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GLOBAL WAVES WITH NON-POSITIVE ENERGY IN

GENERAL RELATIVITY
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Abstract. The theory of the waves equations has a long history since M.
Riesz and J. Hadamard. It is impossible to cite all the important results in
the area, but we mention the authors related with our work: J. Leray [34]
and Y. Choquet-Bruhat [9] (Cauchy problem), P. Lax and R. Phillips [33]
(scattering theory for a compactly supported perturbation), L. Hörmander
[27] and J-M. Bony [7] (microlocal analysis). In all these domains, V. Petkov
has made fundamental contributions, mainly in microlocal analysis, scatter-
ing theory, dynamical zeta functions (see in particular the monography [42]).

In this paper we present a survey of some recent results on the global
existence and the asymptotic behaviour of waves, when the conserved energy
is not definite positive. This unusual situation arises in important cosmo-
logical models of the General Relativity where the gravitational curvature
is very strong. We consider the case of the closed time-like curves (violation
of the causality) [1], and the charged black-holes (superradiance) [3].
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1. Violation of Causality. There are few works on the global hy-
perbolic problems on the non globally hyperbolic spacetimes. Nevertheless the
global hyperbolicity is an extremely strong hypothesis, which is not satisfied by a
lot of solutions of the (in)homogeneous Einstein equations. The origin of the loss
of global hyperbolicity can be a non trivial topology, an elementary example is
S1

t ×R3
x endowed with the Minkowski metric. Other examples are the lorentzian

wormholes [18], [51], but since they lead to violations of the local energy condi-
tions, these models are somewhat exotic. A deeper raison is linked with the non
linearity of the Einstein equations that can create some singularities of curvature,
and also some closed time-like geodesics. In particular, the violation of the causal-
ity can be due to a fast rotation of the space-time that tilts over the light cones
so strongly that some closed causal curves appear. This phenomenon is present
in several important Einstein manifolds: the Van Stockum space-time [47], the
Gödel universe [22], the Kerr black-hole (third Boyer-Lindquist block and fast
Kerr) [32], the spinning cosmic string [15]. These lorentzian manifolds belong to
a wide range of stationnary, axisymmetric spacetimes that are described by the
Papapetrou metric [41] on some 3D+1 manifold M

gµ,νdxµdxν = A(r, z) [dt − C(r, z)dϕ]2

−
1

A(r, z)

[

r2dϕ2 + B(r, z)
(

dr2 + dz2
)]

, 0 < A,B, 0 ≤ C.

Our model consists by choosing M = R
4, A = B = 1, and for simplicity

we assume that C is compactly supported. When we allow that C(r, z) > r (resp.
C(r, z) = r) for some (r, z), some closed time-like (resp. null) curves appear and
this spacetime has the same properties that the previous Einstein manifolds of
point of view of the causality. We investigate the wave equation

(1.1) | det g |−
1

2 ∂µ

(

| det g |
1

2 gµ,ν∂ν

)

u =

(

1 −
C2

r2

)

∂2
t u−∆xu−2

C

r2
∂t∂ϕu = 0.

Obviously the study of the solutions is difficult because of the presence of closed
timelike/null curves: there exists no global Cauchy hypersurface. We can see
how much intricated is the situation by formally expanding a solution of (1.1) in
Fourier series with respect to ϕ:

u(t, ϕ, r, z) =
∑

m∈Z

r−
1

2 um(t, r, z)eimϕ.

Then um is solution of a changing type equation:
(

1 −
C2

r2

)

∂2
t um −

(

∂2
r + ∂2

z

)

um − 2im
C

r2
∂tum +

m2

r2
um = 0,
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which is hyperbolic on {C < r}, elliptic on T := {C > r}, and of Schrödinger
type on Σ := {C = r}. In particular, Mt0 := {t = t0} × R

3
x is not a Cauchy

hypersurface for (1.1) when Σ is not empty. Another crucial point is that since
∂t is a Killing vector field, there exists a conserved current for the sufficiently
smooth solutions of (1.1):

E(u) :=
1

2

∫

R3

(

1 −
C2

r2

)

| ∂tu(t, x) |2 + | ∇u(t, x) |2 dx.

But this energy is not a positive form when the manifold is not chronological
(T 6= ∅).

1.1. Geometrical Framework. We consider the topologically trivial
manifold

(1.2) M := R
4
(x0,x1,x2,x3) = Rt × R

3
x

endowed with a lorentzian metric g which is equal to the Minkowski metric outside
a torus

Rt ×
{

(x1, x2, x3); 0 < r2
− <| x1 |2 + | x2 |2< r2

+, z− < x3 < z+

}

.

We choose a particular case of the Papapetrou metric:

(1.3) gµ,νdxµdxν = dt2 −
[

r2 − C2(r, z)
]

dϕ2 − 2C(r, z)dtdϕ − dr2 − dz2,

where we have used the cylindrical coordinates (t, ϕ, r, z) ∈ R× [0, 2π[×[0,∞[×R

given by

(1.4) x1 = r cos ϕ, x2 = r sinϕ, x3 = z.

We assume that C satisfies

(1.5) 0 ≤ C(r, z), C ∈ C2(R2), (r, z) /∈ [r−, r+] × [z−, z+] ⇒ C(r, z) = 0,

and our geometrical framework is given by (1.2), (1.3), (1.5). We note that t is
a timelike coordinate and (M, g) is naturally time oriented by the continuous,
nowhere vanishing, timelike (and Killing) vector field ∂t. Moreover r and z are
spacelike coordinates. The interesting fact is that the nature of the Killing vector
field ∂ϕ is ambiguous: the crucial point is that ϕ is a timelike coordinate when
C > r, thus we introduce

(1.6) T := Rt × T0, T0 := S1 × {(r, z); C(r, z) > r} ,
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(1.7) Σ := Rt × Σ0, Σ0 := S1 × {(r, z); C(r, z) = r > 0} .

We shall need the hypersurfaces

(1.8) Mt := {t} × R
3.

Its causal structure is complex. Since its normal is dt, the nature of Mt is locally
given by the sign of

gtt = 1 −
C2

r2
,

hence Mt ∩ (M\ (T ∪ Σ)) is spacelike, Mt ∩ Σ is null, and Mt ∩ T is timelike.

