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ABSTRACT. In this paper we prove that for non effectively hyperbolic oper-
ators with smooth double characteristics with the Hamilton map exhibiting
a Jordan block of size 4 on the double characteristic manifold the Cauchy
problem is well posed in the Gevrey 6 class if the strict Ivrii-Petkov-Hérman-
der condition is satisfied.

1. Introduction. Let

P(z,D)=Dj+ >  au(z)D*=Py+ P+ P

|a|<2,a0<2
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be a second order differential operator, defined in an open neighborhood of the
origin of R™*!, hyperbolic with respect to the z direction and with principal sym-
bol p(z, &) where = (zg,21,...,2Zn), &€ = (£0,&1,...,&n). Let p € T*R*1\ {0}
be a double characteristic of p, that is p(p) =0, dp(p) = 0. Since p is a singular
point of the Hamilton vector field H,, of p then we consider the linearization of
H,, at p which is called the Hamilton map F},(p) of p at p defined as (see e.g. [6],

[5])

pp(X,Y) =0(X,F,(p)Y), X,Y € T*R"*!

where p;(X,Y) is the polar form of the quadratic form p;

Z o aagﬂ aéﬂ

|o+8]=2

and o = Z;‘ 0d&j N dxj is the canonical symplectic two form on T*R™L. Tt is
well known that all eigenvalues of F),(p) are on the imaginary axis, with a possible
exception of a pair of non zero real eigenvalues ([6], [5]). When all the eigenvalues
of Fy,(p) are on the imaginary axis then p is called non effectively hyperbolic at
p. We denote by Psyp(z,&) the subprincipal symbol of P and the positive trace
Tr™ F,(p) of F,(p) is defined by

Tr*F Z 1

where iy ; are the eigenvalues of Fj,(p) on the positive imaginary axis repeated
according to their multiplicities.

Theorem 1.1 ([6], [5]). Assume that p is non effectively hyperbolic at p
then in order that the Cauchy problem is C*° well posed it is necessary that the
following Ivrii- Petkov-Hormander condition is verified;

~Tr" F,(p) < Psun(p).

Our aim in this paper is to study the Cauchy problem around non effec-
tively double characteristics under the strict Ivrii-Petkov-Hérmander condition

—Tr" F,(p) < Psub(p).

We now state more precisely our assumptions. We shall assume in the following
that p vanishes exactly of order 2 on a C'* submanifold ¥ on which ¢ has constant
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rank and p is non effectively hyperbolic; that is we assume that ¥ = {(z,&) |
p(z,&) = 0,dp(z,€) = 0} is a C*° manifold and

(1.1) Sp(Fy(p) C iR, peS,
(1.2) dim7,¥ = dimKerF,(p), pe€ X,
(1.3) ranko = constant, on X

where Sp(Fy(p)) denotes the spectrum of F},(p). In this paper we always assume
(1.1), (1.2) and (1.3). According to the spectral structure of F,(p) two different
possible cases may arise:

Keng(p) N ImFﬁ(p) = {0}, KerFﬁ(p) N ImFﬁ(p) # {0}.

In the first case, assuming the strict [vrii-Petkov-Hérmander condition, the Cau-
chy problem is C* well posed ([5], [7]). Note that the Ivrii-Petkov-Hérmander
condition is not enough in general to assure the C'* well posedness (see [10]).
On the other hand, in the second case, the linear algebraic properties of Fj(p)
are not enough by themselves to determine completely the behavior of the null
bicharacteristics of the principal symbol. It can be readily verified that perturbing
the quadratic part of the principal symbol with a suitable term vanishing of order
three on the double manifold ¥ may cause the Hamilton system to exhibit null
bicharacteristics landing on 3. (See model (1.5) below and [11]).

Here let us recall that we say that f(z) € C°(R") belongs to v (R"),
the Gevrey space of order s, where s > 1, if for any compact set K C R"™ there
exist C > 0, h > 0 such that

(1.4) 09 f(x)| < ChRlYall®, 2 e K

for every a € N™. In this paper we prove

Theorem 1.2. Assume KerF3(p) NImF?(p) # {0}, p € & and that the
strict Ivrii- Petkov-Hormander condition is verified everywhere on Y. Then the
Cauchy problem for P is well posed in the Gevrey 6 class.

