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ABSTRACT. We obtain (z)°L' — (2)7°L> time decay estimates for the
Schrodinger group e®(—=2*V) where V € L*(R™), n > 3, is a real-valued
potential satisfying V(z) = O ((z)"*+1/27¢), e > 0.

1. Introduction and statement of results. In the present paper
we will be interested in studying the decay properties of the Schrédinger group
e"% as |t| > 1, where G is the self-adjoint realization of —A + V(z) on L?(R"),
n > 3. Here V € L*>°(R") is a real-valued potential satisfying

(1.1) |V (z)] < Cx)~°, VzeR",
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with constants C' > 0, 6 > (n+2)/2. Denote also by G the self-adjoint realization
of the operator —A on L%(R"). It is well-known that the following dispersive
estimate holds for the free Schrodinger group:

(1.2) |0 < Clt|™™2, t#0.

HL1~>L°°

Given any a > 0, set xq(0) = x1(0/a), where x; € C*°(R), x1(c) =0 for o < 1,
x1(o) =1 for 0 > 2. A difficult interesting problem is to find the largest possible
class of potentials for which the following dispersive estimate holds true:

(1.3) 1€ Xa(G)|| 1o < CItITY2, t 0.

While in the case of n = 2 and n = 3 there exist quite optimal results (see [7], [2],
[6], [1], [11], [8]), when n > 4 there are very few ones. In this case (1.3) is proved
in [4] for potentials satisfying (1.1) with & > n, the condition V € L' and an
extra technical condition which turns out not to be essential and therefore can be
removed. Indeed, (1.3) has been recently proved in [5] under (1.1) with 6 >n—1
and V € L', only. It is also shown in [5] that if we additionally suppose that zero
is a regular point for G (that is, zero is neither an eigenvalue nor a resonance of
G), then we have

(1.4) €7 Pye < Clt|™™2, t#0,

HL1~>L°°

where P,. denotes the spectral projection onto the absolutely continuous spec-
trum of G. Note that (1.4) is proved in [4] for a much smaller class of potentials.
On the other hand, it is shown in [3] that when n > 4 there exist compactly
supported potentials V € C*(R"), Vk < (n —3)/2, for which (1.3) does not hold.
In other words, one needs to control at least (n — 3)/2 derivatives of V' in order
that (1.3) could hold, so one expects that one could replace the condition Vell
in [4] by a less restrictive one. For potentials satisfying (1.1) only, it has been
recently obtained in [9] dispersive estimates with a loss of (n — 3)/2 derivatives,
and this seems to be the best one could do under this condition. However, if one
replaces the spaces L' and L™ by similar ones with weights, one could overcome
the loss of derivatives as well as get a better time decay. Indeed, for the free
Schrédinger group we have the following weighted dispersive estimate (which is
an easy consequence of the estimate (2.1) below):

(1.5) [ (2) €90 o (Go) () ™% || 1 oo < Cult] 275, [t] > 1,5 > 0.

It turns out that such an estimate holds for the perturbed Schrédinger group as
well, provided s is taken big enough. More precisely, we have the following
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Theorem 1.1. Let V satisfy (1.1) with 6 > n — 1/2. Then, for every
a>0,(n—-3)/2<s<d—(n+2)/2, we have the estimate

(1.6) [(2) %€ X0 (G) ( < CTVEE ] > 1.

8“L1~>L°°

If in addition zero is a reqular point for G, then we have

(1.7) |[(2) %€ Pye( < Clt|™™2, |t > 1.

HL1—>L°°

Moreover, for every 2(n —1)/(n —3) < p < +o0 and (n —1)/2 —a~! < s <
d — (n+2)/2, we have

(18) H<li>faseitGXa(G)<x>fas < C«|t|fo¢(n/2+s)7 |t| > 1,

‘ ‘ LY —Lp

(1.9) ()05 eC Py () o < Clt|om?, ) > 1,

HLP/—>LP
where 1/p + 1/p = 1 and a« = 1 — 2/p. We also have for all 2 < p < 400,
a(n—3)/2<s<6d—(n+2)/2,

(1.10) H <:c)*seitGXa(G) (x)~*

T g S CRITOMEE g > 1,

Remark 1. We conjecture that (1.6) holds true for potentials satisfying
(1.1) withd >n—1land (n—3)/2<s<d—(n+1)/2.

Remark 2. We expect that (1.6) holds with s = (n — 3)/2 as well.
Note that (1.7) and (1.9) are a direct consequence of (1.6) and (1.8),

respectively, and the low frequency dispersive estimates proved in [5].