We shall be mainly concerned by the case where Σ is not empty. In this
situation the causality is violated in a severe way: given m0 = (t0, ϕ0, r0, z0), the
path

(1.9) τ ∈ R 7−→ m(τ) = (t0, ϕ0 − τ, r0, z0) ∈ M,

is a future directed closed null curve if m0 ∈ Σ, and a future directed closed
timelike curve if m0 ∈ T since:

g

(

dm

dτ
,
dm

dτ

)

= C2(r0, z0) − r2
0, g

(

dm

dτ
,

∂

∂t

)

= 2C(r0, z0) > 0.

More precisely, the causal structure of M is described by the following:

Proposition 1.1. Let (M, g) be the lorentzian manifold defined by (1.2),
(1.3), (1.5).

(1) If Σ = ∅, (M, g) is globally hyperbolic: Mt is a Cauchy hypersurface for
any t ∈ R.

(2) If T = ∅ and Σ 6= ∅, (M, g) is chronological but non causal: there exists no
closed timelike curve, but there exists a closed null geodesic.

(3) If T 6= ∅, (M, g) is totally vicious i.e. given m0,m1 ∈ M, there exists a
timelike future-pointing curve from m0 to m1.

The previous proposition explains why, in the physical litterature (see
e.g. [21], [51]), T and Σ are respectively called, time machine, and velocity-of-
light surface. This last term is somewhat misleading since ∂(M\ T) ⊂ Σ, but it
can happen that ∂(M\ T) 6= Σ and Σ is not necessarily a hypersurface. If there
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exists no (r0, z0) satisfying (1.11), the theorem of implicit functions immediately
assures that Σ is a C2-hypersurface that is timelike because its normal N =
(∂rC − 1)dr + ∂zCdz is spacelike since gµ,νNµ,ν = −(∂rC − 1)2 − (∂zC)2 < 0.
Moreover, this is a sufficient and necessary condition on C for a geometrical
property of non-trapping type:

Proposition 1.2. Let m ∈ C2 (Rτ ;M) be a path. Then the following
assertions are equivalent:

(i) m is a null geodesic and for some T > 0:

(1.10) m(R) ⊂ [−T,+T ]t × Σ0,

(ii) there exists (t0, ϕ0, r0, z0), λ ∈ R
∗, such that:

(1.11)

{

C(r0, z0) = r0 > 0, ∂rC(r0, z0) = 1, ∂zC(r0, z0) = 0,
m(τ) = (t0, ϕ0 + λτ, r0, z0) .

We say that Σ0 is Non-Confining if there exists no null geodesic included
in {t0}×Σ0 for some t0. Following the previous result, a necessary and sufficient
condition is

(1.12) C(r0, z0) = r0 > 0 =⇒ (∂rC(r0, z0), ∂zC(r0, z0)) 6= (1, 0),

and in this case Σ is a C2 timelike hypersurface.

1.2. The Wave Equation. We consider the compacty supported, scalar
perturbations of the massless wave equation, invariant with respect to the both
Killing vector fields ∂t, ∂ϕ:

(1.13) L := 2g + V,

where

(1.14) V ∈ C0
0 (R3

x; R), ∂ϕV = 0.

These assumptions are fulfilled in the important case of the conformally invariant

wave equation for which V =
1

6
Rg where Rg is the scalar curvature of (M, g).

We know that the D’Alembertian on a lorentzian curved space-time is strictly
hyperbolic in a local sense (see e.g. [17]). The global hyperbolicity is more
delicate. We denote

(1.15) P2(m, ξ) := gµ,ν(m)ξµξν , m ∈ M, ξ ∈ T ∗
mM,

the principal symbol of L.
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Proposition 1.3.

(1) Let α be in R. Then, P2(m, .) is (strictly) hyperbolic with respect to the
covector dt + αdϕ iff α satisfies:

(1.16) −C(m) − r < α < r − C(m).

(2) If Σ 6= ∅, there does not exist F ∈ C1(M; R) such that L is hyperbolic with
respect to the level surfaces of F .

The previous result implies in particular that in the interesting case where
T 6= ∅, the initial value problem for L with data specified on Mt0 = {t0} × R

3 is
not well posed. (1.16) shows that the failure of the global hyperbolicity is due to
the very fast rotation of the torus. Nevertheless, since ∂t is a Killing vector field,
it will be interesting to investigate the solutions of Lu = 0 as some distributions
on Rt, valued in some spaces of distributions on R

3
x. In order to choose the

functional framework, it is useful to note that since the time translation leaves
the wave equation invariant, the Noether’s theorem assures the existence of a
conserved current. We formally obtain the conserved energy

(1.17) E(u; t)

:=
1

2

∫

R3

(

1 −
C2

r2

)

| ∂tu(t, x) |2 + | ∇u(t, x) |2 +V (x) | u(t, x) |2 dx.

When T is not empty, this quadratic form is not definite positive. It is natural
to look for the solutions of

(1.18) Lu = 0, u ∈ L2
loc

(

Rt;W
1(R3

x)
)

,

where W 1(R3
x) is the Beppo-Levi space defined as the completion of C∞

0 (R3
x) with

respect to the norm:

(1.19) ‖ f ‖2
W 1=

∫

R3

| ∇f(x) |2 dx, ∇ := t(∂x1 , ∂x2 , ∂z).

The choice of the regularity of ∂tu is less clear when M is not globally hyperbolic

since

(

1 −
C2

r2

)

is negative on T0 and the energy is not a positive form. We

introduce the space:

(1.20) L2
C(R3

x) := L2

(

R
3
x, | 1 −

C2

r2
| dx

)

,
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and we investigate the solutions u of (1.18) satisfying:

(1.21) ∂tu ∈ L2
loc

(

Rt;L
2
C(R3

x)
)

.

If Σ0 is non-confining, we prove that u is much more regular by using the
results of J-M. Bony [7]:

Proposition 1.4. We assume that Σ0 is Non-Confining. Let u be such
that

u ∈ L2
loc

(

Rt;W
1(R3

x)
)

, Lu ∈ L2
loc

(

Rt;L
2(R3

x)
)

.

Then we have:

(1.22) u ∈ C0

(

Rt;H
1

2

loc(R
3
x)

)

,

(

1 −
C

r

)

∂tu ∈ C0

(

Rt;H
− 1

2

loc (R3
x)

)

.