We remark that it is proved in [3] that the Cauchy problem is well posed
in the Gevrey 5 class if KerF72(p) NImF?2(p) # {0}, p € ¥ and the Levi condition
is satisfied, that is Pg,, = 0 everywhere on 3. We do not know whether the
Gevrey index 6 in Theorem 1.2 is optimal or not. We only show an example
suggesting effects of null bicharacteristics tangent to the doubly characteristic
manifold on the Gevrey well posedness. Consider

(1.5) P = —D} + 2x,DyD,, + D} + 23D?
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where the double characteristic manifold is given by ¥ = {£{, = & = 0,21 =
0}. This is a model (canonical) operator such that ImF?(p) N KerF7(p) # {0},
p € Y and admitting a null bicharacteristic with a limit point in the doubly
characteristic set.

We say that the Cauchy problem for P is locally solvable in v(®) at the
origin if for any ® = (ug,u1) € (v(*)(R™))2, there exists a neighborhood Ug of
the origin such that the Cauchy problem

Pq =0 inUs
DJu(0,2') = uj(z'), j=0,1, z¢€Usn{zg=0}
has a solution u(x) € C*°(Ug) (see for example [8]). Then we have

Proposition 1.1 ([3]). The Cauchy problem for P is not locally solvable
at the origin in any Gevrey class of order s > 5.

2. Non effectively hyperbolic characteristics. Without restric-
tions, we may assume that the principal symbol p(z, &) of P has the form

(2.1) p(@,€) = —& +a(z,£)

where ¢ > 0. As stated in Introduction, we always assume (1.1), (1.2) and (1.3).
We recall

Proposition 2.1 ([3]). Suppose that p vanishes exactly of order 2 on a
C> submanifold ¥ of T*R™*1\ {0} on which the canonical 2 form has constant
rank and such that Sp(F,(p)) C iR, KerF2(p) NImF7(p) # 0, Vp € 3. Then one
can write, near a reference point p;

p(@,8) = =&+ ¢i(x, &)

j=1
where ¥ is given by {9 = 0,¢1 = -+ = ¢, =0} and
(22) {§0+¢1,¢j}:0, j:1,...,7’, on 2.

In this proposition it can be concluded {¢1,¢2} # 0 on ¥ which was
essential in [3], but in this paper we do not need this fact. Let us set

Q=> ¢;(z¢)
j=2
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then we have

Lemma 2.1. Let p € ¥ then we have

T Fy(p) = Tt Fo(p).

Proof. One can write p = — (&0 + ¢1)(&0 — ¢1) + Q(x,&’) which gives

Pp = — (&0 + do1(p))(§0 — dor(p)) + Q-

By a linear symplectic change of coordinates one may assume that

Pp = —€o(&0 — 261) + Qp(, ).

Since {£,Q,} = 0 one concludes that @, is independent of z¢ and hence Q, =
Qp(2',¢&'). Now it is easy to see that

’)\_Fpp’ :)\QIA_FQP

which proves that non zero eigenvalues of F},, coincides with those of Fg, includ-
ing the multiplicities. O
We are working near p € 3. Let us set

Yi(w,6) = Oye(w,&), i=2,...,r

Jj=2

where O = (O;;) is an orthogonal matrix. Since ({¢;,¢;}(p)) is a real anti-
symmetric then taking into account ({1;,1;}(p)) = O({s,¢;}(p))O~! we may
assume that, with a suitable O

{h2i—1, 0 }(p) = 025 jpus, 1<j<2k+4,1<i<k
{h2s, i} (p) = =Oi—1jpis, 1< <2k+46,1<i<k
{optj i} (p) =0, 1<j<l 1<i<2k+4

where r = 2k + ¢ and iu; are the eigenvalues of ({¢;,¢;}(p)) on the positive
imaginary axis counting the multiplicities. Here we remark that

k

(2.3) > i =Tt Fo(p).
=1
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Indeed put
S = —d (2, €), Xy = ——dimi(a, ), 1<i<h,
Nz Nz
Xiyj = dipopyj(a’,€), 1<j <L

Since =;, 1 < i <k, X;, 1 <1 < k+/ verifies the canonical commutation relations
and hence these extend to a full symplectic coordinates {X;,=;}" ;. It is clear
that

k k+¢
Q=Y w2+ Y X2
=1 i=k+1

Since Tr"Q; is symplectically invariant and then we have (2.3). Therefore by

Lemma 2.1 we have
Tr+F Z L.

We assume that P satisfies the strict Ivrii-Petkov-Hormander condition near p;
“TFy(p) < Po(p), pES, puear p

In particular the condition implies that Im Pg,(p) = 0 for p € 3, p near p.
Denoting by P a real valued extension of Pgu(x,&) outside ¥, we see that
Pyp(x,&) — PP (x,§) vanishes on ¥ near p. Hence we conclude that we may
assume

(2:4) Py =P+ R, Pi(p)> Tt Fy(p) +e

near p with some € > 0 where R = >"_, Cj(z,£)¢;(x,£) with ¢g = & near p.