It is natural also to expect that one could overcome the loss of derivatives
when one keeps the space L but replaces the space L' by a suitable subspace.
Indeed, it was proved in [9] that we have the following modified dispersive estimate
under (1.1) only:

(1.11) 1€ Xa(G) | oo < Ce\t\_”/QH<x>”/2+€f Lo tFED,

for all 0 < e < 1. The subspace (x>*”/2*6L2, however, is not optimal and can be
improved. We will prove in the present paper the following

Theorem 1.2. Let n > 4 and let V' satisfy (1.1). Then, for every a > 0,
0 < € < 1, we have the estimate

n+te)(n—3)

(112) [ xa(G)f|| o < Celt ™2 ||(z) “50 5

f 2+42(n—3)(14+€) t # 07
L n—T
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with some 0 < € = O(e) < 1. If in addition zero is a reqular point for G, then
we have

n+e)(n—3)

(113)  [|e"C Pacf || oo < Cilt| ™2 () D

2+42(n—3)(1+¢€) * t 7é 0.
L n—1

More generally, given any 0 < q < (n — 3)/2, we have the estimates

(114) [[eCa2y, @ f| <o Sy 140
. Xa [oo =€ L2+2(nn__31—_2§3(1+5)7 )
; - _ (nte')(n=3-2q)
(1.15) ||eC(G) ™2 Pacf ||| <Celtl™2{[(@) 020 || e apiree 1O
L~  n—1—-2¢

Remark 3. We conjecture that (1.12) and (1.14) hold true for potentials
satisfying (1.1) with 6 > (n+1)/2.

Remark 4. The estimate (1.14) with ¢ = (n — 3)/2 is proved in [9].

Note that (1.13) and (1.15) follow from (1.12) and (1.14), respectively,
and the low frequency dispersive estimates proved in [5].

To prove the estimates (1.6), (1.8), (1.10) and (1.14) we follow the semi-
classical approach developed in [9]. To this end, we need to generalize the key
semi-classical dispersive estimates proved in [9]. We believe that this approach
could allow to get L' — L dispersive estimates with a loss of (n —3)/2 — k
derivatives, 0 < k < (n — 3)/2, for potentials V' € C*¥(R"™) with a suitable decay
at infinity. When 0 < k < (n —3)/2, this problem turns out to be quite hard and
to our best knowledge it is not solved even for compactly supported potentials.

2. Proof of Theorem 1.1. We will first show that (1.6), (1.8) and
(1.10) follow from the following

Proposition 2.1. Let ¢ € C3°((0,+00)). For every s >0, 0 < h <1,
t # 0, we have

(2.1) | (z) % “op(h*Go) (x < Cho|t|~™/%s.

>_SHL1~>L°°

If V' satisfies (1.1), then for every 0 < s <d—(n+2)/2,0<h<1,t#0, we
have

(22) @)= U (B G )|y oo < ORI T2
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Writing the function y, as follows

! df
() = [ utot) .
where ¢(0) = ox/,(c) € C§°((0,400)), we obtain from (2.2),

—s it -5 ! —s it -5 do
)¢ @) Moo < [ @) OG)) o T

1
< C|t|—n/2—s/ 0—1+(25—n+3)/4d9 < C‘t|—n/2—s’
0

provided s > (n—3)/2. To prove (1.8) observe that an interpolation between the
bound

H<x>fs (eitGi/J(h2G) o eitGoi/J(h2G0)) <$>7SHL1*}LOO < Chsf(nf3)/2’t’7n/2fs,
and the following estimate proved in [9]
HeitGw(hQG) _ eitGO¢<h2G0

)HL2—>L2 S Ch7

yields

H<m>fas (eitGw(h2G) . eitGOQ/J(h2G0)) <$

>7O‘S HLP/—>LP S

< Ch1+a(sf(n71)/2) ’t’fa(n/2+s) )

Hence ' '
H<m>fas (6ztGXa(G> . eztGOXa(GO)) <m>7asHLp’_>Lp
1 . . do
< / H<m>fas (eztGw(eG) - eltGow(QGO)) <$>fasHLp/_>Lp ?
0

1
< C’t‘a(n/2+s)/ 0*1/2+a(257n+1)/4d0 < C«|t|fo¢(n/2+s)7
0

provided s > (n—1)/2—a~!, which clearly implies (1.8). To prove (1.10) observe
that an interpolation between the estimates (2.2) and (2.9) below yields

(@) ot @Y @) < ORI
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for every 2 < p < +o00. Hence

| ! } do
1) " X @) @)™ o < / @)= " (0G) @)~ | 1 5
0

1
< C’t‘an/Qs/ 071+(287a(n73))/4d9 < C‘tran/Q,S?
0

provided s > a(n — 3)/2.