Thanks to the result of continuity stated in Proposition 1.4, we may
investigate the uniqueness of a possible solution of Lu = 0 for data specified
on Mt0 . First we prove that u = 0 on M when u = (C − r)∂tu = 0 on Mt0 .
This result is neither a consequence of the uniqueness theorem for the strictly
hyperbolic operators ([27], Theorem 23.2.7) because the level surfaces Mt are
not non-characteristic since P2(m, dt) = 0 on Σ, nor a direct application of the
conservation of the energy since E(u) is not definite positive. Moreover, when
M is totally vicious, i.e. T 6= ∅, and the Non-Confining Condition is fullfiled,
we would like that u = 0 on M when u = 0 on T. Unfortunately, although Σ
is non-characteristic, we cannot use the classical results of unique continuation:
on the one hand, 0 is a double real root of P2(m, dt + τN) = 0 for m ∈ Σ,
N = (∂rC(m)− 1)dr +∂zC(m)dz, hence we cannot apply the Calderon Theorem
([27], theorem 28.1.8). On the other hand, we have for m ∈ Σ:

{P2, {P2, C − r}}(m, dt) = −4
(

| ∂rC(m) − 1 |2 + | ∂zC(m) |2
)

< 0,

hence Σ is nowhere strongly pseudo-convex, and we can no more use the unique-
ness theorems for second order operators of real principal type due to N. Lerner
and L. Robbiano (see [27], Theorem 28.4.3) to deduce that u = 0 on M, from
u = 0 on T. A key ingredient is the following result involving the Aronszajn-
Cordes theorem: We assume that Σ0 is Non-Confining. Let u satisfying (1.18)
and such that for some t0 ∈ R u = ∂tu = 0 on {t0} × T0. Then u = 0 on T.

Theorem 1.5. We assume that Σ0 is Non-Confining and T0 6= ∅. Let
u be satisfying (1.18) and one of the following conditions for some t0 ∈ R: u =
(

1 −
C

r

)

∂tu = 0 on Mt0 . Then u = 0 on M.
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The sequel of this work deals with the problem of the existence of global
solutions, that is not obvious when the manifold is not causal. We introduce the
vector space

(1.23) E :=
{

u ∈ C0
(

Rt;W
1(R3

x)
)

; Lu = 0, ∂tu ∈ C0
(

Rt;L
2
C(R3

x)
)}

,

and the space of the admissible Cauchy data:

(1.24) H :=
{

(f, g) ∈ W 1(R3
x) × L2

C(R3
x); ∃u ∈ E , u(0) = (f, g)

}

,

where for v ∈ C1
(

Rt;D
′(R3

x)
)

, we put

(1.25) v :=

(

v
∂tv

)

.

A priori, when T 6= ∅, H is not an Hilbert space for the norm of W 1 × L2
C . The

previous Theorem assures that the family of maps

(1.26) U(t) : u(0) ∈ H 7−→ u(t) ∈ H.

is a strongly continuous group of linear operators on H. In the following parts
we construct global solutions u with E(u) = 0 or E(u) > 0. We let open the
problem of the existence of global solution with negative energy.

1.3. The Resonant States. In this section, we investigate the global
solutions u ∈ H1

loc(M) by separation of the variable t:

(1.27) u(t, x) = eλtv(x),

with λ ∈ C and v is a distribution on R
3
x. Then u is solution of

(1.28) Lu = 0 in M,

iff v ∈ L2
loc(R

3
x) is solution of the homogeneous reduced wave equation:

(1.29) ∆v +
2Cλ

r2
∂ϕv − λ2

(

1 −
C2

r2

)

v − V v = 0 on R
3.

By the standard result of elliptic regularity, v ∈ H 2
loc(R

3) and v ∈ C∞ for | x |
large enough, since C and V are continuous and compactly supported. (1.29) is
similar to the acoustic wave equation in an inhomogeneous medium (see e.g. [11],
[29], [43], [50]); the crucial difference is that 1− r−2C2 that plaies the role of the
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refractive index, is null on Σ0 and negative in T0. We start by proving a result
of Rellich type, stating that there exists no t-periodic, non constant, solution of
Lu = 0 satisfying some natural constraint at the space infinity.

Lemma 1.6. Let v be a solution of (1.29) for λ ∈ iR∗, satisfying one of
the following condition:

(1.30) v ∈ L2(R3) ∪ W 1(R3);

(1.31)
x

| x |
.∇v + λv = O

(

1

| x |2

)

, | x |→ ∞;

(1.32)
x

| x |
.∇v − λv = O

(

1

| x |2

)

, | x |→ ∞;

Then v = 0.

For λ = 0 the result is well known: for non negative potential V , the
conclusion of the Lemma is valid; for general potential V , since the form v 7→
∫

V | v |2 is compact on H1
loc(R

3), the space of solutions of (1.29) with λ = 0 is
of finite dimension.

Lemma 1.6 shows that we have to look for the non trivial solutions of the
homogeneous reduced wave equation, for λ ∈ C \ iR. We adapt at our problem
the concept of outgoing (resp. incoming) solution by Lax-Phillips [33]. Given
λ ∈ C, f ∈ E ′, the space of the compactly supported distributions, a solution

v
+(−)
λ of

(1.33) ∆v +
2Cλ

r2
∂ϕv − λ2

(

1 −
C2

r2

)

v − V v = f on R
3,

is said to be λ-outgoing (resp. λ-incoming) if

(1.34) v
+(−)
λ = γ

+(−)
λ ∗

[

f −
2Cλ

r2
∂ϕv

+(−)
λ − λ2 C2

r2
v
+(−)
λ + V v

+(−)
λ

]

,

where

(1.35) γ
+(−)
λ (x) := −

e−(+)λ|x|

4π | x |
.

It is well known that in the case λ ∈ iR, the λ-outgoing (resp. λ-incoming)
condition is equivalent to the Sommerfeld radiation condition (1.31) (resp. (1.32)
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A complex number λ is an outgoing resonance (resp. incoming resonance), if there

exists a non null λ-outgoing (resp. λ-incoming) solution v
+(−)
λ of (1.29), called

resonant state. We remark that when a resonant state vλ has a finite energy, i.e.
vλ ∈ H1(R3), the total energy of the time dependant solution uλ(t, x) = eλtvλ(x)
is zero:
(1.36)

E(uλ) =
1

2
e2<(λ)t

∫

R3

| λ |2
(

1 −
C2

r2

)

| vλ |2 + | ∇vλ |2 +V | vλ |2 dx = 0.