3. A lemma for Weyl calculus in the Gevrey class. In this
section we introduce a class of symbols of pseudodifferential operators which
will be used in section 4 to derive Gevrey a priori estimate for P. For a(z, D)
with a such symbol we prove a composition formula e**(P)g(z, D)e¥¢(P) where
6(D) ~ (1+ |D|)/S.

Let

g = (u&)°{|dz> + (£),,%[d¢|*}, ( (L2 +EP)Y2, (2,6) e R,
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be a metric Where 0 < < 1. § will eventually take the value 2/3. We say
bz, &, 1) € v S(m(€, ), ) if b(x, &, 1) verifies the following estimates;

10507 b(x, &, )| < Cam(&, ) ({ue) ~*/*(€),) 17!
x Alel|a) 1372 (jaf*/2 + (ug)?/?)le

for every a, f € N®. We assume that b(x,&, p) is independent of x for |z| > M
with a large M.

Lemma 3.1 ([3]). Let s > 4. Assume that

0207 f (@, )| < Com(&, w) (1) ~7(€),) 1P A1 a1

for every a, 8 € N*. Then we have

w(e, &) = /£ (2.6 m)? + (uE) 0 € 1S (m(€, ). ).

Lemma 3.2. Let a;(x,&, 1) € v S(mi(€,1),9), i = 1,2. Then we have

a1(z, &, pas(z, €, ) € v S(my(€, pma(€, 1), 9).

Note that if
10200b(x, &, )| < Cam(€, w)(€);1 Al |alt®, Va8

then it is obvious that b(z, &, u) € ¥ S(m(&, 1), g).
We now consider

AP (2, D, p)e?PH),
Let us denote k = 1/s. As for ¢(&, 1) we assume that

{ G(&, 1) € SUu&)*™, lda|* + (€)21dg )

(3.1)
A€+, 1) — (6 =, p) < Clum)™.

Then the following proposition holds.
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Proposition 3.1 ([3]). Let 6+ <1 and b(x, &, ) € v/ S(m(z, €, 7),
1/k > 4. Assume (3.1). Let e® P00 (x, D, p)e=?P) = ¢ (z, D, 1) then one

can write
N-1

c(w,&, 1) = ¢j(@,& 1) + Ry (w, &, p)

j=0

where

o _n
= 58 P 6+ 3103 .1) nzob(a)(sc,ﬁyﬂ)

lee|=j
€ 1 S(m(&, p)(ug) 102 g),
Ry (2, & 1) € pNS(m(€, p)(pe) = NImrm0/2Hnaf2 gy,

4. A priori estimate in the Gevrey class. In this section we derive
a priori estimates in the Gevrey class assuming that (2.2) and (2.4) are globally
satisfied and then prove Theorem 1.2. Since the routine arguments of partition of
unity allow us to reduce our estimate to a global one, we will skip this standard
step.

4.1. Preparatory lemmas. We start with

o+ o1& — 1)+ >
=2
where we assume that our assumptions are satisfied globally;

(4.1) {0+ 01,0} = ZCjk¢ka j=1...,m

k=1
(42) {¢2i—1,¢2i}(, &) > (mi—e)lE|, i=1,....Fk,
(43) Psub(xv f) = Pls(xv fl) + R(SE, 5/)7
(4.4) Pi(z,&) > (-A+e)lE|, R(x,¢) =) Cjx,&)p(x,8)

=0

where Cji(z,¢), Cj(z,£') are homogeneous of degree 0 and A = Tr"F,(p) =
Zle w; and €2 > 0 is a fixed positive constant while one can take e; > 0 as small
as we please.
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We now make a dilation of the variable: xg — pxg so that we have
P(z,&p) = p?Puwo,a’,n " &, ¢)

= p(uwo, ', &0, p€) + pnPr(pxo, 2, &0, p€') + p*Po(pzo, 2')
- P(xafaﬂ) + Pl(maguu) + PO(xaéuu)

where
p($7 57 ,U,) - _(€O - ¢1(/’L$07 mlv /'Lé./))(&) + ¢1(/'L$07 xlv /'Lé./))
+ > ¢(pao, ', pg)?
=2
- _<§0 - ¢1($,€/,/L)>(§0 + ¢1($,€/,/L)> + Z¢j(m7§/uu’>2'

Jj=2

In what follows sometimes we simply write p(z,&, pn), Pj(z,&, p) as p(z,§),
Pj(x,&’). Then (4.1) and (4.2) become

