schoenberg operator of functions defined on [0, 1] we obtain,

Corollary 6.7. Let F ∈ Lip(L) on [0, 1], and let

F 0
i =

{

F (i/N) 0 ≤ i ≤ N,

{0} otherwise.

Then F∞ ∈ Lip(L/N) on R, and

haus
(

F∞(Nx), F (x)
)

≤ L(7 +m)

2N
, x ∈

[

m− 1

N
, 1

]

.

Corollary 6.7 can be extended to F ∈ Hα(L) to obtain error of order O(N−α).

6.2.4. Metric analogues of Schoenberg operators. The metric ana-

logue of the Schoenberg operator of order m for a multifunction F and a set of

equidistant points χN is

SM
m,N (F, x) =

N
⊕

i=0

bm (Nx− i)F

(

i

N

)

=

{

N
∑

i=0

bm (Nx− i) fi : (f0, . . . , fN ) ∈ CH

}

,



510 Nira Dyn, Elza Farkhi, Alona Mokhov

where CH = CH(F (0), F (1/N), . . . , F (1)).

By Corollary 5.3 and the known approximation result (13), we have for

Lipschitz continuous SVFs

Corollary 6.8. Let F ∈ Lip(L) on [0, 1]. Then

haus
(

SM
m,N (F, x), F (x)

)

=

(

2 +

⌊

m+ 1

2

⌋) L
N
, x ∈

[

m− 1

N
, 1

]

.

6.3. Polynomial Interpolants. For a real-valued function f the poly-

nomial interpolation operator at the set of points χ is

Pχ(f, x) =

N
∑

i=0

li(x)f(xi), with li(x) =

N
∏

j=0,j 6=i

x− xj

xi − xj
, i = 0, . . . , N.

For N > 1, Pχ is not a positive operator. Thus the only possible adaptation of

Pχ to SVFs is the metric analogue of Definition 5.1.

For a multifunction F , the metric polynomial interpolation operator at χ, is given

by

PM
χ (F, x) =

N
⊕

i=0

li(x)F (xi) =

{

N
∑

i=0

li(x)fi : (f0, . . . , fN ) ∈ CH

}

,

with CH = CH(F (x0), . . . , F (xN )), i = 0, 1, . . . , N .

To illustrate the metric set-valued polynomial interpolants, and to see

the geometry of metric linear combinations of sets with negative coefficients, we

present in Figure 6.1 an example of a metric parabolic interpolant to three sets

in R. The parabolic interpolant interpolates the data (xi, Ai), i = 0, 1, 2 with

x0 = 0, x1 = 1/2, x2 = 1 and A0 = [1/4, 1/2] ∪ [3/4, 1] , A1 = [9/16, 11/16] ,

A2 = A0.

In the above figure the interpolated sets are depicted in black. The gray

curves in the left figure are parabolic interpolants to the data (xi, ai), i = 0, 1, 2

for some metric chains (a0, a1, a2) ∈ CH(A0, A1, A2). The right figure is the

graph of the set-valued interpolant.

Next we consider a specific sequence of interpolation operators which,

when operating on F ∈ Lip(L), converges to F . Let the interpolation points χ

be the roots of the Tchebyshev polynomial of degree N + 1 on [0, 1]. It is known
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Fig. 6.1. Metric parabolic interpolant

(see e.g. [14]) that for these points

N
∑

i=0

|li(x)| ≤ C logN.

For a real-valued function f ,

|f(x) −
N
∑

i=0

li(x)f(xi)| ≤ (1 +

N
∑

i=0

|li(x)|)EN (f),

with EN (f) the error of the best approximation by polynomials of degree N on

[0, 1]. Since EN (f) ≤ Cω(f, 1/N) (see [5], Chapter 7), we obtain for a Lipschitz

continuous function f

|f(x) −
N
∑

i=0

li(x)f(xi)| ≤
C logN

N
, x ∈ [0, 1],

and the error in the interpolation of such a function at the roots of the Tchebyshev

polynomials tends to zero as N → ∞.

When adapting these interpolation operators to Lipschitz continuous SVFs,

we get by Corollary 5.3 and by the observation that |χ| ≤ π/(2N),

Corollary 6.9. Let F : [0, 1] → Kn, F ∈ Lip(L), and let the points χ be

the roots of the Tchebyshev polynomial of degree N + 1 on [0, 1], then

haus(PM
χ (F, x), F (x)) ≤ 2L|χ| + C logN

N
= O

(

logN

N

)

.
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To the best of our knowledge this result is the first convergence result of

non-positive operators to the approximated set-valued functions.

Although we get approximation results for adapted operators based on

metric linear combinations, the direct computation of the approximants according

to definitions (5), (6) is of high complexity. From Figure 6.1 it is clear that such

a computation is redundant. Our aim is to devise efficient algorithms for the

computation of these operators.
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