We denote R+(−) the set of the outgoing (incoming) resonances. Be-
cause C and V are real axisymmetric, and since we may take v+

λ (x1,−x2, z) =
v−−λ(x1, x2, z), it is easy to see that:

(1.37) λ ∈ R+ ⇐⇒ λ ∈ R+,

(1.38) λ ∈ R+ ⇐⇒ −λ ∈ R−.

Hence we shall consider only the set of the outgoing resonances, simply called
“resonances”, and we omit the superscript +: R := R+, vλ := v+

λ .

Theorem 1.7. R is a discrete subset of C, and when T0 6= ∅ then
Card(R∩]0,∞[) = ∞.

This last result can be physically interpreted as follows: in the framework
of the studies of the stability of the manifolds of the General Relativity, the
existence of an infinite set of resonant states with finite energy means that we
cannot prove the possible stability of the metric (1.3) by a method of perturbation
(see e.g. the works of Y. Choquet-Bruhat, A. Fischer, J. Marsden); hence we can
suspect that the manifold is actually nonlinearly instable in a suitable set of
solutions of inhomogeneous Einstein equations. This agrees with the ”conjecture
of chronological protection” by S. Hawking [25], that states that any universe
with closed timelike curve is instable.

1.4. Scattering States. When T is not empty, the manifold is to-
tally vicious, hence there exists no Cauchy hypersurface. Nevertheless the global
Cauchy problem is well posed for regular data specified at the past null infinity,
and these solutions are asymptotically free at the future null infinity (Scattering
States). Furthermore, the Scattering Operator S is well defined for any free wave
with finite energy, but, unlike the usual situations, the wave operators are not
causal. As regards the mathematical tools, we keep the features of the scattering
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theory, that involve neither the positivity of the energy, nor the existence of a
unitary group: we use the generalised eigenfunctions method.

We start with a uniqueness result for the solutions with some given as-
ymptotic behaviour. We recall some basic notations for the wave equation on the
Minkowski space-time:

(1.39) L0u0 := ∂2
t u0 − ∆xu0 = 0, (t, x) ∈ R × R

3.

The Cauchy problem is solved in D′(R3
x) by the group U0(t):

(1.40) U0(t)u0(0) = u0(t).

We introduce: the spaces associated with the finite energy waves,

(1.41) E0 :=
{

u0 ∈ C0
(

Rt;W
1(R3

x)
)

; L0u0 = 0, ∂tu0 ∈ C0
(

Rt;L
2(R3

x)
)}

,

H0 := W 1(R3
x) × L2(R3

x),

which are Hilbert spaces for the energy norm

(1.42) ‖ u0 ‖2
E0

=‖ u0(t) ‖
2
H0

:=
1

2

∫

R3

| ∂tu0(t, x) |2 + | ∇u0(t, x) |2 dx,

and U0(t) is a strongly continuous unitary group on H0. We denote E∞
0 the space

of the regular wave packets that are the smooth solutions u0 of (1.39) such that

(1.43)

û0(0, ξ) :=

∫

e−ix.ξu0(0, x)dx, ∂tû0(0, ξ)

:=

∫

e−ix.ξ∂tu0(0, x)dx ∈ C∞
0

(

R
3
ξ \ {0}

)

.

Theorem 1.8. Given u−
0 ∈ E∞

0 , there exists a unique u ∈ E such that
∂tu ∈ C0

(

Rt;L
2(R3

x)
)

and satisfying

(1.44) ‖ u(t) − u−
0 (t) ‖H0

→ 0, t → −∞.

Moreover there exists a unique u+
0 ∈ E0 such that:

(1.45) ‖ u(t) − u+
0 (t) ‖H0

→ 0, t → +∞,

and we have:

(1.46) ‖ u−
0 ‖2

E0
= E(u) =‖ u+

0 ‖2
E0

,

(1.47) u+
0 ∈ E∞

0 .
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2. Superradiance of the Charged Black-Holes. The asymptotic
behaviours of classical fields on several important curved space-times of General
Relativity, have been the subject of numerous studies. We can mention the works
on the scalar equations by the author [1], [2], D. Häfner [23], [24], J-P. Nicolas
[39], and on the Dirac system by F. Melnyk [38], [37], J-P. Nicolas [40]. As regards
the propagation of the energy, there exists a deep difference between the bosons
and the fermions: the L2 norm of a field with half-integral spin, is conserved,
while the conserved energy of the Klein-Gordon field on a curved background is
not necessarily positive. In such cases of indefinite conserved energy, the field is
allowed to extract energy from a particular region of space-time, for instance the
ergosphere of a Kerr black-hole, or the dyadosphere of a charged black-hole. This
phenomenon has been described, for the first time, by R. Penrose who proved
that a classical particle can enter the ergosphere of a rotating black hole, and
come out again with more energy than it originally had. The corresponding
effect for integral spin fields is called superradiance [21], [46]. To our knowledge,
a rigorous mathematical analysis is missing, and the present study is a first step
in this direction since we can apply the results of the previous sections to the
superradiant scattering of charged Klein-Gordon fields by a charged black-hole
in an expanding universe.

The spin 0 field with mass m ≥ 0, and charge e ∈ R, on a lorentzian
manifold (M, g) endowed with an electromagnetic potential Aµdxµ, obeys the
Klein-Gordon equation

(2.1) (∇µ − ieAµ) (∇µ − ieAµ)Φ + m2Φ + ξRΦ = 0,

where R = gµνRµν is the scalar curvature, and ξ ∈ R is a numerical factor.
We are concerned with the 3+1 dimensional, spherically symmetric space-time
Rt × Ir × S2

ω, I being a real open interval, that describes a black hole in an
expanding universe. In this case the metric can be written as:

(2.2) gµνdxµdxν = F (r)dt2 − [F (r)]−1 dr2 − r2dω2,

where F ∈ C2([r−, r+]), 0 < r− < r+ < ∞, is called the lapse function, and
satisfies:

(2.3) F (r−) = F (r+) = 0, r− < r < r+ ⇒ 0 < F (r),

0 < F ′(r−), F ′(r+) < 0.

r− is the radius of the Horizon of the Black-Hole, r+ is the radius of the Cosmo-
logical Horizon. The Ricci scalar is given by

R = F ′′ +
4

r
F ′ +

2

r2
(F − 1).
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We assume that the electromagnetic potential is electrostatic and also spherically
symetric

(2.4) Aµdxµ = At(r)dt, At ∈ C1([r−, r+]), At(r−) 6= At(r+).