(4.5) {Co+ 01,053 = 1Y Cixdr, j=1,....r
k=1

{poi_1, 02} > (i —e)p|p'], i=1,... .k

while (4.3) and (4.4) become

(46) Psub(magyﬂ) - Pf(l‘,gl,M)—i—R({L‘,f,M), R:MZC](bJ
=0

Pi(z,&p) = (—A+e)ulul.
Let go be the standard S1 ¢ metric with small parameter p > 0;
go = pPdafy + |da'|* + (') 2ldg' P, (€ = (0 + 1€,
Let x(s) be x(s) = 0 near 0 and identically 1 outside |s| > 2 and cut off a reference

symbol ¢(x, &', 1) by x(u|€'|) so that we consider ¢(x, &’ u)x(u|€']). Remark that

Lemma 4.1. Let ¢(x,&") be homogeneous of degree k in &'. Then we
have

d(pwo, o, p€)x(ulé']) € S((ug), go).
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Proof. Note that ¢(x,&")x(|¢') € S(E)* |dz|* + (¢')"?|d¢'?) and

a(pwo, o', p') € S((ug')*, go) if alz,&') € S, |dx|? + (¢)~2d¢'|?). O
Let us set

(47) w= ()2 + ()2, @ = VT aw
with some constant a > 0 so that 1 — aw > ¢ > 0. We introduce a metric

g=w"2gy = w {p’daf + |da’ | + (¢'),%|d¢'|*}

which will be used throughout this paper. We also put g = (ué’)%go as before.
Note that

w e S(w7g)7 ¢1 € S(<:U’§/>wag>

We can rewrite p as

(4.8) p=—(&+612) (& — n1®)+ D 7 + awd?

j=2
because 1 — ®2 = qw. Remark also that

So+ 1=+ +01(P—1)=&+ o1 — Y

where
aw

Lemma 4.2. We have

¢y € Swue'),9), or1(1+1) € S(w(pg'), g),
020, (6:19) € pS((ue) TV g), o+ Bl =2

Proof. The first two assertions are clear. To check the third one it
suffices to note that 8?8?@ e plPlS((ue) =18l g) for la+p|=1. O
In what follows k and d are fixed as

k=1/6, 6=2/3

and assume that a = 1 without restrictions. Since w > (u&’)~%? and hence
w2 < (ug) = (ug) VO = (ug’)" so that w2 € S((ug')", g).

Lemma 4.3. Let a € S(m1,g9) and b € S(ma,go). Then (see e.g. Theo-
rem 18.5.5 in [4]) we have
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(i) a#a—a® € p?S(miw=*(ug')~%,g)
(i) a#b — b#a — t{a,b} € pdS(mimow=>(ug) =3, g)
(iil) a#tb + bta — 2ab € p2S(mimaw=2(ug’) 2, g).
Corollary 4.1. Let a € S(m1,g9) and b € S(ma,go) be real. Then we

have
([ab]*u,u) = Re (b"u,a”u) + (T"u, u)

with T € p2S(mymaw=2(ué') =2, g).
Lemma 4.4 ([3]). Let a € uS(1,9). Then we have

Re ([a¢Tw]"u,u)
Re ([a(bjz]“’u, u)

CuRe ([¢w] u, u) + Cp’ | (uD')"ul]?,

<
< CpRe([¢3]"u, u) + Cp®[{uD")* ul?,  j > 2.

Let a € uS((u&')*, g). Then we have
Re ([agiw]u,u) < CpRe([(u)*$iw]”u,u) + Cp®|[{uD’)*/ulP?,
Re ([ag7]"u,u) < CuRe([¢F (€)™ u, u) + Cp®|[{uD")>ul?,  j > 2.

Let a € uS(1,g) then we have
I[adug’)*> ;] ul)® CpPRe ([(u€)"d3]"u, u) + Cpt || (D) ul?,

lalue) > Ve “ul® < CuRe ([(n€) wdi] u,u) + Cp* || (uD')*ull?,  j = 2.

IN

Lemma 4.5 ([3]). Let j #1 and a € uS(1,g). Then

Re ([ag16;]"u,u) < CuRe([¢5(u€')"]"u, u)
+CuRe ([pFw (€)1 u,u) + Cp®|[(uD') > ul?,

Lemma 4.6. Let a € pS({(pu&'Yw, g). Then for j # 1 we have
Re ([agj]“u,u) < Cp'/*Re ([0F(u€')"]"u, u) + Cp'/?Re ([¢Fw(pg’) "] u, u)
KO (D 2l 4 O (D)
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Proof. Let us write
ag; = Re (u!/* (&) Pt~ 4 (ug') = 2a) + S (), g)
and hence
Re ([a;]"u,u) < 2 [[{ue’) 6] ul®
+p 2| [(u) TP P + CpP [ (uD') .
Note that (ue) = 2a#t(ue')~*/2a = (u&')~*a® + p*S((u€')**, g) and write
(e a® = (w P {ug)Hw? (ug')> "
= O({p€') 2t + (u€) ) (u)> "
= b{pg) W (@tw(ug)") + blug')* "

where b = w™2a?(ug’) 2 € p25(1, g). Since 2 — § — k = Tk thanks to Lemma 4.4
we get