Proof of Proposition 2.1. To prove (2.1) we will make use of the
fact that the kernel of the operator e®*“oy)(h%2Gy) is of the form Kj(|z — yl, ),
where

0_—211

Kp(o,t) = 2n)T

/O h N Y(R2A2) T, (e A)AIN = B K (oh ™ th™2),
where J,(2) = 2J,(2), J,(2) = (H,f (2) + H, ())/2 being the Bessel function of
order v = (n — 2)/2. It is shown in [9] that the function K satisfies
K1 (0,t)| < Ct| =52 (o)== D/2 s >0,0 >0,t#0.

Hence, for all s > 0,0 >0,t#0,0 < h <1, we have
(2:3) K (ovt)] < CRYt 77" (o).
Clearly, (2.1) follows from (2.3) and the bound

(@) (z—y)*(y)° <C, Va,yeR"
To prove (2.2), it suffices to study the difference

(t,h) = eCP(hG) — eCoy(h2Gy).
As in [9] one can deduce from Duhamel’s formula the identity

2

(2.4) U(th) =Y W(t;h),
j=1
where
\Ifl(t; h) =

= P1(h2Go)e" (Y(h*G) — p(h*Go)) + (¥1(h*G) — 1(h*Go)) e"“p(h*G),
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t . .
y(t;h) =i / V1 (h2G)e Ve Gy (h2G)dr,
0

where 11 € C§°((0,400)), ¥1 = 1 on supp .

Proposition 2.2. If V satisfies (1.1), then for every 0 < s < — (n+
2)/2,0<e<1,1—€¢/2<pu<1+4+¢€¢/2,0<h<1,t#0, we have

(2.5) |9 (h?Go)e™™ @ ()~ < Ch(=2)/2=€)g 7

176HLQ~>L°° —

(2.6) @ (t; h) (2 < C h~ (= /2e g7

>7176 HL2~>L°°

(2.7) H<:c>‘S\If(t; h){a)=> /2 < C M2,

2]

Proof. The estimates (2.5), (2.6) and (2.7) with s = 0 are proved in [9]
(Propositions 2.1 and 4.1). To prove (2.7) with 0 < s < d — (n + 2)/2, observe
that (2.1) implies

(@) wi sy a) oy

-

(28) < OU) (@) w(ts w)w) /2

| O £ e,
where we have also used the bounds (see Appendix 1 of [5])
[(2) 7 ($(h*G) — $(h*Go)) (2)*|| oo oo < CP,

< Ch2.

|@= wre) —vinco) @°| |

To deal with the operator W9 we need the following uniform estimates on weighted
L? spaces proved in [9] (Theorem 3.3). O

Proposition 2.3. If V satisfies (1.1), then for every 0 < s < 6 — 1,
0<exl,0<h<1, Ve, we have

(2.9) [(2) e (R G) (@) ™| o o < Celt/R) ™"

Using (2.1), (2.5) and (2.9), we get

H (x) 5 Wo(t; h)(a) 53¢

L2
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X
L2— [

t/2 ]
<C / H <$>731/}1 (hZGO)e'L(tff)GO <x>fsfn/2fe
0

X |[{z) e TOY (PG (@) T | o 0 AT
t/2 ,
+C /0 b1 (B2 Gio)e ™ () 1| o o X
% H<x>_S_n/g_gei(t_T)Gd)(th)<x>_s_n/2_e I2—12 dr

< Che|t| /2 / (m/h) 1= PPdr 4 CRe T T2 / THdr
0 0

(2.10) < ChsHI=epg| /2,
Combining (2.4), (2.8) and (2.10), we obtain

(@)= wits hygay ey

-

(211) <O @ wEm @) 2|+ OB e

Hence, there exists a constant 0 < hg < 1 so that for 0 < h < hy we have

@12)  [@ e n) g

[ O ) o

Let now hg < h < 1. Without loss of generality we may suppose h = 1. In view
of (2.9) we have
1

()75 (1 (G) = w1(Go)) (G () o2
< Ol fl 2,

<C H <x>fsfn/27661'tGw(G) <x>fsfn/276f L

which clearly implies (2.12) in this case. O

In view of (2.1) we have

(R AIGIDICo ]