These hypotheses are satisfied, for a suitable choice of the physical para-
meters, in the important case of a charged black-hole in an expanding universe,
for which the DeSitter-Reissner-Nordstrøm metric, and the Maxwell connection,
are given by:

(2.5) F (r) = 1 −
2M

r
+

Q2

r2
−

Λ

3
r2, At(r) =

Q

r
.

Here 0 < M and Q ∈ R are the mass and the charge of the black-hole, Λ > 0 is
the cosmological constant (see e.g. [38]).

It is convenient to push the horizons away to infinity by putting:

x =
1

F ′(r−)

{

ln | r − r− | −

∫ r

r−

[

1

r − r−
−

F ′(r−)

F (r)

]

dr

}

.

Then u = rΦ is solution of

(∂t − iA(x))2 u − ∂2
xu − B(x)∆S2u + C(x)u = 0, t ∈ R, x ∈ R, ω ∈ S2,

with

A(x) = eAt(r), B(x) =
1

r2
F (r),

C(x) =

(

ξF ′′(r) +
4ξ + 1

r
F ′(r) +

2ξ

r2
F (r) −

2ξ

r2
+ m2

)

F (r).

The conserved energy is given by:

E(u) :=

∫

R×S2
ω

(

| ∂tu(t, .) |2 + | ∂xu(t, .) |2

+ B(x) | ∇ωu(t, .) |2 +
[

C(x) − A2(x)
]

| u(t, .) |2
)

dxdω.

The dyadosphere De,m is defined as the region outside the black hole horizon
where the electrostatic energy, associated with the charge e of the field, exceeds
the gravitational interacting energy associated with the mass m of the field:

De,m :=
{

x ∈ R; A2(x) > C(x)
}

× S2
ω.
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We remark that, because of the existence of the cosmological horizon, unlike the
case of the asymptotically flat space-time for which F (r) → 1 as r → +∞, De,m

is never empty, whatever the mass of the field and the gauge transform on A.
Furthermore, if | e | is large enough, we can have De,m = Rx × S2

ω.
Taking advantage of the spherical symmetry, we expand u(t, x, .) on the

basis of spherical harmonics Yl,m of L2
(

S2
ω

)

:

u(t, x, ω) =
∞
∑

l=0

l
∑

m=−l

ul,m(t, x)Yl,m(ω).

Finally ul,m is solution of the gyroscopic Klein-Gordon equation

(2.6) (∂t − iA(x))2 ul,m − ∂2
xul,m − V (x)ul,m = 0, t ∈ R, x ∈ R,

with
V (x) = l(l + 1)B(x) + C(x).

Since A and V satisfy

| A(x) − eAt(r±) | + | A′(x) | + | V (x) |≤ CeF ′(r±)x, x → ±∞,

Therfore we deal with the gyroscopic Klein-Gordon equation

(2.7) (∂t − iA(x))2 u − ∂2
xu + V (x)u = 0, t ∈ R, x ∈ R,

with the main hypotheses

(2.8) V (x) −→ 0, A(x) −→ a±, x −→ ±∞, a− 6= a+.

Other one-dimensional field equations with step-like perturbations have been
studied: the existence of a Scattering Operator that is unitary, was established
for the Dirac system by S. N. M. Ruijsenaars and P. J. M. Bongaarts [46], and for
the Schrödinger equation by E. B. Davies and B. Simon [13]. The key point for
both these equations is the conservation of the L2 norm. The situation drastically
differs for the Klein-Gordon equation (2.7) since the conserved energy

(2.9) E(u, t) :=

∫

| ∂tu(t, x) |2 + | ∂xu(t, x) |2 +
[

V (x) − A2(x)
]

| u(t, x) |2 dx

is not always positive. In particular, when A satisfies the steplike hypothesis
(2.8), the set of modes is finite dimensional, but there exists no finite codimen-
sional subspace of Cauchy data, on which this energy is positive. This is the
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root of the so called Klein paradox. Nevertheless we shall be able to describe the
asymptotic behaviours of the solutions of (2.7), and to prove the existence of a
Scattering Operator the norm of which is always strictly larger than one: this is
the superradiance. Furthermore, in some situations, there exist solutions polyno-
mially increasing in time (hyperradiant modes). Recently, the γ-bursts have been
attributed to the superradiance of the charged black-holes (R. Ruffini [45]). Since
we cannot use this energy to get some asymptotic estimates, we construct the
spectral representation for the harmonic equation, then we establish the existence
of the Scattering Operator the symbol of which has a norm strictly larger than 1.

2.1. Spectral Decomposition. We investigate the harmonic Klein-
Gordon equation:

(2.10)
d2

dx2
y + [k − A(x)]2 y − V (x)y = 0, x ∈ R, k ∈ C.

We assume that the potentials satisfy:

(2.11) A ∈ L∞(R; R), V ∈ L∞(R; R),

and there exist α > 0, a± ∈ R, a− < a+, such that:

(2.12)

∫

R±

(| A(x) − a± | + | V (x) |) eα|x|dx

+ sup
0<|h|<1

∫ ∞

−∞

∣

∣

∣

∣

A(x + h) − A(x)

h

∣

∣

∣

∣

eα|x|dx < ∞.

We start by constructing suitable Jost functions, taking the different as-

ymptotics as x → ±∞, into account. For any k ∈ C, =k > −
α

2
(resp. =k <

α

2
),

there exists unique functions f±
in(out)(k;x) ∈ C1(Rx), solutions of (2.10) and sat-

isfying limx→±∞ f±
in(out)(k;x) − e±(∓)i(k−a±)x = 0. Moreover, for each x ∈ R,

they are analytic functions of k ∈ C, =k > −
α

2
(resp. =k <

α

2
). The following

Wronskians do not depend of x:

Win(out)(k) := [f+
in(out), f

−
in(out)](k).

Since Win is an analytic function of k ∈ C, =k > −α/2, the set of its zeros is
locally finite, and each of them is of finite multiplicity. We introduce

σp := {k ∈ C; =k > 0, Win(k) = 0},
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σss := {k ∈ R; Win(k) = 0},

R := {k ∈ C; −
α

2
< =k < 0, Win(k) = 0}.