B2 () ol < OpRe (G )], w)
O D) 22 4 i 2 | Dy 2

Then we get the assertion. O
We now estimate {{p + ¢1P, qﬁ?}, {&0 + $1®, wp?}. Recall that

§o+ 1P =&+ d1 — P19
We first estimate {&o+ ¢1, qﬁ?} and {& + ¢1,we?}. From the assumption we have

{€o+ 1,03} = 2{& + b1, 85105 = > Cindnd,
k=1

where Cjj, € uS(1, go). Note that for j,k > 2
Re ([Cjxprds]"u,u) < CpRe([¢7]"u, u)
+CuRe (5] u, u) + Cp’||u]*.
For Cj1¢1¢; we apply Lemma 4.5 to get
Re ((Cji1¢]“u,u) < CpuRe([¢F(n) ] u, u)
+CpRe ([¢w(ue') ) u, u) + Cp®[[ (D) 2ul.
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We turn to consider

{&0 + ¢1, WPt} = 2{& + P1, P1 }p1w + {&o + b1, W}

For the first term of the right-hand side we remark that

{€o+¢1,61} = Cuntr
k=1

and apply Lemma 4.5 and Lemma 4.4. Recalling w = /¢3(u&’)~2 + (u&’)~9
have

(Gt onw) = gu e +or, () 26 + (ug) )

= %w_l{gbl, (€)Yt +w HEo + b1, P11 () 2

g o, (),

Note that w™'{¢1, (u&') 217, wH{¢1, (') °} € pS(w,g) and apply Lemma
14 10 w61, () 2}o} and w {er, (u€') )62, Note that

wH&o + p1, b1} (pg') ™ ZTmm

with T) € pS(w, g) and apply Lemma 4.5 and Lemma 4.4.
We next estimate {¢1, qSJQ} and {19, we?}. Let us consider for j > 2

{p19, 03} = 2{¢1, &5} b0 + 2{0, b} 1.
Write
(61,0 }059 = Re (€'Y 24 { b1, ¢ 3o (') /%) + 1P S((ue) ", g)
and note that
{61, 0,202 (€)™ = ({1, 0 Y (') 2w H)w? (ug')>=*
= Tw(ug)?>™" = T((ug) 2% + (u') ) (ue)*~
= (Tw &) 2 w(ug ) ¢? + T(ue)*0="
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with T = {¢1, ¢; 129 (u€') 2w=2 € u?S(1, g) and hence we have Tw = (ug’) ¢ €
p2S(1,9), T(u€Y>=0=* € 12S((u€')™, g). We now apply Lemma 4.5. We turn to
consider

{$19, pw} = {1, w}eTy + {1, w}ei + 2{¥, ¢1 }pTw.

Note that {¢1,w}, {¢,¢1} € uS(1,9) , {¢,w}p1 € uS(w,g) and apply Lemma
4.4. We summarize

Proposition 4.1. We have

[Re ({€0 + ¢1®, 97} u, u)|, [Re ({€0 + 1@, woi} u,u)|

<cp {Z Re ([(1€')"62]""u, w) + Re (w ()" 63", u>}

Jj=2

+ O (uD') " 2.

4.2. Energy inequality (proof of Theorem 1.2.). Let us consider

P=—-MA+BA+Q

where
A= DO - i<uD/>K -\
Proposition 4.2 ([3]). We have
d 2
2lm (Pv,Av) = —(||Av||* + (Re Qu,v))
dl‘o

2| (D)2 Ao | + 2Re ({(1D')Re Qu, v)
+2(Im BAv, Av) + 2(Im mAv, Av) + 2Re (Av, Im Qu)
+Im ([Dg — Re A\,Re Q]v,v) + 2Re (Re Qu, Im Av).