(2.13) < O(W*) [[(x) =0 (t; 1) (2) 7 f || oo + OB )72 £ 1.
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Furthermore, we decompose Wy as W3 + ¥y, where
t
Ws(t;h) =i / Y1 (h2Go)el =Gy TG0y (h2Go)dr
0

Using (2.1), (2.6) and (2.7), we obtain

)™ Latt: ) @) ™ g
t/2 2 i(t—7)G| —s—n/2— 1—
<C/ swlh )z T O<$> s—n € L2_>LOOH< > E\I’ThHLl L2d
0 [ 0 Gaye o v ey,

(214) < Chsf(nf4)/2726’t’7n/2fs'
Proposition 2.4. IfV satisfies (1.1) with § > (n+1)/2, then for every
0<s<d—(n+1)/2,0<h<1,t#0, we have

(2.15) H< Y TSWs(t; h)(x < Chs_(n_3)/2’t’_n/2_5,

Tl

Proof. It is easy to see that the kernel of the operator W3 is of the form

| Uilla=elly— el v,

where

t ~
(2.16) Un(o1,02;¢) = i/o Kp(o1,t — 1)Ky (02, 7)dT =

= W20 (o1h Y ooh L thT?),

where K. n is defined by replacing in the definition of K} the function v by 1.
Clearly, (2.15) follows from the bounds

(217)  |Up(01, 095 1) < Ch~(=3)/2|¢|=n/2=s
(o o TRy o ) (Lot ),
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and

() (e = +(y—8)(y) > < CE)°, Va,y,£€R".
On the other hand, in view of (2.16), it suffices to prove (2.17) with h = 1. The
function U; is of the form Ul(l) — U1(2), where

Ul(j)(al,ag;t) =

2v
= A T

dAi1dXa.

The function 7, is of the form J,(z) = €**bF(2) + e~#b; (z), with functions b
satisfying (e.g. see Appendix 2 of [9])

(2.18) |09bE(2)| < ()27 ¥z >0,0<j <n-—3,
(2.19) 09 (2)] < Oz (2)" (D2 e >0, j=n -2,
(2.20) ‘égbf(z)‘ < QI D2 vy 50,5 >0 — 1.

The function J, also satisfies

(2.21) 017, (2)] < Cz"270(2) i~ (D20 e 5 0,0<j <n—2,
(2.22) 017,(2)| < Ci(2)"32 vz>0,j>n-1
It is shown in [9] that the function U 1(1) is of the form Wl(l) + Lgl), where

Wl(l)(al, o9;t) =

= Const(o109) "2 >+ / MNERN Y (A2) 7, (01 M0 )bE (g2 A1 ) Ay dAg,
0

Lgl)(Ul,Ug;t) =

= Const(c102) 2”2/ N (AT (010) AT (A, 09) AdAs,

AE(\1,02) =/ =222 0E (A, N\g; 02)d o,
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A2
AL+ A

aiul,AQ;az):(Al—Az)-l( VODE (022) — SUODE «mn).

We will bound the functions Wl(l) and Lgl) by using the following well known
inequality

'/6it)\2+ia)\(p(/\)d)\‘ < Cm’t’fmfl/ZZO_mfj ag;(p
J=0 2
m 1
(223) <Ol 3 0™ S sup(h) ]aﬁ%(x) , Vt#0,0€R,
: A
7=0 /=0

for every integer m > 0 with a constant C], > 0 independent of ¢, o and ¢, where
¢ € C§°(R). By (2.18)—(2.22), we have (for A\ € supp 1)

}ah (T (o1 A0)bE (02)1)) ‘<Ck20 aé}(af—jjy) (alxl)“(agbf)(a2xl)\

(2.24) < 61160_711—2<Ul>k—(n—1)/2<02>(n—3)/27

for every integer k£ > 0. Let 0 < o7 < 1. By (2.23) with ¢ = £09 and (2.24) we
get

(2.25) WD (01, 021)| < Cnlt] 72054 () 0=/,
Let now o1 > 1. Then, by (2.18)-(2.20), we have (for A? € supp 1)
(2.26) 98, (e MbE (027))| < Cudorn) =972 (o) 02,

for every integer k > 0. Thus, using (2.23) with 0 = +0; £ 09 together with
(2.26) we get

(2.27) }Wl“)(al,ag;t)}g
< Colt] 2o T 2y T ) 0TI ((01) + (o))
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By (2.25) and (2.27), we conclude
(2.28) (W (01,00;1)] <
< Cft| ™2 (01) " D205 (00) I (o) + (00)™

for every integer m > 0 and all ¢t # 0, 01,09 > 0. Hence, (2.28) holds for all real
m > 0 and in particluar for m = (n —1)/2 + s, s > 0. Thus, we obtain