The elements of σp are the eigenvalues or normal modes, and the elements of R
are the resonances or quasinormal modes. The Klein zone is the open interval
IK :=]a−, a+[. We shall see that the asymptotic behaviour of the solutions of the
Klein-Gordon equation with step-like potential A is very peculiar, and justifies to
call superradiant modes the real frequencies in IK \ σss, and hyperradiant modes
the elements of σss, that play the role of the spectral singularities of the quadratic
pencils with short range complex potential [5]. In the simple example of the step
potential A0(x) = a1]−∞,0](x), a ∈ R

∗, V = 0, we easily find Win(k) = i(2k − a),

hence σp = R = ∅, σss =
{a

2

}

. There exists cases where there is no hyperradiant

mode. For instance if we choose A1(x) = 1 − tanh(x) or A2(x) = 1 when x < 0,
A2(x) = 0 when x > 1, A2(x) = 1 − x when 0 ≤ x ≤ 1, and V (x) = 0, we
can compute Win(κ) by using some formal calculus system. We get frightful
combinations of hypergeometric functions for A1, and Bessel functions for A2

and the investigation of the possible roots of the equation Win(κ) = 0 seems to
be rather delicate. A numerical evaluation of | Win(κ) | using the Maple system,
clearly shows that σss = ∅ for both these potentials. In the general case, we prove
that σp and σss are finite sets and

(2.13) σss ⊂ IK .

For the Schrödinger equation, i.e. A = 0, we know that the multiplicity
of the zeros of Win is simple. This is proved in [15] for the short range potentials
V , and in [11] for the steplike case. Unlike this situation, when A 6= 0, the
multiplicity m(k) ∈ N

∗ of k ∈ C, defined by

dl

dkl
Win(k) = 0, 0 ≤ l ≤ m(k) − 1,

dm(k)

dkm(k)
Win(k) 6= 0,

can be strictly larger that 1. As an example, we choose A3(x) = 1]−∞,0]∪[ π
3
, 2π

3
](x),

V = 0. By tedious but elementary calculations, we check that Win

(

1

2

)

=

W ′
in

(

1

2

)

= 0. We put:

(2.14) ν := max
κ∈σss

(m(κ)) if σss 6= ∅, ν := 0 if σss = ∅.
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We introduce the transmission coefficients T ±(κ) and the reflection coef-
ficients R±(κ), defined for κ ∈ R \ σss, by:

(2.15) κ 6= a±,⇒ T±(κ) :=
1

τ±
out(κ)

, R±(κ) :=
ρ∓out(κ)

τ∓
out(κ)

,

R±(a±) = −1, T±(a∓) = 0.

These quantities describe the propagation of the field as x → ±∞:

f±
in = T∓f∓

out − R±f±
out.

R±(κ) and T±(κ) are analytic functions on Rκ \ σss and satisfy

(2.16)
κ − a±
κ − a∓

| T±(κ) |2 + | R±(κ) |2= 1,

(2.17) | T +(κ)T−(κ) − R+(κ)R−(κ) |= 1,

(2.18) κ ∈ R \ IK =⇒| R±(κ) |≤ 1,

(2.19) κ ∈ IK \ σss =⇒| R±(κ) |> 1,

(2.20) κ → κj ∈ σss =⇒| R±(κ) |, | T±(κ) |→ ∞.

We emphasize that when κ is outside the Klein zone, the reflection coef-
ficient is not greater than one as in the usual case of the decaying potential (i.e.
a± = 0). But when κ is a superradiant mode, | R±(κ) | is strictly larger than
one, but finite: this is the phenomenon of superradiance of the Klein-Gordon
fields (2.19). At last T± and R± diverge at the hyperradiant modes. The sit-
uation differs for the Dirac or Schrödinger equations, for which the reflection is
total in the Klein zone (i.e. T = 0, R = 1, see [13], [46]).

We construct the distorded Fourier transforms. Given f ∈ C∞
0 (Rx), ϕ ∈

C∞
0 (Rκ) we put:

(2.21) F±
in(out)(f)(k) :=

∫ ∞

−∞
f±

in(out)(k;x)f(x)dx, k ∈ C, +(−)=k ≥ 0.

F±
in(out) is well defined from C∞

0 (Rx) to L2 (Rκ), but, unlike the short
range case, a± = 0, a problem arises for the low frequencies κ = a±, with loss of
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regularity, when we want to define F±
in(out) on L2 (Rx). To overcome this difficulty,

it is necessary to use the weighted L2-spaces, L2
s(R) := L2(Ry, (1+y2)sdy), s ∈ R.

Proposition 2.1. F±
in(out) that is defined from C∞

0 (Rx) to

∩n

[

Hn ∩ L2
n

]

(Rκ), has a continuous extension:

(1) from L2
1

2
+δ

(Rx) to H− 1

2
−ε (Rκ) ∩ E ′ (Rκ) + H

1

2
+δ (Rκ), for any δ, ε > 0;

(2) from L2
1 (Rx) to L2 (Rκ);

(3) from H1 ∩ L2
1 (Rx) to L2

1 (Rκ).

There exists no continuous extension from L2
1

2

(Rx) to D′ (Rκ). For any δ > 0

there exists no continuous extension from L2
1−δ (Rx) to L2 (Rκ).

We now introduce the inverse distorded Fourier transforms, defined for
ϕ ∈ C∞

0 (Rκ) by:

(2.22) Φ±
in(out)(ϕ)(x) :=

1

2π

∫ ∞

−∞
f±

in(out)(κ;x)ϕ(κ)dκ, x ∈ R.

Lemma 2.2. There exists a constant C > 0, a function C(s), such that
for all s ∈ R, −1 ≤ p ≤ 1, ϕ ∈ C∞

0 (Rκ), we have

‖ Φ±
in(out)(ϕ) ‖Hp(R±

x )≤ C ‖ ϕ ‖L2
p(Rκ), ‖ Φ±

in(out)(ϕ) ‖L2
s(R±

x )≤ C(s) ‖ ϕ ‖Hs(Rκ) .

Moreover Φ±
in(out) is a bounded operator from E ′(Rκ) to H2

loc(Rx).

We are now ready to state the resolution of the identity.