Let us denote A = (fo + qblq))w =Dy— ", M = (50 — qblq))w =Dyg—m"¥
then thanks to Lemma 4.2 we see that

(€ — G10)(E0 + 012) = & — B30 + 2-{E — 618,60 + 418} + 475(1,9)
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and from (4.5) it follows that {£o, 1} = pu>_7_; Cj$; and hence

{€o— 1%, L0+ 1@} =Y Cjdy, Cj e S(l,g).

j=1

Noting that P = (p + Pau)®” + u2S(1, go) and (4.6) one can write
w

P=-MA+ | ¢?+wp?+P +R| +u*S(1,g)
j=2

where R = p ) % Cjoj, Cj € S(1,g). We rewrite Coo = Coép as

Cobo = Co#(&o + $1®) — Co®y + p>S((u€')*", g)

which gives

(4.9) P = —MA+ BA+Q,
Q = iqb? +wdt + PP+ R+ p2S((u)*, g)
j=2
where B € uS(1,g) and
(4.10) R= Zr:cjgsj, cj € uS(1,g).

j=1

Here we note that by Lemma 3.1 with f(z,&',p) = é1(x, &, p){pg’)~! we have
w e /%) S(1,5). We now conjugate e~ %D = ¢ o P;

e?Pe™? = —e®Me %e®?Ae™® + ¢?Be %e®Ae™? + e?Qe .

Let us denote e?Me™?, e?Ae~?, e?Be™?, e?Qe~? by M, A, B, Q again. We first
study
M = e?(Dy —m™)e™® = Dy — i(uD')* — e®m¥e=?.

Since m € S(w(ug'),g) we apply Proposition 3.1 for Weyl calculus with § =
2/3 = 4k. Then we have

(4.11) e?me? = —[mg +my +ma]¥, mp=—¢®
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where m1 € uS((u€')*, g) is pure imaginary and mo € p2S({u&’)~", g) by Propo-
sition 3.1 where we recall § = (u€’)*go. Let us consider

A =e?(Dy— A?)e™® = Dy — i(uD')* — e®A\Pe %,
Since A € S(w(ug'), g) repeating the same arguments we have
(4.12) A = —[No+ A1+ XY, o= 1P

where A1 € uS({(u€')*, g) is pure imaginary and Ao € p2S((u&’)~*,g). An imme-
diate consequence of Proposition 3.1 is B € uS(1,g).
We now consider e?Qe~?. Note that

e?[¢3]Me? = [¢2 + ajd; +1j]”

where a; € pS((ug')*, g) is pure imaginary and r; € p?S((ug')>*,g). We next
consider
Clwgi] e ? = [wei + arwey + )"

where a1 € uS((u&')*,g) is pure imaginary and ry € p2S(w(u&’)?*,g). Since
PP e pS((u'), go) we have e?[Pf]“e™? = [P} + ] where 12 € p?S((€')", g)

and
w

.
e?Re™? = Z CiQ; +T
j=1

where ¢; € uS(1,g) and 7 € p?S((ug’)>*, ). One can write

r T T
(413)  e?Qe? = |3 oF +wol + PP+ > a;; + arwey + > b+

Jj=2 Jj=2 J=1

where a; € pS((ug')*, g) are pure imaginary and r € p2S((ug')3*,g). Let us put

T

T T
g=> & H+wdi + P =q+P, q1=) ajp;+awér, @=3 c;jd;.

Jj=2 Jj=2 j=1
We summarize

Proposition 4.3. We can write

¢?Pe™® = —MA + BA +Q
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with B € uS(1,g) and

M = Do—i{uD")* + [mo +my +ma]” = Dy — i{(uD")* —m",
A = Do —i{uD")" + [No+ A1 + Xo]¥ = Do — i(uD')F — \¥

where my, A1 € uS({(p&')*, g) are pure imaginary and ma, Ao € p2S({ug') ="

As for Q we have

\
Q = la+a+a+r" ¢=)Y & +wl+P=q+ P,
j=2
T T
@ o= Y ajdj+tawg, @=) cd
j=2 i=1

where aj € pS((u&'Y*, g) are pure imaginary, c; € uS(1,g), r € p>S((ug')y*",

Here we note
—2Im (Aw, w) = d%ouwﬂ + 20Dy w2 + 2(1m Aew, w)
and from this it follows that
@) o D) A D Yl = D)l
+(2 = @) (uD")*w|]* + 2(Im AMpD')*w, (uD')“w)

with a small 0 < « (< 2). Since Im X € uS((u€’)", g) one sees that

171

,9)-

9)-

- —K K d K K
o (D)~ PA D"y ul* = d—ﬂ)ll(uDW ull? + (2 = a = Cp)[|(uD")*?ul.

Since
(D) 2N (DY = (uD'Y/2A + (uD')~2[A, (uD')"]

and noting A\g € S(w(u’), g) and hence [A, (uD")*] € uS((u&’)", g) we have
(D)2 [A, (D) Ju|* < Cpll (D) ul?.

Then we have

Lemma 4.7. We have

d
(4.15) 1{uD")™2 Au|)? = 7

70||<MD’>””UH2 + (1= Cp)|[(uD")> ul .
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Since Imm € pS((ug)", g) it follows that
(4.16) 12(Im mAu, Au)| < Cp||{(uD’)/?Aul|?.