(2.29) Wf”(o—l,@;t)} <

S C«s|t|—n/2—s <01—(N—1)/2 +U§n+2 +O.2—(”—1)/2) (<0'1> + <O’2>)S ]

The function Lgl) can be bounded in the same way. Indeed, it is shown in [9]
that the functions A* satisfy (for A2 € supp )

(2.30) }aiAi(A, a)‘ <Cjo!, Vo0,
for every integer j > 0. By (2.21), (2.22) and (2.30), we have (for A\? € supp )
(2.31) 98, (Tolo1)) A% (01, 02)) | < Crog o)t~ D12,

for every integer £ > 0 and all 01,00 > 0. As above, consider first the case
0 <o; <1. By (2.23) with 0 = 0 and (2.31) we get

(2.32) ]Lgn (0—1,02;75)‘ < Cplt| V20541,

When o1 > 1, by (2.18)-(2.20) and (2.30), we have (for A\? € supp 1)
(2.33) ]a’;l (bf(alxl)Ai(Al,ag))’ < Croylalmd/2,

By (2.23) with 0 = +0 and (2.33) we get

(2.34) ng”(Ul,@;t)] < Cplt| V2 (1 D/24m ot

By (2.32) and (2.34), we conclude

(2:35) ’Lgl)(m,az;t)’ < Cplt| 12 gy) = D2
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for every integer m > 0 and all t # 0, 01,09 > 0. Hence, (2.35) holds for all real
m > 0 and in particluar for m = (n —1)/2 + s, s > 0. We have

(2.36) LY (01, 09:8)| < Cult| ™27 (1) 5™

It follows from (2.29) and (2.36) that the function Ul(l) satisfies (2.17) with h = 1.

Clearly, the function U1(2) can be treated in precisely the same way. Thus, we
conclude that the function U; satisfies (2.17) with h = 1. O

Summing up (2.13), (2.14) and (2.15), we obtain

[[{2) "W (s h) (@) " f] L

(237) < OW?) (@)~ (t k) @)~ f|] oo + ORIt 722 £ .

Hence, there exists a constant 0 < hg < 1 so that for 0 < A < hy we can absorb
the first term in the RHS of (2.37), which in turn implies (2.2) for these values
of h. Let now hg < h < 1. Without loss of generality we may suppose h = 1. In
view of (2.7) we have

1) =% (¥1(G) = $1(Go)) " “P(G) ()~ f | oo

< C||@ e @) @) f | < O

’LQ

which implies (2.2) in this case. O

3. Proof of Theorem 1.2. Given any 1 < p < 2, denote by AP C L!
the space (z)~(+<)e=D/pLr (0 < ¢ <« 1, equipped with the norm

1 lar = || (o) tmrde=nrn |

v’

In what follows we keep the same notations as in the previous section. The key
point in the proof of (1.14) is the following

Proposition 3.1. IfV satisfies (1.1) with 6 > (n + 2)/2, then for every
0<q¢<(n—3)/2,0<h<1,t#0,0<e<1, we have

(3.1) N9 (8 W) g oo < Ceh It 2,
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where

p:2+2(n—3—2q)(1—|—6)

3.2
(3:2) n—1-—2q

Y

and 0 < e; = O(e) < 1.

Proof. We may suppose 0 < ¢ < (n — 3)/2 since for ¢ = (n — 3)/2 the
estimate (1.14) is proved in [9]. Writing the estimates (2.2) and (2.7) with s =0
in the form

Nt B g1 g < CRT Ot 702,
12t h)[ g2 oo < Ceph' =21t /2,

for every 0 < €5 < 1, we conclude by a standard interpolation argument that for
every 1 <p <2 0<e <1, we have

(3.3) 19 (t; B)| oo < CLAIP 772,
where
Bp)=—2-p)(n—3)/2+ (p—1)(1 —e€2).

Now, given any 0 < € < 1 define p by (3.2). It is easy to see that one can choose
0 < €2 = O(e) < 1 such that €; := B(p) = O(e) > 0, which clearly implies
(3.1). O

As at the beginning of the previous section we obtain from (3.1)

dg

1
itG _#G .
Je@) — Gl < [ 0,

1
(3.4) < C]t]_”/Q/ o1+ /2gg < [ ~/2.
0

Now, (1.14) follows from (3.4) and the bounds

€7 Xa(Go)| o poe < C1 ([ Xa(Go)[| 1, oo < Ca e < Clt[ 2.

O

HL1—>L°°
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