Theorem 2.3. There exists complex numbers cλ,l, for λ ∈ σp, 0 ≤ l ≤
m(λ) − 1, with cλ,m(λ)−1 6= 0, such that for all f ∈ L2

s(Rx), s > max( 1
2 , ν − 1

2 ),
where ν is defined by (2.14), we have for p = 0, 1:

pf =Φ±
in

(

iκp

Win(κ + i0)
F∓

in (f)

)

− Φ±
out

(

iκp

Wout(κ − i0)
F∓

out (f)

)

+
∑

λ∈σp

m(λ)−1
∑

l=0

cλ,l∂
l
k

(

kpf±
in(k;x)F∓

in(f)
)

(k = λ)

+ cλ,l∂
l
k

(

kpf±
out(k;x)F∓

out(f)
)

(k = λ).
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2.2. Scattering. In this section, we investigate the asymptotic behav-
iours in time of the solutions of the charged Klein-Gordon equation with the
assumptions (2.11), (2.12):

(2.23) (∂t − iA(x))2 u − ∂2
xu + V (x)u = 0, t ∈ R, x ∈ R,

(2.24) u(t = 0, x) = u0(x), ∂tu(t = 0, x) = u1(x).

It is convenient to introduce the following Hilbert space:

H1
s (R) :=

{

f ∈ L2
s(R), f ′ ∈ L2

s(R)
}

, s ∈ R, ‖ f ‖2
H1

s
:=‖ f ‖2

L2
s

+ ‖ f ′ ‖2
L2

s(I) .

The Cauchy problem is well solved: For any u0 ∈ H1
s (R), u1 ∈ L2

s(R),
s ∈ R, there exists a unique solution u ∈ C0

(

Rt;H
1
s (Rx)

)

∩ C1
(

Rt;L
2
s(Rx)

)

of
(2.23), (2.24). To give a representation of the solution involving the distorded
Fourier transforms, we introduce the operators

E±
in(out) : (u0, u1) 7→ E±

in(out) (u0, u1) (k) := kF±
in(out) (u0)− iF±

in(out) (u1 − 2iAu0) ,

and the Hilbert space of initial data, where ν is defined by (2.14):

(2.25) X := H1
max(ν,1)(Rx) × L2

max(ν,1)(Rx).

Proposition 2.4. For any (u0, u1) ∈ X, the solution u is expressed by:

u(t) =Φ∓
in

(

ieiκt

Win(κ + i0)
E±

in (u0, u1)

)

− Φ∓
out

(

ieikt

Wout(κ − i0)
E±

out (u0, u1)

)

+
∑

λ∈σp

m(λ)−1
∑

l=0

cλ,l∂
l
k

(

eiktf∓
in(k;x)E±

in (u0, u1)
)

(k = λ)

+ cλ,l∂
l
k

(

eiktf∓
out(k;x)E±

out (u0, u1)
)

(k = λ)

where the constants cλ,l are defined in Theorem 2.3.

We denote 〈t〉 := (1 + t2)
1

2 . The energy estimates for the solutions are
the following:
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Theorem 2.5. There exist C > 0, N ∈ N, such that for any (u0, u1) ∈ X,
we have:

‖ (u(t), ∂tu(t)) ‖H1×L2

≤ C
(

‖ (u0, u1) ‖X +
∑

κ∈σss

m(κ)−1
∑

l=0

〈t〉m(κ)−l+ 1

2

∑

]=+,−

[=in,out

∣

∣

∣

∣

dl

dkl
E]

[(u0, u1)(κ)

∣

∣

∣

∣

+
∑

λ∈σp

m(λ)−1
∑

l=0

〈t〉m(λ)−l−1
∑

]=+,−

∣

∣

∣

∣

dl

dkl
E]

in(u0, u1)(λ)

∣

∣

∣

∣

e−=(λ)t

+

∣

∣

∣

∣

dl

dkl
E]

out(u0, u1)(λ)

∣

∣

∣

∣

e=(λ)t
)

,

‖ (u(t), ∂tu(t)) ‖X≤ C < t >N eγ|t| ‖ (u0, u1) ‖X , γ := max
λ∈σp

=λ.

By a microlocalization near the hyperradiant modes, we now construct
solutions of finite energy with polynomial behaviour in time.

Theorem 2.6. For all κ ∈ σss, l ≤ m(κ)−1, there exist u0, u1 ∈ C∞
0 (Rx),

such that for any x ∈ R, we have:

u(t, x) = tm(κ)−l−1eiκtf∓
in(κ;x) + o

(

tm(κ)−l−1
)

, t → −∞;

u(t, x) = o
(

tm(κ)−l−1
)

, t → +∞.

To investigate the scattering states, we must avoid the usual modes and
the hyperradiant ones. Hence we introduce the following subspaces of finite codi-
mension in X:

Xin(out)

:=

{

(u0, u1) ∈ X;∀k ∈ σp ∪ σss,∀l < m(k),
dl

dkl
E±

in(out)(u0, u1)(k(k)) = 0

}

,

(2.26) Xscatt := Xin ∩ Xout.

Xin(out) and Xscatt are well defined, and they are Hilbert subspaces of X,
invariant under the action of the group G(t) : (u0, u1) 7→ (u(t), ∂tu(t)).
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We now arrive at an important result of this work: the solutions with
Cauchy data in Xscatt are asymptotically free. We emphazise that the conserved
energy of such solutions given by (2.9) can be negative. In fact we do not use
this conservation law to get our scattering theory.

Theorem 2.7. For any (u0, u1) ∈ Xscatt there exists unique u±
in(out) ∈

H1(R) such that

(2.27) lim
t→−(+)∞

‖ u(t, x) − (e+(−)ia−xu−
in(out)(t − (+)x)

+ e−(+)ia+xu+
in(out)(t + (−)x)) ‖H1(Rx)

+ ‖ ∂tu(t, x) − (e+(−)ia−x(u−
in(out))

′(t − (+)x)

+ e−(+)ia+x(u+
in(out))

′(t + (−)x)) ‖L2(Rx)= 0.

u0, u1, u±
in(out) are bound by the following relations:

u±
in(out) = +(−)F−1

(

i

Win(out)(κ + (−)i0)
E∓

in(out)(u0, u1)

)

,

up = Φ±
in

(

(iκ)pF
(

u±
in

))

+ Φ±
out

(

(iκ)pF
(

u±
out

))

, p = 0, 1,

‖ u±
in(out) ‖H1(R)≤ C ‖ (u0, u1) ‖X ,

(2.28) ∀κ ∈ R\σss,

(

F
(

u+
out

)

(κ)
F
(

u−
out

)

(κ)

)

=

(

R+(κ) T+(κ)
T−(κ) R−(κ)

)(

F
(

u+
in

)

(κ)
F
(

u−
in

)

(κ)

)

.