Let us study 2Re (Au, Im Qu). Note that |2Re (Au, Im Qu)| < p|/(uD’)*/?Au)? +
p~H[(eD")7*/2Im Qu||?. Recall that Im Q = [g1-+Im go+71]” with ry € p2S((ug')3",
g). Remark that with ¢4 = Im gy

(€)@ + o+ 1) =€) T (an + ah) + 1S (u€')2, g)

because q1 € uS({(u€’ )1, g). Here we remark that
€y Pergy = (er () ~Fw™2) ((ug) w2 ¢1)

where ¢ (u€')Fw="? € uS(1,g9). Applying Lemma 4.4 to |[(u€)~*/?(q +
g3)]"ull? to get
Lemma 4.8. We have

T

2Re (A, Im Q)| < pull (D)2 Au* + Cpuf 3 Re ([(1€')" 62, )

7j=2
+Re ([(u€) we?] “u,w) b + | (D) 2ul 2.

Let us consider Re (Re Qu, Im Au). From Proposition 4.3 we have

ReQ = &} +wdi + uS((u€'),9) = a0 + pS((u'), 9)

j=2
and Im X € puS((u€')", g) hence it is clear that it suffices to study Re ([go]“u, Im Au)
modulo 2||(uD’)™/?u||> because 1 + k = k. Since one can write
ImA = Ay pNS({ug) T g), A€ pS((pg)", )
T/ 2|2,

for any N we may assume Im X\ = \; € uS((u&’)*, g) modulo p?||{uD’)
Note that

Re (A\1#q0) = Aiqo + 1> S((u€')*", g).

Applying Lemma 4.4 we get
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Lemma 4.9. We have
2Re (Re Qu Im Aw)| < Cpu{ D™ Re ([(u€)"¢2]"u, u)

=2

+Re ([(u€") we?]"u,w) b + Cpa?l| Dy 2u2.

We now estimate Im ([Dy — Re A, Re Q]u, u). Note that one can write

ReQ = q+qy+r+pNS((ue)>3Nst2m gy v e p2S((ug')*, g),
Rel = _>‘0 - )‘2 + MNS(<N€/>1_3NK+2nHv§)7 )‘2 € M25(<M€/>_K79)

where ¢4 = Regqe. This proves that |[Im ([Dy — Re\,Re QJu,u)| = |Re ({§ —
Re \, Re Q}“u, u)| modulo p3||{uD")?*u||>. Note that

{& —ReX,ReQ} = {& — Ao, ¢ + ¢} — { X2, q} + 1> S((u€')*", 9).

Since one can write {A2,q} = 377y a;(n€)"¢; + ar(us’)"wer + 1P S((ug')", g)
with a; € p?S(1,9) and {& — Xo, g5} = D5, ¢jdj + p2S((pe'),§) with ¢; €
p2S(w=t, g) € p2S({(ug')?*, g) and {&o—No, Pi} € u2S((u€'), g) we have, recalling
¢g=qo+ P} and 3k = 1/2

[Im ([Dy — Re \,Re QJu, u)| < |Re ({&o — Ao, g0} u, u)|

O M[o5] ull® + [V “ull® + [ (D) ?ul?}

j=2
< |Re ({&o — o, g0} u, u)|

+Cu2{z Re ([¢5]"u, u) + Re ([wef]"u, u) + | (uD)/ul?}.

Thanks to Proposition 4.1 we conclude that (note that 1/2 < 7x/2)
Lemma 4.10. We have

T

Im (Do — Re A, Re QJu, w)] < Cpu{ 3™ Re ({182, )
=2

+Re ([w(p€')"$i]"u, u) ¢ + Cp?|[(uD") ™2l

<.
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It remains to estimate Re ((uD’)"Re Qu,w). We first note that

Re ((1D')"[g5]"u w)| < Cp{ Y 5] ul®
7j=2

HIVw (e ) 2] ull? + pll(uD")>ul*}

and hence it is enough to estimate Re ((uD’)*q%u,u) modulo pul|{uD’)3*/?u|?.

Note that
Re (&) #¢7) = (u€')"¢7 + 1S ((u€')", 9)
= (W€ 204 (uE' )65 + 1S ((u€')", 9),
Re ((n€)“#wel) = (u€) wei + u*S(w(ug)", )

and hence

r

Re ((uD")*qu, u) > > " [|[(1€)*/?¢;] " ul?
j=2

+Re ([(ug)rwet] u, u) — Cp® || (uD")*?ul|?.
With ¢; = (u&')*2¢; note that 2Im (V% _u, Y¥u) = —i([%, Y% _Ju,u) and
—i[y, 1] = {21, 2} + pPS((u€) 1, go).