We introduce the Wave Operators

Win(out) : (u0, u1) 7−→
(

u+
in(out), u

−
in(out)

)

.

Corollary 2.8. Win(out) is a one-to-one, continuous operator from Xscatt

onto a subspace Yin(out) of H1(Rs) × H1(Rs). Moreover the map

(

u+(s), u−(s)
)

7−→
(

u+(−s), u−(−s)
)

is one-to-one from Yin onto Yout.
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This result assures that W
−1
in(out) is well defined on Yin(out), and we define

the scattering operator by:

S = Wout (Win)−1 .

Since we do not know if Yin(out) is closed, the question of the continuity of W
−1
in(out)

remains open. Therefore we want to construct continuous inverse Wave Operators
formally given by:

Ωin(out) :
(

u+
in(out), u

−
in(out)

)

7−→ (u0, u1) ,

such that limit (2.27) is satisfied. When σp 6= ∅, the modes associated with an
eigenvalue are exponentially decreasing as t → +(−)∞, hence Ωin(out) would be
multivalued. Therefore it is natural to assume that there exists no such exponen-
tially damped modes.

Proposition 2.9. When σp = ∅, there exists q ≥ 1, and bounded oper-

ators Ωin(out) from
[

H1
max(ν,1)(R) ∩ H1

q (R−(+))
]2

, to Xin(out) ∩D
(

Win(out)

)

such

that

Win(out)Ωin(out) = Id on
[

H1
max(ν,1)(R) ∩ H1

q (R−(+))
]2

.

When σss 6= ∅, (2.28) shows that the continuity of S are not clear. Never-
theless we can develop a complete scattering theory when there occurs no usual
or hyperradiant mode. We need a subspace of X:

Lemma 2.10. We assume σss = σp = ∅. Then given (u0, u1) ∈ X,
E+

in(u0, u1), E
−
in(u0, u1) belong to H1(Rκ) iff E+

out(u0, u1), E
−
out(u0, u1) belong to

H1(Rκ). We put:

X1 :=
{

(u0, u1) ∈ X; E±
in/out(u0, u1) ∈ H1(Rκ)

}

,

‖ (u0, u1) ‖
2
X1,in(out):=‖ E+

in(out)(u0, u1) ‖
2
H1(Rκ) + ‖ E−

in(out)(u0, u1) ‖
2
H1(Rκ) .

‖ . ‖X1,in and ‖ . ‖X1,out are two equivalent norms for which X1 is a Hilbert space,
invariant under the action of the group G(t), and there exists C > 0 such that
for all (u0, u1) ∈ X1 we have:

‖ (u0, u1) ‖X≤ C ‖ (u0, u1) ‖X1,in(out) .

Moreover we have:
H1 ∩ E ′(Rx) × L2 ∩ E ′(Rx) ⊂ X1.
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We introduce the Hilbert spaces:

K± :=
{

u ∈ H1 (Rx) ; iu′ + a±u ∈ L2
1 (Rx)

}

,

‖ u ‖2
K± :=‖ u ‖2

H1 + ‖ iu′ + a±u ‖2
L2

1

.

The scattering theory in the absence of modes, is described by the follow-
ing:

Theorem 2.11. We assume σss = σp = ∅. Then (u+, u−) ∈ H1(R) ×
H1(R) belongs to Yin(out) iff

uin(out)
p := Φ+

out(in)

(

(iκ)p

τ+
out(in)(κ)

F
(

u−
)

)

+ Φ−
out(in)

(

(iκ)p

τ−
out(in)(κ)

F
(

u+
)

)

∈ H1
1 (Rx), p = 0, 1,

and in this case we have:

Win(out)(u
in(out)
0 , u

in(out)
1 ) = (u+, u−).

Moreover we have:

H1
1 (R) × H1

1 (R) ⊂ Yin(out) ⊂ K+ × K−,

and Win(out) are continuous, one-to-one, operators, from X1 onto H1
1 (R)×H1

1 (R),
and from X onto Yin(out) endowed with the norm of K+ × K−. The scattering
operator is a continuous, one-to-one operator from H 1

1 (R)×H1
1 (R) onto H1

1 (R)×
H1

1 (R), and from Yin onto Yout where Yin(out) are endowed with the norm of
K+ × K−, or H1(R) × H1(R). This operator has the form:

S = F−1Ŝ(κ)F , Ŝ(κ) :=

(

R+(κ) T+(κ)
T−(κ) R−(κ)

)

.

The scattering matrix Ŝ(k) is meromorphic on ω := {k ∈ C; | =k |< α
2 } and

k ∈ ω is a pole of Ŝ iff k belongs to the set of resonances R. Furthermore the
scattering is superradiant for the frequencies in the Klein zone:

κ ∈]a−, a+[=⇒ 1 <| R±(κ) |, ‖ Ŝ(κ) ‖L(C2), ‖
(

Ŝ(κ)
)−1

‖L(C2) .
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We emphasize that this extended scattering operator is of an unusual
type: we do not know if the inverse wave operators W

−1
in(out), which are de-

fined from Yin(out) onto X, can be extended from BL1
(a+)(R) × BL1

(a−)(R) to

H1(R)×L2(R). This situation has already been encountered in the case of space-
times with causality violation [1]. The root of this phenomenon is the same: the
conserved energy is not definite positive.

REFERE NCES

[1] A. Bachelot. Global properties of the wave equation on non-globally hy-
perbolic manifolds. J. Math. Pures Appl. 81 (2002), 35–65.

[2] A. Bachelot. Asymptotic completeness for the Klein-Gordon equation on
the Schwarzschild metric. Ann. Inst. Henri Poincaré Phys. Théor. 61, 4
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Chapelle sur Erdre, 2000), Exp. No. IX, Univ. Nantes, Nantes, 2000, 19 pp.

[32] R. P. Kerr. Gravitational field of a spinning mass as an example of alge-
braically special metrics. Phys. Rev. Lett. 11 (1963), 237–238.

[33] P. Lax, R. Phillips. Scattering Theory. Academic Press, Revised Edition,
1989.

[34] J. Leray. Hyperbolic differential equations. Princeton University, 1952.
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