Recall that {v9;i 1,92} = {d2i1,02: 1 {u€")" + cidai1 + cada; where
cj € pS((pg)" g0), @ = 1,...,k and {¢2i—1,¢2} > (i — er)pu(p’). Thus we
have

Re ([{¢2i-1, $2i H(n€)" ] u,u) < [0 yul® + [[3ul®
+Cpufl[v3ull + 1193 _yull + [[(uD")*ul }.

Let us denote a = {¢g;—1, ¢z } ()" — (ni—e1) p(p€’) ™. Since 0 < a € uS((ug’)™,
go), noting that (¢'), = p=1(ug’), 7k — 1 = K we see

0 < b=p*(u)'" ™aeSUE ) 90),
a = p(u€ ) PHbHPRE N + 1B S((uE') ", go).
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Thus from the sharp Garding inequality (e.g. Theorem 18.6.7 in [4]) it follows
that

Re (a”u,u) > Re (0" u(puD")*/*u, p(uD')**u)
—COpP (D)~ 2|2 > —Cp? (D) P2

and this shows

(417)  Re([{¢2i-1, 62 }{n€)"] uu) = ppi — e1) [ (uD') ™ 2ul?
—C?|{p D"y ul .

Summing over ¢ and taking another ¢; we obtain

k

(7 mi = @) ull (uD')™/?ul|? < (1 + Cp)Re (D" qiu, u)
i=1

+Cpl[ {p D"y .

We turn to Re ((uD’)*[Pf]"u,u). Note that Re(u&)*#P; = (u&)"P; +

iBS((H€') 5%, go) and (&) Py > — (X5, i — e2)u(u€’) ™. Repeating the same
arguments deriving (4.17) we have

k

Re ((uD')"[P{]"u,u) = (Y pi = e2)ul| (D)™ *ul|* — Cpa?||(uD")ul?.
i=1

Then we have
Re ({(uD")"q"u,u) > (1 = §)Re ((uD")"q5'u, u) + Re ((uD")* [P u, u)

k

+0Re ((uD')gt u,w) > (1= 8)(1+Cu) ™ (O s — e)pll (D)™ ?ul?
=1

k T
~(30 i = el p D)™l 4 6 3 Re ([(u€') 03], )

+Re ([(1u€) we?] ", ) b — Cpal (uD'y/ul%.

We take €1, ¢ so that (1 —9)(1+ Cﬂ)_l(Zle Wi — €1) > (Zle i — €2) for small
0 < p < po and hence
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Lemma 4.11. We have

Re ((uD")*ReQu,u) > cypl|(uD')™/?ul|?

e D Re (€)%, u) + Re ([{pg') "], )}

j=2
—Cul[(uD")*/?u|?

with some positive c; > 0 for 0 < p < pyp.
From Lemmas 4.7, 4.8, 4.9, 4.10, 4.11 and (4.16) we have

Proposition 4.4. There exist g > 0, C' > 0, ¢ > 0 such that we have

. d
CND') /2Pl > - {|lAul? + (ReQu,u) + | 2D')"u*}

+CH<MD>“/2AUH2+C{Z Re([F (1)) u, u) + Re ([6Fw(pg')"]u, u) }

7j=2
+el[ (D" 2ul® + cp| (D) Pul|?

for 0 < p < pg.
Taking into account that ¢2(ug’)™ = ¢;(u)™ >4 (u&')** + pS((ug')*,
90), ¢Tw(ug’)® = Jwer (ug' >”/2#\/_¢1</L€ )2 4+ 1S ((ug’)3", g) it is easy to see

Z Re ([ “u,u) + Re ([w{pg)"]"u, u)

> —COp?|[(uD' ) Pul .
The same argument shows that
(Re Qu,u) > —Cp?|[{(uD")"ul)*.

Integrating the inequality in Proposition 4.4 from —oo to t with respect to xg we
get

¢ [ WDy pulPdy > {IAute, I + el (a0 ute, )P}

+C/ {IeD" Y2 Aull? + (D> Pul|? + | (D)2 u* }da
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for 0 < p < po. Returning to the original P = —MA + BA + @ and replacing u

by e

/ .
—20(uD")*y; we obtain

Proposition 4.5. We have
C/t [(uD") =20 wP" Pl *day
> {[le”" PV Au(t, )| + el (uD')yrem P (e, )}
s [ D2 Rl 4 [ 2o

[ (pD) e P 2} darg

for 0 < p < po.

Since we have the same a priori estimate for P*, applying the standard

duality arguments we can prove Theorem 1.2.

1]
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